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Abstract

Background: Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil
feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal
food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of
soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.

Methodology/Principal Findings: We studied the functional composition of nematode communities three and five years
after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community
simplification common nematode species disappeared and pronounced functional shifts in community structure occurred.
The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant
assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-
bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to
increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the
nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant
feeders after five years.

Conclusions/Significance: The results suggest that species-poor plant assemblages may suffer from nematode communities
detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes
stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to
positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this
study suggest that this results mainly from the loss of common species which likely alter plant – nematode interactions.
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Introduction

Biodiversity is declining at an unprecedented speed [1,2]

resulting in significant changes in the functioning of ecosystems

[3]. Plant diversity experiments in temperate grasslands suggest

that aboveground ecosystem functions increase with plant diversity

[4–6]. Although they received much less attention, there is

increasing evidence that changes in the diversity within the

producer level propagate into consumer levels above and below

the ground, altering their performance, diversity and functioning

[7–10]. Such cascading effects may have strong feedbacks on

primary producers as well as on ecosystem processes [7,11]. In the

present paper we investigated the functional composition of soil

nematode communities – a model group for soil animal food webs

[12–15] – in an experimental plant diversity gradient in order to

explore if changes in plant diversity and functional composition

lead to functional shifts in soil food webs.

There is increasing evidence that microbial communities and

ecosystem services of soils are beneficially affected by plant

diversity [8,16–18]. However, the role of plant diversity for soil

food web structure is largely unknown (but see [10]). Importantly,

as soil food webs respond in a decelerated way to changes in plant

community composition [8,9,19,20], we lack a comprehensive

understanding of functional shifts below the ground.

Analyses of microbial communities in plant diversity experi-

ments indicate that particularly fungal biomass increases with

plant diversity [10,17,18], pointing to increasing importance of the

fungal energy channel in species-rich plant assemblages. There are

strong linkages between nematodes and their bacterial or fungal

food resources and the nature and abundance of these resources

can be monitored by faunal analysis of nematode communities,

e.g. the fungal-to-bacterial feeder ratio or the channel index [21].

However, results from field studies on nematodes do not support

an enhanced fungal energy pathway with increased plant diversity
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[22,23; but see 24]. Rather, they highlight the relevance of the

presence of certain plant species and/or functional groups for the

functional composition of nematode communities [22,23,25,26].

In addition to the ratio between fungal and bacterial feeders,

belowground functional shifts may be indicated by the ratio

between predators and plant feeders. Haddad et al. [7] reported

that loss of plant species shifted a predator-dominated above-

ground food web to being herbivore-dominated. The low density

and diversity of predators in species-poor plant communities likely

indicates a decrease in food web complexity.

Moreover, Haddad et al. [7] found a close positive relationship

between plant species richness and aboveground consumer

diversity which was primarily due to the loss of rare species in

low diverse plant assemblages. The authors suggested that high

plant diversity ensures habitat and food resources for rare species

and that rare herbivore species may have been associated with rare

plant species in polycultures. Similarly, particularly rare plant

species have been reported to get lost after N fertilization [27,28].

If the positive relationship between plant diversity and soil animal

diversity, observed in recent studies [9,10], is due to the loss of rare

species has not been investigated. The loss of rare and thus

functionally inconspicuous species may cause the often reported

saturating relationship between species richness and ecosystem

functioning according to the redundancy hypothesis [29].

We studied nematode communities in a grassland plant diversity

gradient three and five years after establishment of experimental

plots to investigate if (1) plant diversity is related to belowground

diversity, particularly due to the lack of rare taxa in species-poor

plant communities, and (2) changes in plant diversity induce

alterations in the functional composition of soil food webs, e.g. an

increasing relevance of fungal feeding nematodes and predators.

Materials and Methods

Experimental setup
The study was conducted in the frame of the Jena Experiment,

a large field experiment exploring the role of biodiversity for

element cycling and trophic interactions in grassland communities

(Fig. 1; [30]). The study site is located on the floodplain of the

Saale river at the northern edge of Jena (Thuringia, Germany).

Mean annual air temperature is 9.3uC and annual precipitation is

587 mm [31]. The site had been used as an arable field for 40

years; the soil is characterized as Eutric Fluvisol [32]. The

experiment was established in May 2002 to represent Central

European mesophilic grassland of different diversity traditionally

used as hay meadow (Arrhenatherion community). A pool of 60

native plant species was used to establish a gradient of plant species

richness (1, 2, 4, 8, 16 and 60 species) and plant functional groups

richness (1, 2, 3 and 4 functional groups) in a total of 82 plots of

20620 m [30]. Using above- and belowground morphological

traits, phenological traits and the ability for N2 fixation, plant

species were aggregated into four plant functional groups: grasses

(16 species), small herbs (12 species), tall herbs (20 species) and

legumes (12 species; [30]). Experimental plots were mown twice a

year (June and September), as is typical for hay meadows in

Central Europe, and weeded twice a year (April and July) to

maintain the target species composition. Plots were assembled into

four blocks following a gradient in soil characteristics perpendic-

ular to the Saale river. Each block contained an equal number of

plots of all plant species and plant functional group richness levels.

Further information on the design and setup of the Jena

Experiment is given in Roscher et al. [30].

Nematode sampling, extraction and identification
Soil samplings were performed in autumn (October) 2005 and

spring (May) 2007, i.e. three and five years after the establishment

of the experimental plots. In 2005 the sampling was performed on

plots of the whole plant species richness gradient (n = 73; Table 1,

Table S1) and nematodes (Fig. 1) were identified to genus level. Of

the 82 plots of the Jena experiment we used 73 with well

established plant communities excluding e.g., some monocultures

with low coverage of the target species. In 2007 only experimental

plots containing 1 (8 plots), 4 (7 plots) and 16 plant species (7 plots)

in blocks 1 and 2 were sampled (n = 22; Table 1), and nematodes

were assigned to the trophic groups plant feeders, bacterial feeders,

fungal feeders, predators and omnivores according to Yeates et al.

[33] and Bongers and Bongers [34]. At each sampling campaign,

five soil samples were taken per plot (diameter 2 cm, depth 5 cm),

pooled and stored at 5uC for ,1 week. From 10 g soil fresh weight

of these samples nematodes were extracted using a modified

Baermann method [35]. After an extraction time of 30 h,

nematodes were preserved in 4% formaldehyde. The number of

extracted nematodes in each sample was counted and 10% of the

individuals (but not less than 100 individuals, if available) were

assigned to trophic groups (2005 and 2007) and identified to genus

level (2005). No specific permits were required for the described

field study. Our study did not involve endangered or protected

species.

Figure 1. Photograph of the field site of the Jena Experiment
and an exemplary nematode. The upper photograph was taken in
2006 showing the main experimental plots (20620 m) varying in plant
species richness (1, 2, 4, 8, 16, and 60 species) and plant functional
group richness (1, 2, 3, and 4 functional groups). The field site is located
on the floodplain of the Saale river at the northern edge of Jena
(Thuringia, Germany). Photo by Christoph Scherber, Winfried Voigt,
Alexandra Weigelt & the Jena Experiment. The lower photograph shows
the nematode Mononchus sp., a predator species found at the field site
of the Jena Experiment. Photo by René Seiml-Buchklinger.
doi:10.1371/journal.pone.0024087.g001
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Calculations and indices
For a detailed investigation of plant community effects on

nematode diversity we determined total number of taxa and the

Shannon-Wiener index as well as number of nematode taxa of

rare, intermediate and common species, and of the colonizer-

persister groups cp-1 to cp-5 (all 2005). Taxa occurring on maximal

14 plots (,20%; 17 taxa) were grouped as ‘‘rare’’, those occurring

on 15 to 30 (21–41%; 17 taxa) as ‘‘intermediate’’, and those

occurring on at least 31 plots (.42%; 17 taxa) were regarded as

‘‘common’’ (see Table S2). This proxy measure for ‘‘rareness’’

correlated well with the density of the taxa (R2 = 0.71; P,0.001),

suggesting that common species were also more dominant than

rare species. This grouping was chosen to represent each group

(rare, intermediate and common) with an equal number of species.

Moreover, we used the colonizer-persister grouping of Bongers

and Bongers [34] and Ferris et al. [12]: cp-1 (4 taxa), cp-2 (20), cp-3

(8), cp-4 (8) and cp-5 (4). The colonizer-persister grouping pools

nematode taxa with similar response to changes in their

environment, i.e. life-history characteristics and feeding behaviour.

The scale ranges from enrichment opportunists (cp-1), i.e. r-

strategists in a looser sense to taxa sensitive to disturbance (cp-5),

i.e. K-strategists sensu lato [34,36,37].

In order to indentify plant community effects on the functional

composition of nematode communities we calculated the ratio

between fungal (FF) and bacterial feeders (BF) as FF/(FF+BF), the

ratio between microbivore nematodes (FF and BF) and plant

feeders, and the ratio between predators and plant feeders in 2005

and 2007. While the ratio between fungal and bacterial feeders

provides information on changes in the relevance of energy

channels, the ratio between microbivores and plant feeders

indicate the net effect of nematode communities on plant

productivity [38,39]: a ratio .1.0 suggests positive net effects of

nematodes outweigh the negative ones. The ratio between

predators and plant feeders represents a proxy measure of food

web complexity and the ability of communities to control

herbivore populations that can become pests [7]. Moreover, we

calculated the maturity index, channel index, enrichment index

and structure index in 2005, representing common indices using

weighed abundances of nematodes according to their trophic

affiliation in order to explore functional changes in food web

structure [12,21]. Overall effects of plant species richness on

nematode density and diversity in 2005 have been published

elsewhere [10]. Further, it should be noted that plant community

effects on nematode densities reported in Eisenhauer et al. [40]

cannot be compared with those reported here, since the former

study comprised data from untreated subplots and subplots with

nematicide application. In the present paper we focus in more

detail on plant community effects on functional changes in food

web structure and on the variability of community functioning

between the two sampling dates in autumn 2005 and spring 2007.

Statistical analyses
Data on nematode density were log-transformed to meet the

requirements of General Linear Model (GLM; normality and

homoscedasticity of errors). GLM (type I sum of squares) was used

to test the effects of block (BL), plant species richness (SR), plant

functional group richness (FR), and presence/absence of grasses

(GR), small herbs (SH), tall herbs (TH) and legumes (LE) on the

density (total, plant feeders, bacterial feeders, fungal feeders,

predators and omnivores; 2005 and 2007) and diversity of

nematodes (taxa richness of total nematodes, rare, intermediate,

common, cp-1, cp-2, cp-3, cp-4, cp-5 and Shannon-Wiener index;

2005), the maturity index (2005), enrichment index (2005),

structure index (2005), on the ratio between fungal and bacterial

feeders (2005 and 2007), on that between microbivores and plant

feeders (2005 and 2007), and on that between predators and

herbivores (2005 and 2007). Data had to be analyzed separately

for 2005 (n = 73) and 2007 (n = 22) due to differences in sample

size. F-values given in text and tables refer to those where the

respective factor was fitted first [41]. BL was always fitted first,

followed by plant community properties. If not explained

otherwise, SR and FR were tested as linear factors.

In order to compare the ratios between fungal and bacterial

feeders as well as between microbivores and plant feeders in 2005

and 2007, we used Wilcoxon Matched Pairs Test (non-parametric

test for the comparison of dependent variables). To explore if the

ratio between microbivores and plant feeders differs from neutral

effects ( = 1.0), we performed one sample t-tests. To compare the

two sampling dates we only used plots which were sampled in both

years. We did not correct for multiple statistical tests considering the

mathematical and logical argumentation by Moran [42]. All

statistical analyses were performed using STATISTICA 7 (Statsoft).

Results

Generally, soil heterogeneity (block) significantly impacted

several nematode taxa and had to be considered in the statistical

analyses. However, the effects are not presented and discussed in

detail as this study focuses on plant community impacts on

nematodes rather than on the role of abiotic factors. A list of

nematode taxa, trophic group affiliation and occurrence on the

experimental field site is given in Table S2.

Table 1. Design of the Jena Experiment.

Plant species richness

1 2 4 8 16 60 Plots

Plant functional
group richness

1 15 (8) 4 4 (2) 4 2 (1) - 29 (11)

2 - 8 3 (2) 3 4 (2) - 18 (4)

3 - - 4 (2) 4 3 (2) - 11 (4)

4 - - 4 (1) 4 4 (2) 3 15 (3)

Plots 15 (8) 12 15 (7) 15 13 (7) 3 73 (22)

Combinations of plant species and plant functional group richness, and the number of plots per diversity level at the Jena Experiment field site (see Table S2 for more
details). Plots sampled in autumn 2005 are given in italics and plots sampled in spring 2007 are given in bold (brackets). For more details on the design of the Jena
Experiment see Roscher et al. (2004).
doi:10.1371/journal.pone.0024087.t001
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Nematode density
Total nematode density was not affected significantly both in

2005 (21612 individuals g21 soil dry weight) and 2007 (36611

individuals g21 soil dry weight) by plant community properties

(Table 2, Fig. 2A, B). In 2005 neither plant species nor plant

functional group richness significantly affected nematode popula-

tion density or the density of individual trophic groups (Table 2;

Fig. 2A, C, E, G, K), despite a significant effect of plant species

richness on the density of predators (categorial factor: F5,64 = 2.64,

P = 0.031; Fig. 2I). From the different plant functional groups only

the presence of grasses affected the density of bacterial feeders

negatively (237%; Table 2). In 2007 the density of fungal feeders

(linear factor: Table 2; categorial factor: F2,17 = 4.09, P = 0.035;

Fig. 2F) and predators (Fig. 2J) increased significantly with plant

Table 2. Plant community effects on nematodes.

BL SR FR GR SH TH LE

2005

Nematode density 2.76 0.57 0.48 0.44 0.00 1.10 0.00

Plant feeders 3.13* 0.96 0.20 0.22 0.01 0.31 0.71

Bacterial feeders 3.15* 0.86 0.18 6.92*Q 0.09 0.21 2.92

Fungal feeders 0.20 0.28 0.19 0.42 0.11 0.28 0.21

Predators 0.36 2.25 0.28 2.10 0.70 0.01 0.27

Omnivores 6.60** 0.04 0.15 0.00 0.35 2.37 0.00

Nematode richness 5.09** 4.84*q 0.13 0.15 0.79 0.33 1.00

Rare 5.78** 0.05 0.59 0.01 4.24*Q 0.05 0.45

Intermediate 2.17 0.29 0.51 0.03 0.42 0.55 0.21

Common 3.00* 7.47**q 0.18 0.00 0.03 0.08 0.98

cp-1 1.47 0.51 0.09 0.62 0.28 0.22 0.02

cp-2 12.12*** 0.49 0.34 1.35 0.34 0.08 0.40

cp-3 2.75 6.08*q 0.21 1.45 0.02 0.00 0.01

cp-4 1.70 0.01 1.53 0.19 5.26*Q 0.55 0.08

cp-5 7.48*** 1.89 0.00 0.14 0.34 2.31 0.44

Shannon-Wiener index 2.69* 3.67*q 0.00 0.06 0.00 0.99 1.77

Maturity index 4.16** 0.19 0.01 1.53 0.50 2.48 0.27

Channel index 2.67 1.06 0.00 0.79 0.11 0.25 0.40

Enrichment index 0.71 0.26 0.06 0.02 1.18 1.09 0.54

Structure index 3.04* 0.21 0.05 2.93 0.00 0.18 0.01

FF/(FF+BF) 2.39 1.37 0.00 2.34 0.47 0.03 0.84

(FF+BF)/PF 1.90 0.41 0.05 3.12 1.13 0.10 1.20

PR/PF 2.78* 0.00 2.02 0.12 0.03 0.74 3.77

2007

Nematode density 0.03 1.36 0.32 2.16 0.19 1.61 1.12

Plant feeders 0.60 0.30 0.01 0.34 0.05 0.04 0.10

Bacterial feeders 0.00 0.07 0.00 0.10 0.27 0.44 0.50

Fungal feeders 1.61 7.87*q 1.67 0.78 3.25 2.31 1.62

Predators 0.00 4.52*q 0.15 0.22 0.14 0.09 0.08

Omnivores 4.11 1.90 0.12 0.91 0.47 0.15 0.49

FF/(BF+FF) 2.98 11.63**q 2.25 0.79 2.82 2.64 0.63

(FF+BF)/PF 0.13 1.35 0.01 0.13 0.00 0.28 0.38

PR/PF 2.33 4.63*q 0.26 0.74 0.10 0.01 0.01

F-values of GLMs for the effect of block (BL), plant species richness (SR), plant functional group richness (FG), presence/absence of grasses (GR), small herbs (SH), tall
herbs (TH) and legumes on total nematode density and on the density of different trophic groups of nematodes (autumn 2005 and spring 2007), the ratio between
fungal feeders (FF) and bacterial feeders (BF; autumn 2005 and spring 2007), the ratio between FF+BF and plant feeders (PF), the ratio between predators (PR) and plant
feeders, nematode taxon richness, nematode taxon richness of rare, intermediate and common taxa, and of taxa belonging to different colonizer-persister groups
[12,34], Shannon-Wiener index, maturity index, channel index enrichment index and structure index (all in autumn 2005).
Significant effects (P#0.05) are given in bold. n2005 = 73, n2007 = 22, degrees of freedom: BL = 3 (2005) or 1 (2007), SR, FR, GR, SH, TH, LE = 1;
q = increase with increasing plant species richness,
Q = decrease in the presence of a certain plant functional group,
*** = P#0.001,
** = P#0.01,
* = P#0.05.
doi:10.1371/journal.pone.0024087.t002
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species richness, whereas the other nematode trophic groups did

not respond significantly to plant community properties (Table 2;

Fig. 2B, D, H, L).

Nematode diversity
Total number of nematode taxa and the Shannon-Wiener index

increased significantly with plant species richness (Table 2). More

detailed analyses indicated that the increase in nematode diversity

occurred in common taxa and taxa belonging to the cp-3 group

(Table 2, Fig. 3A, B). The diversity of rare taxa (214%) and taxa

belonging to the cp-4 group (217%) decreased significantly in the

presence of small herbs, whereas the other nematode groups did

not respond significantly to any plant community properties

(Table 2).

Functional indices
Plant community properties did not significantly affect the

maturity index (2.5260.54; mean 6 standard deviation), channel

index (54.60636.76), enrichment index (56.02619.79), structure

index (66.86620.74), ratio between predators and plant feeders,

fungal and bacterial feeders, and the ratio between microbivores

and plant feeders in 2005 (Table 2, Fig. 4A, C). Assigning

Tylenchidae to fungal feeders did not change the results (not

shown). In 2007 the ratio between predators and plant feeders, as

well as that of fungal and bacterial feeders increased significantly

with increasing plant species richness (Table 2, Fig. 4B, D). While

the ratio between predators and plant feeders, as well as that of

fungal and bacterial feeders did not differ significantly between

2005 and 2007 (Z1,18 = 0.47, P = 0.64 and Z1,18 = 1.16, P = 0.25,

respectively; Fig. 4E, F), the ratio between microbivores and plant

feeders increased significantly from 2005 to 2007 (Z1,18 = 2.43,

P = 0.015; Fig. 4G). The ratio between microbivores and plant

feeders was significantly lower than 1.0 in 2005 (t1,18 = 24.51,

P,0.001), whereas it was somewhat, though not significantly,

higher than 1.0 in 2007 (t1,18 = 1.36, P = 0.19; Fig. 4G). The

elevated ratio in 2007 was primarily due to plant communities

containing four species being significantly higher than 1.0

(t1,4 = 3.01, P = 0.030), whereas the ratio did not differ significantly

from 1.0 in monocultures (t1,6 = 20.71, P = 0.50) and in 16 species

mixtures (t1,5 = 0.88, P = 0.41; Fig. 4H).

Discussion

Generally, the functional indices after three years (channel

index, enrichment index and structure index) indicate a fungal

dominated system with rather high values for grassland [43];

however, fungal markers were highly variable and not affected

significantly by plant community properties. In contrast to our

expectations (hypothesis 1), the results suggest that simplified of

plant communities are associated with fewer common nematode

species. Moreover and in accordance to our hypothesis (2), the

results suggest that five years after establishment of the experiment

the functional structure of soil food webs in simplified plant

communities differs from that of species-rich plant communities,

with higher ratio between predators and plant feeders and higher

ratio between fungal and bacterial feeding nematodes at high plant

species richness. Increased numbers of predators in diverse plant

communities point to an increase in food web complexity after five

years. Moreover, the ratio between microbivores and plant feeders

increased significantly from autumn 2005 to spring 2007

suggesting that the nematode community, being more detrimental

for plants in 2005, shifted towards being more beneficial in 2007

[38,39]. This was primarily due to changes in nematode

community composition in plant mixtures. It should be noted

that samplings in 2005 (autumn) and 2007 (spring) were conducted

during varying seasons, which may have also affected our results

[44]. However, previous studies on the field site of the Jena

Experiment showed that plant diversity effects on earthworms [45]

and Collembola [46] were largely consistent in spring and autumn.

Rare versus common species – which get lost?
There is increasing evidence that soil animal diversity relies on

the diversity of plant communities [9–11,23,47,48]. Similar to

plants [27,28], primarily rare species of aboveground invertebrates

have been reported to get lost with declining plant diversity in

grassland systems [7]. The loss of rare invertebrate consumers

probably is due to the loss of habitat requirements and food

resources with declining plant diversity; e.g., rare herbivore

Figure 2. Plant diversity effects on nematode trophic groups. Effect of plant species richness on the density of (A, B) total nematodes, (C, D)
bacterial feeders, (E, F) fungal feeders, (G, H) plant feeders, (I, J) predators, and (K, L) omnivores [log10 (number g21 soil dry weight)] in autumn 2005
(A, C, E, G, I, K) and spring 2007 (B, D, F, H, J, L). Means 6 standard error; * = significant (P#0.05), cat = categorical factor, con = continuous factor.
Darker shading of green indicates increasing plant species richness.
doi:10.1371/journal.pone.0024087.g002

Figure 3. Plant diversity effects on nematode taxon richness.
Effect of plant species richness on the taxon richness of (A) common
nematode taxa (see text for details) and (B) taxa belonging to the
colonizer-persister group 3 (see text for details) in autumn 2005. Means
6 standard error; * = significant (P#0.05). Darker shading of green
indicates increasing plant species richness.
doi:10.1371/journal.pone.0024087.g003
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invertebrate species are likely to be food specialists relying on

certain plant species which are more likely to be present in species-

rich plant communities. If predominantly common or rare species

are getting lost with declining plant species richness has different

functional implications. Common, abundant and/or dominant

species are likely to be more important for ecosystem functioning

than rare species and/or species of low density (but see [49]).

Following this reasoning, we expected that species-poor plant

communities accommodate only few rare nematode species as

compared to species-rich plant communities (hypothesis 1). In

contrast to this assumption, results of the present study suggest that

in particular common and abundant nematode species benefit

from increasing plant diversity. This indicates that the increase in

nematode taxon richness and Shannon-Wiener index with

increasing plant diversity in this and previous studies [10,22,23]

may have been due to taxa having an ‘‘intermediate’’ life history

strategy (cp-3 group; some are rather r-strategists (colonizers), some

are K-strategists (persisters)). Presumably, those taxa benefited

from more diverse plant inputs to the soil system and increased

microhabitat heterogeneity in complex plant assemblages

[9,10,47] and this may also apply to plant feeding nematodes [10].

Although rare species have been shown to contribute signifi-

cantly to ecosystem functioning [49,50], the loss of common

species is likely to be of greater functional importance and to be

accompanied by distinct structural and functional changes in the

soil food web. Further experiments, particular those reducing plant

diversity experimentally, are necessary to support these conclu-

sions.

Belowground functional shifts
Recent biodiversity research focused on the consequences of

community simplification for ecosystem functioning and services

[3,6,51]. There is increasing evidence that the decline in plant

species diversity is associated by marked changes in soil microbial

Figure 4. Plant diversity effects on the functional composition of nematode communities. Effect of plant species richness on the ratio
between predators and plant feeders in (A) autumn 2005 and (B) spring 2007, and between fungal and bacterial feeders in (C) autumn 2005 and (D)
spring 2007. Darker shading of green indicates increasing plant species richness. Ratio between (E) predators and plant feeders, (F) fungal and
bacterial feeders, and (G) microbivore nematodes (bacterial and fungal feeders) and plant feeders in autumn 2005 and spring 2007. (H) Ratio between
microbivore nematodes and plant feeders in spring 2007 as affected by plant species richness. The horizontal line in (G) and (H) represents a ratio of
1.0, i.e. neutral net effects of nematodes on plant productivity [38,39]. Ratios ,1.0 indicate negative net effects (lower plant productivity; given in
red), and ratios .1.0 indicate positive net effects (higher plant productivity; given in blue). Levels of significance on lines (E, F, G) indicate differences
between years (Wilcoxon Matched Pairs Test) and those on bars (G, H) differences from 1.0 (one-sample t-test). Means 6 standard deviation; ns = not
significant, * = significant (P#0.05).
doi:10.1371/journal.pone.0024087.g004
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biomass, respiration, substrate use efficiency, growth and enzyme

activity [8,16–18]. The few studies on the relationship between

plant and soil animal diversity revealed inconsistent results leading

Wardle [52] to conclude that above- and belowground diversity is

weakly linked. However, in contrast to short-term studies [19,53-

55], recent long-term investigations suggest significant positive

plant diversity effects on various soil animal taxa and trophic

groups [9,10,23,46]. In line with the results of the present study,

Viketoft et al. [23] found the soil nematode community structure

of grassland to change in the long-term; however, they assumed

these changes to be not large enough to result in strong feedbacks

to the plant community. In contrast to this conclusion, we take the

distinct changes in the functional composition of the nematode

community in response to plant species richness in the present

study as indication for the existence of feedbacks to plants. Five

years after establishment of the experimental plots the ratio

between fungal and bacterial feeders increased significantly with

plant species richness, suggesting that the fungal channel became

more important in complex plant communities. Nematode

community composition changed considerably with time from

being detrimental to plants in autumn 2005 to being beneficial in

spring 2007 [38,39]. Again, this change was most pronounced in

plant mixtures compared to monocultures. Moreover, the density

of predators and the ratio between predators and plant feeders

increased significantly with plant species richness indicating that

the food web became more complex and predator – prey

interactions more important. The increasing ratio between

predators and plant feeders with increasing plant diversity

corresponds to changes in the trophic structure of aboveground

food webs [7]. Haddad et al. [7] ascribed the increasing density

and diversity of predators to the high structural complexity of

species-rich plant communities. They assumed that higher

predator densities may be able to decrease herbivore infestation

and thereby contribute to overyielding in primary productivity.

The present paper indicates that similar mechanisms may also be

true for belowground food webs. Overall, these changes indicate

that the belowground food web became more consolidated and

controlled by top-down forces with nutrient cycling being more

slowly and characterized by competitive interactions among

microorganisms due to reduced nutrient supply [21,56].

At the field site of the Jena Experiment Eisenhauer et al. [40]

found the application of nematicide to promote plant growth and

they ascribed this to the suppression of plant feeding nematodes.

However, they also suggested that other changes in soil food web

structure, such as the decline in microbivores (particularly in

bacterial feeders), may have contributed to the observed pattern.

Indeed, nematicide application increased the ratio between

microbivores and plant feeders from 1.29 in control subplots to

3.03 in nematicide subplots (Z1,19 = 3.81, P,0.001). This supports

our conclusion that the observed increase in plant growth in

nematicide treatments in the Jena experiment is indeed related to

functional shifts in nematode communities. Further long-term

studies and more specific manipulations of nematode functional

groups are necessary to verify this conclusion.

Remarkably, the presence of certain plant functional groups

never had a significant positive effect on nematode density or

diversity. This indicates that positive effects of plant species

richness on nematode diversity and the density of fungal feeders

and predators were due to positive interactions between plant

species or functional groups rather than due to the presence of

individual plant functional groups.

Conclusions
The present study indicates that simplifications of plant

communities result in distinct belowground functional shifts. The

decline in common nematode species and in density of nematode

predators with decreasing plant diversity point to marked changes

in soil food web structure. The relevance of the fungal energy

channel increased with time, particularly in species-rich plant

assemblages. Together with results from experimental manipula-

tions of nematode communities at the study site [40] the results

suggest that in the long term nematode communities increasingly

stimulate nutrient cycling with potential beneficial effects on

plants, in particular at high plant diversity. In contrast, high

incidence of plant feeding nematodes in species-poor plant

communities is likely to detrimentally affect plants [57].
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