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Abstract

Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate
probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as
decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given
mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that
is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is
indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions.
The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are
applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the
spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to
be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall
even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent
collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can
increase the speed of operation of cortical circuitry.
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Introduction

If an autoassociation or attractor network is provided with two

or more inputs, as illustrated in Fig. 1a and b, each biasing an

attractor population of neurons with large intra-population

excitatory connection strengths, then this forms a biased

competition model of decision-making in which a high firing rate

of one of the possible attractor states represents a decision [1–4].

An attractor state is a stable high firing rate state of one of the

populations of neurons, and nearby firing rate patterns in the

space are attracted towards the firing rates specified by the

connection strengths between the neurons in the winning

population [4–6].

Many processes in the brain are influenced by the noise or

variability of neuronal spike firing [4,7,8]. The action potentials

are generated in a way that frequently approximates a Poisson

process, in which the spikes for a given mean firing rate occur at

times that are essentially random (apart from a small effect of the

refractory period), with a coefficient of variation of the interspike

interval distribution (CV) near 1.0 [4,9]. The sources of the noise

include quantal transmitter release, and noise in ion channel

openings [7]. The membrane potential is often held close to the

firing threshold, and then small changes in the inputs and the noise

in the neuronal operations cause spikes to be emitted at almost

random times for a given mean firing rate. Spiking neuronal

networks with balanced inhibition and excitation currents and

associatively modified recurrent synaptic connections can be

shown to possess a stable attractor state where neuron spiking is

approximately Poisson too [10,11]. The noise caused by the

variability of individual neuron spiking which then affects other

neurons in the network can play an important role in the function

of such recurrent attractor networks, by causing for example an

otherwise stable network to jump into a decision state [2,4]. The

noise in the operation of the system makes the decision-making

process non-deterministic, with the system choosing one of the

attractor states with a probability that depends on the relative

strengths of the different input biases l1, l2 etc [1,2]. The

randomness or stochasticity in the operation of the system can be

advantageous, not only by providing a basis for probabilistic

decision-making in which each decision will be sampled in a way

that depends on the relative strengths of the inputs, but also in

memory recall which by being probabilistic allows different

memories to be recalled from occasion to occasion, helping with

creative thought processes as these become non-deterministic, and

with signal detection which can become more sensitive than a

fixed threshold system in the process known as stochastic

resonance [4].

For these advantageous stochastic processes to be realized in the

brain, the amount of noise must be significant. One factor that

affects the amount of noise is the number of neurons in the fully
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connected network. As the number of neurons approaches infinity

and if their responses are uncorrelated, the noise or statistical

fluctuations caused by the neuronal firing decreases to zero, and

the mathematically convenient mean-field approximation holds,

allowing many properties of the system to be calculated

analytically [1,2,4,12]. Using integrate-and-fire attractor network

simulations of decision-making which include the spiking-related

noise, we have shown that the stochastic fluctuations in a finite-

sized system are still a significant influence to produce probabilistic

decision-making with networks with 4096 neurons and 4096

synapses per neuron [2]. This is biologically relevant in that

neocortical neurons are likely to have in this order (4,000–9,000) of

Figure 1. Attractor or autoassociation single network architecture for decision-making. (a) The network. The evidence for decision 1 is
applied via the l1 inputs, and for decision 2 via the l2 inputs. The synaptic weights wij have been associatively modified during training in the
presence of l1 and at a different time of l2 . When l1 and l2 are applied, each attractor competes through the inhibitory interneurons (not shown),
until one wins the competition, and the network falls into one of the high firing rate attractors that represents the decision. The noise in the network
caused by the random spiking times of the neurons (for a given mean rate) means that on some trials, for given inputs, the neurons in the decision 1
(D1) attractor are more likely to win, and on other trials the neurons in the decision 2 (D2) attractor are more likely to win. This makes the decision-
making probabilistic, for, as shown in (c), the noise influences when the system will jump out of the spontaneous firing stable (low energy) state S,
and whether it jumps into the high firing state for decision 1 (D1) or decision 2 (D2). (b) The architecture of the integrate-and-fire network used to
model decision-making (see text). (c) A multistable ‘effective energy landscape’ for decision-making with stable states shown as low ‘potential’ basins.
Even when the inputs are being applied to the network, the spontaneous firing rate state is stable, and noise provokes transitions from the low firing
rate spontaneous state S into the high firing rate decision attractor state D1 or D2. If the noise is greater, the escaping time to a decision state, and
thus the decision of reaction time, will be shorter (see Rolls and Deco 2010). (d) The firing rates of a population of inferior temporal cortex neurons to
any one stimulus from a set of 20 face and non-face stimuli. The rates of each neuron were normalized to the same average value of 10 spikes/s, then
for each stimulus, the cell firing rates were placed in rank order, and then the mean firing rates of the first ranked cell, second ranked cell, etc. were
taken. The graph thus shows, for any one stimulus picked at random, the expected normalized firing rates of the population of neurons. (Panel (d)
after Franco, Rolls, Aggelopoulos and Jerez 2007.).
doi:10.1371/journal.pone.0023630.g001
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recurrent collateral excitatory connections from other pyramidal

cells [13–16].

Another factor that may influence the noise is the distribution of

the firing rates of the population of neurons. In most analyses of

integrate-and-fire attractor neuronal networks, a binary distribu-

tion of the firing rates of the neuronal populations is used, partly

because this is consistent with the mean-field approximation that

allows analytic calculation [1,2,4,12,17], and partly because the

code is simpler and more efficient. With a binary firing rate

distribution, a proportion of the neurons has the same high rate,

and the remainder have a low rate. The sparseness of the

representation can then be defined as the proportion of neurons

with a high rate, that is, the proportion of the neurons in any one

of the attractors stored in the network [16,18,19]. However,

representations in the brain are not binary, with one or a number

of neurons with the same high firing rate for any one stimulus, and

the remainder of the neurons with a low spontaneous rate of firing.

Instead representations provided by populations of neurons in the

brain are often graded with firing rates in which for each stimulus

or event a few neurons fire fast, and more and more neurons fire

with lower rates [16]. This has been found for representations of

visual stimuli in the inferior temporal visual cortex [20–22] and the

primary visual cortex [22]; of olfactory stimuli in the orbitofrontal

cortex [23]; of taste and oral texture stimuli in the primary taste

cortex [24], orbitofrontal cortex [25,26] and amygdala [27,28];

and of spatial view in the primate hippocampus [29]. The firing

rate probability distribution of each neuron to a set of stimuli is

often exponential (or gamma if there is higher spontaneous

activity) [22,30,31]. Across a population of neurons, the

probability distribution of the firing rates for any one stimulus is

also close to exponential [30,31]. The graded nature of the firing

rates of a population of inferior temporal neurons to one stimulus

from a set of 20 stimuli is illustrated in Fig. 1d [16,31].

The important question that then arises is how the noise present

in a graded population firing rate representation, as frequently

found in the brain, compares with the binary firing rate

representations. In this paper we investigate this by developing

new integrate-and-fire simulations of neuronal networks that allow

graded, close to exponential as found in the brain, representations

to be used, and then measuring the time taken to reach a decision,

which measures the noise-influenced escaping time from the

spontaneous state, as illustrated in Fig. 1c [4]. We perform this

investigation in a system in which the spontaneous state, even

when the decision cues are being applied, is stable, so that it is only

noise that provokes an escape from the spontaneous state to a high

firing rate attractor state. We are careful to control the sparseness

of the graded rate representation, to allow direct comparison with

the binary representation. We show that there is more noise with

graded as compared with binary rate representations. We draw

out the implications for understanding noise, decision-making, and

related phenomena in the brain. The implications include the fact

that, given that graded rate representations are more noisy than

binary rate representations, spiking-related stochastic dynamics

will continue to be a principle of brain function that makes a

contribution even up to realistically large neuronal networks as

found in the brain, with in the order of thousands of recurrent

collateral synapses onto each neuron [4].

The amount of noise in neuronal networks that are biologically

realistic and its effects on the stability of the networks is an

important issue with medical, societal, and economic impact, for

recent approaches to schizophrenia and obsessive-compulsive

disorder have suggested that a contribution to these states is too

little and too much stability respectively [32–36]. The research

described here is very relevant to this issue, for it investigates how

much spiking-related noise there is with graded firing rate

distribution representations (which are found in the brain

[16,20,30,31,37]), rather than the binary firing rate distribution

systems more commonly studied [1,2,4,38,39].

Methods

The integrate-and-fire attractor neuronal network model
of decision-making

The probabilistic decision-making network we use is a spiking

neuronal network model with a mean-field equivalent [1], but

instead set to operate with parameters determined by the mean-field

analysis that ensure that the spontaneous firing rate state is stable

even when the decision-cues are applied, so that it is only the noise

that provokes a transition to a high firing rate attractor state,

allowing the effects of the noise to be clearly measured [2,4]. The

reasons for using this particular integrate-and-fire spiking attractor

network model are that this is an established model with (in the

binary case) a mean-field equivalent allowing mathematical

analysis; that many studies of short-term memory, decision-making

and attention have been performed with this model which captures

many aspects of experimental data (in a number of cases because,

for example, NMDA receptors are included); and that it captures

many aspects of cortical dynamics well [1–4,12,32,34,38–42].

The fully connected network consists of separate populations of

excitatory and inhibitory neurons as shown in Fig. 1. Two sub-

populations of the excitatory neurons are referred to as decision pools,

‘D1’ and ‘D2’. The decision pools each encode a decision to one of

the stimuli, and receive as decision-related inputs l1 and l2. The

remaining excitatory neurons are called the ‘non-Specific’ neurons,

and do not respond to the decision-making stimuli used, but do allow

a given sparseness of the representation of the decision-attractors to

be achieved. (These neurons might in the brain respond to different

stimuli, decisions, or memories.) A description of the network follows,

and we further provide a description according to the recommen-

dations of [43] in the Supplementary Material S1.

In our initial simulations, the network contained N~500
neurons, with NE~0:8N excitatory neurons, and NI~0:2N
inhibitory neurons. The two decision pools are equal size sub-

populations with the proportion of the excitatory neurons in a

decision pool, or the sparseness of the representation with binary

encoding, f ~0:1, resulting in the number of neurons in a decision

pool NEf ~40. The neuron pools are non-overlapping, meaning

that the neurons in each pool belong to one pool only.

We structure the network by establishing the strength of

interactions between pools to take values that could occur through

a process of associative long-term potentiation (LTP) and long-

term depression (LTD). Neurons that respond to the same

stimulus, or in other words ones that are in the same decision

pool, will have stronger connections. The connection strength

between neurons will be weaker if they respond to different stimuli.

The synaptic weights are set effectively by the presynaptic and

post-synaptic firing rate reflecting associative connectivity [16]. In

the binary representation case neurons in the same decision pool

are connected to each other with a strong average weight wz, and

are connected to neurons in the other excitatory pools with a weak

average weight w{. All other synaptic weights are set to unity.

Using a mean-field analysis which applies to the binary firing rate

distribution case [2], we chose wz to be near 2:1, and w{ to be

near 0:877 to achieve a stable spontaneous state (in the absence of

noise) even when the decision cues were being applied, and stable

high firing rate decision states. In particular, w{~
0:8{fS1wz

0:8{fS1[1,2,4,12,32].

Noise in the Brain
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Neuron model
Neurons in our network use Integrate-and-Fire (IF) dynamics

[1,2,4,12,44,45] to describe the membrane potential of neurons.

We chose biologically realistic constants to obtain firing rates that

are comparable to experimental measurements of actual neural

activity. IF neurons integrate synaptic current into a membrane

potential, and then fire when the membrane potential reaches a

voltage threshold. The equation that governs the membrane

potential of a neuron Vi is given by

CmdVi(t)dt~{gm(Vi(t){VL){Isyn(t), ð1Þ

where Cm is the membrane capacitance, gm is the leak conductance,

VL is the leak reversal potential, and Isyn is the total synaptic input.

A spike is produced by a neuron when its membrane potential

exceeds a threshold Vthr~{50 mV and its membrane potential is

reset to a value Vreset~{55 mV. Neurons are held at Vreset for a

refractory period trp immediately following a spike.

Synapses
The synaptic current flowing into each neuron is described in

terms of neurotransmitter components. The four families of

receptors used are GABA, NMDA, AMPArec, and AMPAext. The

neurotransmitters released from a presynaptic excitatory neuron

act through AMPA and NMDA receptors, while inhibitory

neurons activate ion channels through GABA receptors. Each

neuron in the network has Cext~800 external synapses that

deliver input information and background spontaneous firing from

other parts of the brain. Each neuron receives via each of these

800 synapses external inputs a spike train modeled by a Poisson

process with rate 3.0 Hz, making the total external input 2400 Hz

per neuron.

The synaptic current is given by a sum of glutamatergic, AMPA

(IAMPA,rec) and NMDA (INMDA,rec) mediated, currents from the

excitatory recurrent collateral connections; an AMPA (IAMPA,ext)

mediated external excitatory current; and an inhibitory GABAer-

gic current (IGABA):

Isyn(t)~IAMPA,ext(t)zIAMPA,rec(t)zINMDA,rec(t)zIGABA(t)

in which

IAMPA,ext(t)~gAMPA,ext(V (t){VE)
XCext

j~1

sAMPA,ext
j (t)

IAMPA,rec(t)~gAMPA,rec(V (t){VE)
XCE

j~1

wjs
AMPA,rec
j (t)

INMDA,rec(t)~
gNMDA(V (t){VE)

1z½Mgzz�exp({0:062V (t))=3:57

|
XCE

j~1

wjs
NMDA
j (t)

IGABA(t)~gGABA(V (t){VI)
XCI

j~1

sGABA
j (t),

where VE and VI are reversal potentials for excitatory and

inhibitory PSPs, the g terms represent synaptic conductances, sj

are the fractions of open synaptically activated ion channels at

synapse j, and weights wj represent the structure of the synaptic

connections. (The index j above refers to different synapses,

external, recurrent, AMPA, NMDA, GABA etc as indicated.)

Post-synaptic potentials are generated by the opening of

channels triggered by the action potential of the presynaptic

neuron. As mentioned above, the dynamics of these channels are

described by the gating variables sj . The dynamics of these

variables are given by

dsAMPA
j (t)

dt
~{

sAMPA
j (t)

tAMPA

z
X

k

d(t{tk
j )

dsNMDA
j (t)

dt
~{

sNMDA
j (t)

tNMDA,decay

zaxj(t)(1{sNMDA
j (t))

dxj(t)

dt
~{

xj(t)

tNMDA,rise

z
X

k

d(t{tk
j )

dsGABA
j (t)

dt
~{

sGABA
j (t)

tGABA

z
X

k

d(t{tk
j )

where the sums over k represent a sum over spikes formulated as

d-Peaks (d(t)) emitted by presynaptic neuron j at time tk
j .

The constants used in the simulations are shown in Table 1.

Graded Weight Patterns
In an attractor network, the synaptic weights of the recurrent

connections are set by an associative (or Hebbian) synaptic

modification rule with the form

dwij~arirj ð2Þ

where dwij is the change of synaptic weight from presynaptic

neuron j onto postsynaptic neuron i, a is a learning rate constant,

rj is the presynaptic firing rate, and ri is the postsynaptic firing rate

when a pattern is being trained [5,16,46]. To achieve this for the

firing rate distributions investigated, we imposed binary and

graded firing rates on the network by selecting the distribution of

the recurrent synaptic weights in each of the two decision pools.

To achieve a binary firing pattern all the weights within a decision

pool were set uniformly to the same value wz.

Graded firing patterns were achieved by setting the synaptic

weights of the recurrent connections within each of the decision

pools to be in the form of a discrete exponential-like firing rate (r)

distribution generated using methods taken from [47].

P(r)~

4
3

abe{2(rzr0) for rw0

1{
P

ri[r:iw0

4
3

abe{2(rizr0) for r~0

8<
: ð3Þ

where a is the sparseness of the pattern defined in Equation 4, and

r0 is the firing rate of the lowest discretized level. In simulations we

use a = 0.1 to correspond to the fraction of excitatory neurons that

are in a single decision pool. We chose 10 equal-spaced discretized
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levels to evaluate the distribution (0, 1
3
{r0, 2

3
{r0, . . . ,3{r0). r0

and b are chosen so that first and second moments of the firing rate

distribution are equal to the sparseness, i.e. vrw~vr2
w~a, see

Table 1. A weight matrix W~fw1,1, . . . ,w1,fNE
,w2,1, . . . ,

wfNE ,fNE
g was constructed by first sampling a firing rate for each

neuron, ri, using Equation 3 and then setting wij~nshiftz

nspread(
rizrj

2
wz). nshift and nspread are two free parameters used

to fine control the firing activity of the network.

Sparseness
The population sparseness a of a binary representation is the

proportion of neurons active to represent any one stimulus or

decision in the set. The sparseness can be generalized to graded

firing representations as shown in Equation 4

a~

(
PNE

i

ri)
2

PNE

i

r2
i

, ð4Þ

where ri is the firing rate measured for neuron i in the population

of NE excitatory neurons in the network [16,18,31,48]. We note

that this is the sparseness of the representation measured for any

one stimulus over the population of neurons [16,31]. For the

sparseness values shown in this paper, the average firing rate of a

neuron across all trials was calculated, and then the population

sparseness of this set of firing rates was measured.

Simulation regime
The network was simulated numerically using a second order

Runge-Kutta algorithm step with an integration step dt~0:02 ms

for a time period of 4 seconds. First there was a 2 s baseline period

of spontaneous activity in which li = 3.0 Hz for each of the 800

external synapses onto each neuron. There was then a 2 s decision

period in which the decision stimuli were applied by increasing the

firing rates for the 800 external input synapses on each of the

neurons in the two decision pools to l1~l2~3:04 Hz (an extra

32 Hz per neuron). During the decision period, the noise in the

network, and the increased firing rate bias functioning as a

decision cue to each decision pool of neurons, causes one of the

decision populations of neurons to jump to a high firing rate

attractor state with the assistance of the positive feedback in the

recurrent collaterals. This high firing inhibits through the

inhibitory interneurons the other decision population of neurons.

There is thus a single winning population on each trial, and which

of the two populations wins on a particular trial is determined by

the statistical fluctuations in the firing rates of the neurons in each

decision population, and the difference in the two inputs l1 and

l2, i.e. Dl.

Results

The operation of the system is illustrated for a single trial in

Fig. 2 which shows that for both the binary case and the graded

firing rate distribution case the neurons in the winning pool have

an average firing rate greater than 25 Hz.

Firing rate distribution
Fig. 3a,b shows for the graded (a) and binary (b) rate distribution

simulations the firing rate the firing rate probability distributions

achieved by the weight matrix we selected. The firing rates were

measured in the last 1 s of the simulation (time = 3–4 s). The

distribution of firing rates for the binary case has low variance,

with nearly identical mean firing rates for each of the individual

neurons in the winning pool. In contrast, the graded rate

distribution simulations show more variation in the distribution.

The exponential-like shape occurs in both the spontaneous and

decision states, but is more pronounced in the decision state. The

parameters were set to achieve this set of graded distribution firing

rates, rather than a perfectly exponential distribution, because we

wished to ensure that the mean firing rate and sparseness of the

representation were similar in the binary and graded rate

distribution cases, while at the same time having clearly graded

distribution firing rates for the graded simulations so that the

effects of graded vs binary firing rate distributions could be

measured under conditions where the mean rate, and the

sparseness, were essentially identical. The mean firing rates for

the graded case (a) were 30.3 spikes/s and for the binary rate

distribution case were 31.0 spikes/s, showing that the parameters

for the recurrent weights had been selected to make the firing rates

very similar in these two cases. This was an aim, as higher firing

rates can reflect increased excitation in the network which could

decrease decision times. As was also an aim, the standard deviation

of the firing rate distribution was higher for the graded case

(10.7 Hz) than for the binary case (4.9 Hz).

As the sparseness of the representation might influence the noise

in the network and the measured decision time (with sparse

representations with small values of a expected to be more noisy),

Table 1. Simulation constants.

Global constants

VL~{70 mV Vthr~{50 mV Vreset~{55 mV VI ~{70 mV

VE~0 mV a~0:5 ms{1 b~0:73809763 r0~0:00017755

Inhibitory neuron constants

Cm~0:2 nF gm~20 nS trp~1 ms tm~10 ms

gAMPA,ext~1:62 nS gAMPA,rec~0:162 nS gNMDA~0:516 nS gGABA~1:946 nS

tAMPA~2 ms tNMDA,decay~100 ms tNMDA,rise~2 ms tGABA~10 ms

Excitatory neuron constants

Cm~0:5 nF gm~25 nS trp~2 ms tm~20 ms

gAMPA,ext~2:08 nS gAMPA,rec~0:208 nS gNMDA~0:654 nS gGABA~2:5 nS

tAMPA~2 ms tNMDA,decay~100 ms tNMDA,rise~2 ms tGABA~10 ms

doi:10.1371/journal.pone.0023630.t001
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we were careful to ensure that the sparseness of the representation

for the binary and graded cases were similar. (They were set by the

choice of the recurrent synaptic weights in the two decision

populations, which is the distribution that produced the graded

firing rates.) The sparseness measured using Equation 4 from both

sets of simulations was very similar. The final steady state value

with one of the pools in its winning attractor state was close to the

theoretical value of 0.1, due to there being 40 neurons in each

decision pool in a population of 400 excitatory neurons.

The variability of the firing was measured by computing the

coefficient of variation (CV) of the firing rates for single neurons

(using 50 ms bins) for different temporal periods. The CV

measured in the second before the decision cues were applied

(the period of spontaneous firing) was 0:018 for the binary and was

0:042 for the graded rate distributions. In the final second of

simulation for the winning attractor the CV was 0:010 for the

binary and was 0:018 for the graded rate distributions. The

variability by this measure was consistently higher for the graded

simulations than for binary rate distributions.

Decision time
An important measure of the noise in the system is the escaping

time of the system after the decision cues are applied from the

spontaneous state to a decision state. Increased noise will decrease

the escaping time, and thus the decision or reaction time, as

illustrated in Fig. 1c. Dl was 0 Hz per neuron for these

simulations.

To address the issue of the amount of noise in the system with

graded vs binary firing rate distribution representations, we show

in Fig. 4 the decision times of the network with graded and binary

rate distribution representations. The decision (or reaction) time

was measured by the time it took from the time at which the

decision cues were applied (t = 2 s) when the network was in the

spontaneous firing rate baseline state for one of the decision pools

Figure 2. Examples of single trials of the simulations for graded and binary firing rate representations. a,b: Example of the average
firing rates for the different pools on a single trial for (a) the graded firing rate simulations and (b) the binary firing rate simulations. (c) and (d): the
rastergrams for the corresponding trial, with each row of the rastergram providing the spike times for one of 40 neurons in each pool. In the case of
the graded simulation, the neurons with the higher firing rates are plotted in the lower rows for each population of neurons. There is a 2 s period of
spontaneous activity from 0–2 s, and then the decision cues are applied to the neurons in pools D1 and D2 from time = 2–4 s.
doi:10.1371/journal.pone.0023630.g002
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to fire 25 Hz higher than the other one for 150 ms. The important

result is that the graded firing rate distribution patterns produce

significantly (pv0:0001) faster reaction times (&90 ms), than the

binary firing rate distribution patterns (Fig. 4). (The non-

parametric Mann-Whitney U and Kolmogorov-Smirnov tests

were used in all cases to test for differences in the decision time

distributions.) The mean decision time was 881 ms for the binary

firing rate representations, and 791 ms for the graded rate

distribution representations. Further analysis showed that the

number of trials required for these decision times to become

significantly shorter (pv0.05) for the graded compared to the

binary rate distribution representation was on average 541 trials.

The faster decision times for the graded firing rate distributions

(Fig. 4) were found when the mean firing rates in the attractor

state, and the sparseness of the representation, were carefully

matched in the graded and binary rate distribution simulations.

We further showed that it was not a faster firing rate for the graded

rate distribution simulations that accounted for the faster decision

times for the graded firing rate distribution by performing a whole

series of further simulations (each with 1000 trials) in which the

parameters of the recurrent synaptic weights between the neurons

in a decision pool were systematically varied to obtain decision

times for the graded and binary firing rate distribution cases that

bracketed each other. It is clear (Fig. 5a) that while increases of wz

that increased the firing rates when in the winning attractor did

decrease the mean decision time of the decision-making process,

for any given mean firing rate of the neurons in the winning

attractor, the decision times were faster for the graded than for the

binary firing rate distributions. The faster decision times for the

graded than for the binary firing rate distributions are statistically

significant and robust across different firing rates of the winning

pool (Fig. 5a).

Further evidence on this follows. The graded firing rate

distribution simulations tended to have a higher firing rate for

the winning pool when simulations were run across distributions

with the same average synaptic weight between the neurons in a

decision pool. We chose nshift~2:078 and nspread~0:9 to find a

winning firing rate and sparseness that were close for both

distributions for the results illustrated in Fig. 4. The average firing

rates for these values of the parameters are shown in Fig. 6. The

similar firing rates for the winning pools during the spontaneous

baseline and decision periods are shown.

As analyzed in Section simulations with graded compared to

binary firing rate distributions showed an alteration in their

stability when in the spontaneous firing rate state before the

decision cues were applied. A contribution to the decreased

decision times could be that the graded rate distribution

simulations destabilized not due to the applied cues, but rather

became unstable in the baseline spontaneous firing rate in the

period before the decision cues were applied. For example, in 1000

trials we ran with a network size N = 500, on 149 trials the firing

jumped into or towards a decision state early, by t = 2 s, in the

binary case. This has been described previously for similar

parameters of the system [32,33,49]. We excluded from the

decision time analysis those trials that transited into or towards a

decision state before the decision cues were applied at t = 2 s. The

criterion was that trials were excluded if the mean rate of a

decision pool exceeded 10 spikes/s in the half second before the

decision cues were applied. What we did find in the present

Figure 3. Firing rate probability distributions of the winning pool measured from the final 1 s of the simulations for (a) graded and
(b) binary firing rate distributions.
doi:10.1371/journal.pone.0023630.g003

Figure 4. Decision times. Histograms of decision times for 1000
graded and 1000 binary firing rate distribution simulations. The criterion
for a decision time was that the average firing rate of one decision pool
should be 25 Hz higher than that of the other decision pool for three
consecutive 50 ms periods. pv0:0002 for graded vs binary firing rate
distributions using Kolmogorov-Smirnov tests, t-tests, and Mann-
Whitney U tests of the two distributions. The mean decision time was
791+430 (sd) ms for the graded case, and 881+420 ms for the binary
case.
doi:10.1371/journal.pone.0023630.g004
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simulations was that with the graded firing rate distribution

simulations, there were more trials, 270, in which the spontaneous

state was unstable, in that there was a noise-provoked transition

into a decision state before the decision cues were applied at

t = 2 s. To correct for this possible effect we subtracted a reaction

time distribution without the application of decision cues from the

distribution with decision cues. Simulations were repeated with the

same parameters, except that no cues were applied. The

distribution of the reaction times of these ‘no cues’ simulations

was computed. The ‘corrected distributions’ were computed by

subtracting the number of times the ‘no cues’ simulation reacted in

a given period from the number of times the simulation reacted in

the same period in the ‘with cues’ simulations. This provided a

decision time distribution that is corrected for the possibility of

simulation trials jumping purely from the baseline spontaneous

rate to a high firing rate state. When this correction is applied, we

Figure 5. Decision times. (a) Decision times of 1000 simulations for each point with a shifted wz parameter and thus different firing rates for the
winning pool in the final second, for the graded and binary firing rate distribution cases. b. The same as (a) except that distributions corrected for
premature decisions were used (see text). The error bars signify the estimated standard error of the firing rate and reaction time. (c) The same plot as
(a) except that the firing rate is measured during the spontaneous period.
doi:10.1371/journal.pone.0023630.g005

Figure 6. Similar firing rates for (a) graded and (b) binary simulations. Mean firing rates over 1000 trials for the winning and losing pools in
graded (a) and binary (b) firing rate distributions. The decision cues were turned on at t = 2 s. The error bars show the standard deviations. The
winning pool is chosen to be the pool with average firing rate 10 Hz greater than the competing pool in the last 1 s of the simulation. Dl was 0 Hz
for these simulations.
doi:10.1371/journal.pone.0023630.g006
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still observed that the decision times are faster for the graded than

for the binary firing rate distribution cases, as shown in Figs. 4c,d

and 5b.

In summary, faster decision times are found with graded than

with binary firing rate distributions, and this is not likely to be due

to any increase in firing rate during the spontaneous period, nor is

it due to faster firing rates during the decision-making period.

So far, the results presented have been for a network of size

N = 500 neurons in the network. To investigate whether the

decision times remain shorter for the graded than the binary firing

rate distributions as the network becomes larger, an important

issue as networks in the cerebral cortex typically have in the order

of thousands of recurrent collateral synaptic connections onto each

neuron [16], we performed further simulations with larger N.

Fig. 7a shows that for each size of network up to N = 4000, the

decision time is shorter for the graded than for the binary firing

rate distribution cases. The performance in terms of the

percentage correct was similar for the graded and binary rate

distribution cases for different network sizes, as shown in Fig. 7b,

so there is no penalty in terms of decision accuracy of the faster

decision times found with networks with graded than with binary

firing rate distributions. An important aspect of this result is that

the larger networks are quite stable in the spontaneous period (as

shown in Fig. 8), and this is further evidence that instability of the

spontaneous state is not crucial to the faster decision times of the

networks with graded than with binary firing rate distributions.

Figure 7. Decision times for networks of different sizes with graded and binary firing rate representations. (a) Decision times of 500
simulations for networks of different size N , the number of neurons in the network, for the graded and binary firing rate distribution cases. The
means and standard deviations are shown. c~1:0 (fully connected). Gradation level Dn = 0.81. Dl = 16 Hz. (b). The percentage correct for networks of
different size N , the number of neurons in the network, for the graded and binary firing rate distribution cases. c~1:0. Gradation level Dn = 0.81.
Dl = 16 Hz. (c) The percentage correct for 500 simulations with different values of Dl; N~1000, c~0:25, and Gradation level Dn = 2.1.
doi:10.1371/journal.pone.0023630.g007

Figure 8. Less stability for graded than for binary firing rate
distributions. The percentage of trials in which the spontaneous state
was stable for the graded and the binary firing rate distribution cases
for networks of different size N , the total number of neurons in the
network. The lower curve is for the graded case.
doi:10.1371/journal.pone.0023630.g008

Noise in the Brain

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e23630



(For example, with N = 4000, 98% of the trials in the graded rate

distribution case were stable in the spontaneous period (and were

excluded from the analysis), and we still found faster decision times

when the decision cues were applied for the graded firing rate

distributions, as shown in Fig. 7a.).

Stability of the spontaneous state
Noise and the positive feedback in this system can cause the

network to jump into a decision state from the spontaneous state

even before the decision cues are applied (at t = 2 s in our

simulations). We analyzed the stability for the graded vs binary

firing rate distribution cases by measuring the percentage of trials

on which the binary and graded firing rate distribution simulations

transited into or towards a high firing rate decision state before the

decision cues were applied at t = 2 s. The parameters for the

binary simulation had been set with the mean field analysis so that

the mean spontaneous firing rate should be 3 spikes/s. The

criterion for instability of the spontaneous state was that the mean

rate of either decision pool exceeded 5 spikes/s in the 250 ms

before the decision cues were applied. Fig. 8 shows the percentage

of trials on which the spontaneous state was stable for the graded

and the binary firing rate distribution cases for networks of

different size N, the total number of neurons in the network. As

expected, the larger in terms of N the network becomes, the more

stable the network becomes, as the finite size of the network

becomes less of a factor. (In the mean field case, or with an infinite

number of neurons in the spiking simulations, the noise effects

would diminish to zero.) Fig. 8 shows that the network with the

graded firing rate distribution is for each value of N less stable in

the spontaneous period than the network with the binary firing

rate distribution.

This effect was not accounted for by any increase in the mean

spontaneous firing rates of the decision pool neurons in the graded

firing rate distribution case, which remained at a mean value of

approximately 3 Hz as shown in Fig. 6 (unless a noise-provoked

transition occurred) because w{ was decreased to compensate for

any increase in wz by using the procedure described previously

[1,2,4,12,32]. Indeed, the results in Fig. 5c show that the firing rate

during the spontaneous period does not respond to changes in the

wz parameter because it is compensated for by changes in the w{

parameter. These results are consistent with the mean-field theory

developed by [12], who set up a system in which changes in wz

will only change the firing rates during the decision state, not

during the spontaneous state. Moreover, the sparseness of the

representation was the same for the graded and binary firing rate

distribution cases.

The results on stability during the spontaneous state thus

provide further evidence that the network with graded firing rate

distributions is more noisy than the network with binary firing rate

distributions for the decision pools, even when the mean rates and

sparsenesses are the same.

Noise in the system: the variance of the firing rates of the
neurons

Another measure of the noise in the system is the variance of the

firing rates of the neurons in a decision pool during decision-

making. If some of the neurons in a pool have more variance, that

pool may be more likely to cross a bifurcation from the

spontaneous firing rate state and to enter a decision state without

any decision cue, or to make a decision after the decision cues have

been applied more rapidly (cf. Fig. 1). Fig. 9 shows the distribution

for the 40 neurons in decision pool 1 of the variance across trials of

the firing rate in the spontaneous period (t = 1.5–2 s) for a network

of size N = 500 for the graded (a) and binary (b) rate distribution

cases. The variance is that for each neuron across trials of the

firing rates measured in a 50 ms bin during the spontaneous

period with w550 trials with stable spontaneous firing rates using

the criterion described above. The average variance for each

neuron over 10 bins from t = 1.5–2.0 s is indicated. The variance

distribution reaches higher values for some neurons with the

graded than with the binary distribution, and this is just consistent

with the approximately Poisson firing of the neurons (with which

the variance = the mean), and the fact that the firing rate

distribution shows some neurons with relatively high firing rates

(up to 4 spikes/s) with the graded representation in the pre-cue

period, as shown in Fig. 9c and d. We emphasize that the mean

firing rates and variances are very similar for the binary and

graded rate distribution cases: it is the distributions that are

different, as shown in Fig. 9. The concept here is that for the

graded rate distribution representation the subset of neurons with

higher than average variance (and firing rates) contribute

especially strongly to the noise (i.e. variation, fluctuation) in the

system that promotes diffusion [50] across the barrier in the energy

landscape (Fig. 1), and that the effect of these neurons is helped by

their stronger than average connection weights to other neurons

within their decision pool, which enable statistical fluctuations in

their rates to be felt especially strongly by the other neurons in the

same decision attractor.

Performance with graded firing rate distributions and
diluted connectivity

Up to this point, the network was studied with fully connectivity

of its neurons. In order to investigate a more biologically plausible

scenario, we conducted simulations with diluted connectivity. In

order to keep the mean input to each neuron the same in diluted

simulations as it was in fully connected simulations, for the diluted

connectivity we kept the same number of connections C per

neuron as in the fully connected network, but increased the

number of neurons in the decision pools. We parameterized

dilution by a connectivity level, 0vcƒ1. c = 1 corresponds to the

fully connected case. Diluted networks with dilution c would have

the number of neurons in the decision pool set to NEf
1

c
. The C

connections to a neuron were received from a randomly selected

set of the NEf
1

c
neurons in the same decision pool.

We measured decision times for two values of c. As described

elsewhere [51], smaller values of c resulted in slower decision

times. One of the new findings reported here is that for diluted

connectivity, graded firing rate representations produced faster

decision times than binary rate distribution representations. In

particular, for c~0:10, the mean decision time in the graded case

was 1124 ms (SE 33 sd 335 ms), and in the binary case it was

1192 ms (SE 32 sd 320 ms). For c~0:25, the mean decision time

in the graded case was 984 ms (SE 16 sd 345 ms), and in the

binary case it was 1077 ms (SE 15 sd 332 ms) (pv10{5).

In summary, in networks with diluted connectivity, just as in

fully connected networks, graded firing rate distribution represen-

tations produced faster decision times than binary firing rate

representations. This is consistent with more noise in attractor

networks with graded than with binary firing rate distribution

representations.

Performance during decision-making with Dl=0 Hz
So far we have shown results mainly for Dl = 0 Hz, that is when

the inputs during the decision-making period to D1 and D2 are

equal. The performance of the network is close to the expected

50% correct, that is D1 wins on approximately 50% of the trials,
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and D2 on approximately 50% of the trials. However, the

evidence for the two decisions is often not equal, and in this section

we consider whether when running with Dlw0, different effects

occur. For example, if the graded rate distribution system is more

excitable and responds faster than the binary rate distribution

system, there might be a speed-accuracy tradeoff of the type

investigated for many decades in psychology [52]. It would be of

interest if for example the graded rate distribution system with its

faster decision times was less accurate (in terms of percentage

correct), though also interesting if it maintained its accuracy even

when the reaction times were faster.

Fig. 7a shows that for different sizes of network up to N = 4000,

the decision time is shorter for the graded than for the binary firing

rate distribution cases with Dl = 16 Hz per neuron. The

performance in terms of the percentage correct was similar for

the graded and binary rate distribution cases for different network

sizes, as shown in Fig. 7b, and for different values of Dl as shown

in Fig. 7c, so there is no penalty in terms of decision accuracy of

the faster decision times found with networks with graded than

with binary firing rate distributions within these parameter ranges.

Performance for different levels of firing rate gradation
Up to this point we have only presented graded rate distribution

simulations with a value of gradation that was small enough to

keep the firing rates and stability close to the results in the binary

simulations. We have in addition simulated networks with higher

amounts of gradation. We parameterized the amount of gradation

in the network by Dn~whi{wlow, where whi is the highest

recurrent weight, and wlow was the lowest recurrent weight. The

other results in this paper have Dn approximately 0.81. In further

investigations With moderate dilution, c~0:25, and Dn~2:1,

decision times decreased to a mean value of 445 ms, and stability

during the spontaneous period was reduced to 37%, compared to

a mean decision time of 984 ms (pv10{32) and 98% stability for

the same simulation but with Dn~0:81.

Thus increasing the range of firing rates in the graded

distribution representation decreased the decision time and

decreased the stability of the spontaneous firing rate state. This

is evidence that increasing the range of the firing rate distributions

introduces more noise into the neuronal network.

Noise with graded firing rate distribution representations
in larger networks

As spiking attractor networks are increased in size, the statistical

fluctuations caused by the close to Poisson spiking times of the

neurons become smaller, until with an infinite number of neurons the

noise becomes 0 [4]. We have shown that in practice, measures of the

noise such as the decision (escaping) time do decrease as the number

Figure 9. The firing rate and variance distributions for the graded (left) and binary (right) firing rate distributions in the
spontaneous period before the decision cues were applied. The distribution for the set of 40 neurons in decision pool 1 of the variance across
trials of the firing rate in the spontaneous period (t = 1.5–2.0 s) for a network of size N = 500 for the graded (a) and binary (b) cases. The variance for
each neuron across trials is that of the firing rates measured for a 50 ms bin during the spontaneous period with w550 trials with stable spontaneous
firing rates using the criterion described in the text. The average variance for each neuron over 10 bins from t = 1.5–2.0 s is shown. (c, d) Firing rate
probability distributions for the spontaneous firing rate in the same period for the graded (c) and binary (d) cases.
doi:10.1371/journal.pone.0023630.g009
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of neurons is increased to 4000, but that there is still noise due to the

spiking fluctuations with this size of network, in which C = NE = 3200

[2,38,39]. However, the number of connections C for the recurrent

collateral synapses which provide for the attractor dynamics is in the

order of 9,000 in the neocortex, and 12,000 in the CA3 neurons in

the hippocampus [16]. To check that the findings in the present

paper apply in principle to these larger networks, we were able to

perform further simulations with as many as 8000 neurons in the

network, which then had NE = 6400 excitatory neurons, and 6400

recurrent collateral synapses onto each excitatory neuron.

We simulated scaled up networks with 8000 neurons, and

therefore 320 neurons in each specific decision population. With

wz left at 2.1 as in the earlier simulations, the decision times were

faster with the graded (mean 947 sd 332 ms) than with the binary

(mean 1073 sd 312 ms) firing rate distributions (pv10{7 with 320

trials). Thus graded firing rate distributions do introduce more

noise into the system than binary firing rate distributions, even

with large networks that are the same order as the size of networks

found in the cerebral cortex. Further analysis showed that these

decision times became significantly shorter (pv0.05) for the

graded compared to the binary rate distribution representation

with on average 21 trials.

With wz = 2.1 and 8000 neurons, the spontaneous state was much

more stable, and indeed there were no unstable trials in the

spontaneous period for the graded and for the binary rate distribution

representations. To test whether the graded rate distribution was

inherently more unstable in the spontaneous state even at this large

size of network, we ran further simulations with 8000 neurons, but

with wz = 2.25 to promote more instability. This revealed more

instability with the graded (only 87% stable) than with the binary

firing rate distribution representations (97% stable, pv0:02).

Discussion

In integrate-and-fire simulations of an attractor decision-making

network, we have shown that the noise is greater for a graded than

for a binary firing rate distribution of the populations of neurons.

The noise effect was measured by faster escaping times from the

spontaneous firing rate state when the decision cues are applied,

and this corresponds to faster decision or reaction times (Figs. 4, 5

and 7). We note that the variability in human choice reaction

times is rather large [53,54], and this is a property that is captured

by this biologically-based approach to decision-making, and

memory recall [4,39,51].

The greater effect of the noise with the graded firing rate

distributions was also measured as greater instability of the

spontaneous firing rate state before any decision cues were applied

(Fig. 8), that is by more noise-provoked transitions from the

spontaneous state which was shown to be a stable state in the

mean-field analysis in which there is no noise. The conclusion is

that spiking-related noise stochastic dynamics will continue to be a

principle of cortical computation that influences processes such as

decision-making, signal detection, short-term memory, and

memory recall even with the quite large networks found in the

cerebral cortex [4], if the greater noise evident with graded firing

rate distributions is taken into account.

These effects were found even when the firing rates and the

sparseness of the representations were carefully equated across the

graded and binary firing rate distribution conditions (e.g. Fig. 5).

The results support the hypothesis that increased noise with the

graded firing rate distributions is responsible for the decreased decision

or reaction times. Conceptually, one can think that with graded firing

rate distributions, a small number of neurons are made more important

through their stronger weights and higher firing rates, noting that the

variance of a Poisson process is equal to its mean. The influence of the

few most highly firing neurons through their particularly strong

synaptic weights on other neurons will have the effect of increasing the

statistical fluctuations, which will be dominated by the relatively small

number of highly firing neurons, and their possibly strong effects on a

few other neurons with particularly strong synaptic weights from those

highly firing neurons. Effectively the few strongly firing neurons in an

attractor with their extra-strong couplings mean that a relatively few

neurons dominate the statistical fluctuations, which are large because

with the graded firing rate distributions a few neurons have extra high

firing rates and extra-strong couplings to each other. In a sense, we can

think of the graded firing rate distribution as providing a more sparse

representation, with fewer neurons highly active when in a high firing

rate attractor state, with the small number of highly active neurons

promoting greater statistical fluctuations due to the finite size effect

operating with smaller numbers. We note that in an attractor network,

prototypical of the design of the neocortex and the hippocampal CA3

region [16], in which the synaptic weights of the recurrent connections

are set up by an associative (Hebbian) synaptic modification rule (e.g.

equation 2), graded firing rate distributions will always be associated

with graded recurrent synaptic weights, and so both can contribute to

the effects produced on the noise in the network.

More formally, we can consider the currents injected into a

neuron as consisting of a synaptically weighted sum of the input

firing rates generated by a Poisson process to each synapse. For a

weighted sum of Poisson inputs, the contribution to the variance is

more significant from the weight (proportional to its square) than

from the rate of the Poisson process (proportional to the value itself).

Hence, for two input currents with identical means, with one from

the weighted summation of Poisson processes, and the other from

the simple summation of Poisson processes, we should expect that

the weighted sum in general would have a larger variance. More

precisely, let us consider two synaptic inputs I1 and I2

I1(t)~
XK

i~1

wzNi(t); I2(t)~
XK

i~1

wi
�NNi(t)

where K is the number of synapses, Ni(t) in the binary case is a Poisson

process with firing rate l and weight wz, and in the graded rate

distribution case �NNi(t) is another Poisson process with firing rate li

with weight wi. (N(t) counts the number of spikes in a time interval

(0,t). For a Poisson process, N(t) is drawn from a Poisson distribution

with parameter l.) The means of these two types of input are

EI1(t)~Kwzlt~EI2(t)~
XK

i

wilit

which yields

wzl~

PK
i

wili

K
: ð5Þ

For simplicity, and it is the actual case in our simulations here, we

further assume that li~awi,l~awz, where a is a positive scaling

number. Hence Eq. (5) turns out to be

wz~

ffiffiffiffiffiffiffiffiffiffiffiPK
i

w2
i

K

vuuut
:
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The variances of the two synaptic inputs are

var(I1(t))~Kw2
zlt; var(I2(t))~

XK

i

w2
i lit

respectively. We can see that in general the second term above,

var(I2(t)), is larger than the first, var(I1(t)), since

var(I1(t)) ~ Kw2
zlt~tKawz

3~tKa

PK
i

w2
i

K

8>><
>>:

9>>=
>>;

3=2

ƒ tKa

PK
i

(w2
i )3=2

K

~ tKa

PK
i

w3
i

K

~ tK

PK
i

w2
i li

K
~ var(I2(t))

:

The inequality above is due to Jensen’s inequality which states that for

any convex function w, w

P
w2

i

K

� �
ƒ

P
w(w2

i )
K

. In our case

w(x)~x3=2. Thus the weighted sum of Poisson processes has greater

variance than the sum of Poisson processes when the expected means

are equal. Accordingly we would expect more variance of the currents

injected into neurons with a graded firing rate and weight distribution

than with the binary firing rate and weight distribution when the

injected currents are the same. This analysis is supported by our finding

that the variance of the NMDA currents injected into each neuron of

pools 1 and 2 in the spontaneous period was greater in the graded than

the binary rate distribution case (300 vs 254 nA2, pv10{10), whereas

the means were similar (48.3 vs 48.4 nA).

We emphasize that the mean firing rates and mean variances of

the decision populations of neurons are very similar for the binary

and graded rate distribution cases: it is the distributions that are

different, as shown in Fig. 9. The concept here is that for the

graded rate distribution representation the subset of neurons with

higher than average variance (and firing rates) contribute

especially strongly to the noise (i.e. variation, fluctuation) in the

system that promotes diffusion [50] across the barrier in the energy

landscape (Fig. 1), and that the effect of these neurons is helped by

their stronger than average connection weights to other neurons

within their decision pool, which enable statistical fluctuations in

their rates to be felt especially strongly by the other neurons in the

same decision attractor.

To clarify, the descent into the decision attractor basin first has

to overcome the energy barrier that keeps the system in the

spontaneous stable state (Fig. 1c). Greater variation in the system

will mean that this transition is more likely to happen quickly. This

is due to the fact that many coincident spikes are needed to

overcome this energy barrier. Increased noise means that we are

more likely to observe the right set of coincident spikes occurring

earlier.

The work described here shows that a potentially useful

property of the graded distribution firing rate representations

found in the brain [16,31] is the faster decision times found than

with binary firing rate distributions. Given that attractor networks

in the cortex have to be large, with thousands of recurrent

collateral synapses onto each neuron, as this is the leading factor

that determines the number of different memories that can be

stored and correctly retrieved [16,18,19], the graded firing rate

distributions may enable the finite size statistical fluctuations to still

influence the processing, and indeed make the processing faster

than it would be with binary firing rate distributions. This speed is

important, for recurrent collateral processing may be useful at

every stage of each sensory hierarchy of cortical processing, yet

there may be time for only 20–25 ms of processing at each cortical

stage of the hierarchy [16,55–58]. The functions to which the

noisy graded firing rate distributions contribute in cortical

attractor networks include memory recall, probabilistic decision-

making, the facilitation of perceptual detection by stochastic

resonance, creative thought, disengagement of attention, and an

element of unpredictability of behaviour that can be advantageous

[4].

The framework used here can be extended very naturally to

account for the probabilistic decisions taken when there are

multiple, that is more than two, choices. One such extension

models choices between continuous variables in a continuous or

line attractor network [59,60] to account for the responses of

lateral intraparietal cortex neurons in a 4-choice random dot

motion decision task [61]. In another approach, a network with

multiple discrete attractors [62] can account well for the same

data. The effects described in the current paper, that the greater

spiking-related noise of graded than of binary rate distribution

representations can reduce the stability, and increase the speed of

decision-making, will apply directly to the discrete attractor

scenario, in which greater noise will decrease the escaping time

from one state to another in the energy landscape (Fig. 1c) [4].

The graded nature of the firing rate representations in the

cortex may of course be adaptive for other reasons than the speed

of processing, which might be an added benefit if there are other

reasons for graded distribution firing rate representations. If the

number of spikes recorded in a fixed time window is taken to be

constrained by a fixed maximum rate, one can try to interpret the

distribution observed in terms of optimal information transmission

[63], by making the additional assumption that the coding is

noiseless. An exponential distribution, which maximizes entropy

(and hence information transmission for noiseless codes) is the

most efficient in terms of energy consumption if its mean takes an

optimal value that is a decreasing function of the relative metabolic

cost of emitting a spike [64]. This argument would favour sparser

coding schemes the more energy expensive neuronal firing is

(relative to rest). Although the tail of actual firing rate distributions

is often approximately exponential [21,22,31], the maximum

entropy argument cannot apply as such, because noise is present

and the noise level varies as a function of the rate, which makes

entropy maximization different from information maximization.

Moreover, a mode at low but non-zero rate, which is often

observed [16,21,31] is inconsistent with the energy efficiency

hypothesis.

In conclusion, we have investigated the effects of graded

distribution firing rate patterns in a recurrent spiking neural

network attractor model of decision-making. The graded rate

distributions for the patterns we produced in the numerical

simulations took a similar form to those found neurophysiologi-

cally. The main finding is that the transition time to an attractor

state, or reaction time, is decreased when neurons fire with the

more biologically realistic graded firing rates across the neuronal

populations. One advantage of these graded firing rate represen-

tations is that they provide a sparse distributed representation with

independence of the information provided by each neuron,

allowing for the useful properties in associative networks of
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generalization, completion, and graceful degradation [16,37]. It

has been argued elsewhere [64] that graded distribution firing

rates may also maximize information transmission for a given

mean rate of firing, and therefore energy consumption, given that

high average firing rates require more metabolic expenditure.

[However, an alternative account of the graded distributions is

that they arise with integrate-and-fire neurons with slow

fluctuations in the inputs (reflecting different stimuli) and fast

fluctuations in the inputs (reflecting for example trial-by-trial

variability in the response to a given stimulus, to which the effects

of the spiking-related, close to Poisson, high entropy, fluctuations

in the number of spikes in a short time window analyzed in this

paper could contribute) [30]. The long tail of graded firing rate

probability distributions may also be required for cost efficiency

[65].] The results described here show that an additional useful

property of the graded representations found in the brain is that

they may increase the speed of decisions, reducing the time

required for many processes such as memory recall as well as more

conventionally understood decision-making [4]. Given that

cortical computation frequently requires a hierarchical series of

cortical stages in each of which attractor processes may contribute,

the cumulative effect on the increased speed of processing of

graded firing rate representations over a series of cortical stages

may be considerable [16,57].

We emphasize that it is important to understand the effects of

noise in networks in the brain, and its implications for the stability

of neuronal networks in the brain. For example, a stochastic

neurodynamical approach to schizophrenia holds that there is less

stability of cortical attractor networks involved in short-term

memory and attention due to reduced functioning of the

glutamate system, which decreases the firing rates of neurons in

the prefrontal cortex, and therefore, given the spiking-related noise

that is present, the depth of the basins of attraction. This it is

suggested contributes to the cognitive changes in schizophrenia,

which include impaired short-term memory and attention

[32,33,35]. In another example, a stochastic neurodynamical

approach to obsessive compulsive disorder holds that there is

overstability in some networks in prefrontal cortex and connected

areas due to hyperglutamatergia [34,36]. In both these cases, and

also in normal brain function in relation to decision-making,

memory recall, etc, it is important to know to what extent noise

contributed by randomness in the spiking times of individual

neurons for a given mean rate contributes to stochastic effects

found in the brain which affect decision-making, stability, and

which may if the stability is disturbed contribute to neuropsychi-

atric disorders. In this context, the findings described in this paper

are important for understanding normal and disordered brain

function. In particular, a very interesting implication of the

findings described here is that there is more noise with the graded

rate distribution representations found in the brain (see [16]

Appendix 3 on information encoding in the brain) than with

binary firing rate distributions (which are often used in

simulations, because they are amenable to mean-field analyses

[1,2]). Thus when noise is found to be a significant factor in the

operation of integrate-and-fire decision-making networks with

binary firing rates up to sizes that have been tested of 4096

neurons each with 4096 synapses per neuron, then it is likely that

with graded firing rates, spiking-related noise will continue to be a

factor in the operation of cortical circuitry even up to the larger

numbers of recurrent collateral synapses onto each neuron. For

example, in the cerebral cortex there are typically in the order of

9,000 recurrent collateral synapses onto onto each cortical

pyramidal cell, from a total of in the order of 18,000 synapses

[13,16].

Supporting Information

Material S1 Supporting material.

(PDF)

Author Contributions

Conceived and designed the experiments: ETR TJW. Performed the

experiments: TJW ETR. Analyzed the data: TJW ETR. Contributed

reagents/materials/analysis tools: GD. Wrote the paper: ETR TJW JF

GD.

References

1. Wang XJ (2002) Probabilistic decision making by slow reverberation in cortical
circuits. Neuron 36: 955–968.

2. Deco G, Rolls ET (2006) A neurophysiological model of decision-making and
Weber’s law. European Journal of Neuroscience 24: 901–916.

3. Wang XJ (2008) Decision making in recurrent neuronal circuits. Neuron 60:
215–234.

4. Rolls ET, Deco G (2010) The Noisy Brain: Stochastic Dynamics as a Principle of

Brain Function. Oxford: Oxford University Press.

5. Hopfield JJ (1982) Neural networks and physical systems with emergent

collective computational abilities. Proc Nat Acad Sci USA 79: 2554–2558.

6. Amit DJ (1989) Modeling Brain Function. The World of Attractor Neural

Networks. Cambridge: Cambridge University Press.

7. Faisal A, Selen L, Wolpert D (2008) Noise in the nervous system. Nature

Reviews Neuroscience 9: 292–303.

8. Deco G, Rolls ET, Romo R (2009) Stochastic dynamics as a principle of brain

function. Progress in Neurobiology 88: 1–16.

9. Softky WR, Koch C (1993) The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. Journal of Neurosci-

ence 13: 334–350.

10. Amit DJ, Brunel N (1997) Dynamics of a recurrent network of spiking neurons

before and following learning. Network 8: 373–404.

11. Miller P, Wang XJ (2006) Power-law neuronal fluctuations in a recurrent

network model of parametric working memory. Journal of Neurophysiology 95:

1099–1114.

12. Brunel N, Wang XJ (2001) Effects of neuromodulation in a cortical network

model of object working memory dominated by recurrent inhibition. Journal of
Computational Neuroscience 11: 63–85.

13. Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex.
Cambridge: Cambridge University Press.
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