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Abstract

The engineering of thermostable enzymes is receiving increased attention. The paper, detergent, and biofuel industries, in
particular, seek to use environmentally friendly enzymes instead of toxic chlorine chemicals. Enzymes typically function at
temperatures below 60uC and denature if exposed to higher temperatures. In contrast, a small portion of enzymes can
withstand higher temperatures as a result of various structural adaptations. Understanding the protein attributes that are
involved in this adaptation is the first step toward engineering thermostable enzymes. We employed various supervised and
unsupervised machine learning algorithms as well as attribute weighting approaches to find amino acid composition
attributes that contribute to enzyme thermostability. Specifically, we compared two groups of enzymes: mesostable and
thermostable enzymes. Furthermore, a combination of attribute weighting with supervised and unsupervised clustering
algorithms was used for prediction and modelling of protein thermostability from amino acid composition properties.
Mining a large number of protein sequences (2090) through a variety of machine learning algorithms, which were based on
the analysis of more than 800 amino acid attributes, increased the accuracy of this study. Moreover, these models were
successful in predicting thermostability from the primary structure of proteins. The results showed that expectation
maximization clustering in combination with uncertainly and correlation attribute weighting algorithms can effectively
(100%) classify thermostable and mesostable proteins. Seventy per cent of the weighting methods selected Gln content and
frequency of hydrophilic residues as the most important protein attributes. On the dipeptide level, the frequency of Asn-Glu
was the key factor in distinguishing mesostable from thermostable enzymes. This study demonstrates the feasibility of
predicting thermostability irrespective of sequence similarity and will serve as a basis for engineering thermostable enzymes
in the laboratory.

Citation: Ebrahimi M, Lakizadeh A, Agha-Golzadeh P, Ebrahimie E, Ebrahimi M (2011) Prediction of Thermostability from Amino Acid Attributes by Combination
of Clustering with Attribute Weighting: A New Vista in Engineering Enzymes. PLoS ONE 6(8): e23146. doi:10.1371/journal.pone.0023146

Editor: Indra Neil Sarkar, University of Vermont, United States of America

Received April 13, 2011; Accepted July 6, 2011; Published August 10, 2011

Copyright: � 2011 Ebrahimi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work has been supported by Bioinformatics Research Group. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mebrahimi14@gmail.com

Introduction

The primary structure of a protein is the most important factor

in determining enzyme thermostability. This stability can be

improved by adjusting external environmental factors including

cations, substrates, co-enzymes, and modulators. Considerable

attention has been paid to thermostable enzymes. Many industrial

applications have been reported for thermostable enzymes because

they are more stable and generally better suited to harsh pro-

cessing conditions [1,2]. With some exceptions, enzymes present in

thermophiles are more stable than those found in their mesophilic

counterparts. Further research will allow additional exploitation of

thermophiles for biotechnology applications. The cloning of

enzymes from thermophiles into mesophilic hosts is especially

promising. However, most currently available thermostable en-

zymes have been derived from mesophiles.

To successfully engineer new proteins, we must discover the

factors responsible for enzyme thermostability and determine

what differentiates them from mesophilic proteins. Moreover, an

understanding of thermostability is of primary importance in the

engineering thermostable enzymes. Various methods have been

proposed to predictfor predicting the stability of proteins based on

amino acid substitutions. In some studies, mutants have been

reported to be more thermostable [3]. It has been documented

that intrahelical salt bridges are more prevalent in thermostable

enzymes. Additionally, the composition of amino acids might be

an important factor in stability. Moreover, hydrophobic and

charged amino acids are more prevalent in thermophilic proteins

[4]. Due to their importance in industrial applications, there has

been considerable recent interest in understanding the thermosta-

bility of enzymes. A method to convert input data from protein

properties into a predicted value for thermostability would be

particularly useful.

The amino acid sequence (primary structure) of a protein is the

main indicator of its function. However, it is generally agreed that

direct prediction of protein characteristics such as thermostability

and halostability from the primary amino acid sequence is not

possible. Consequently, methods to predict thermostability have
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focused on tertiary and quaternary structures (i.e., three-

dimensional structure and molecular protein volume) [5]. Further

advances have been hindered by the difficulties in manipulating

these complex features. There is a gap between computational

biology results and laboratory applications; in the laboratory, we

are limited to simple substitution of a small number of amino acids

in the primary protein structure.

Recently, we analysed the performance of different attribute

weighting, screening, clustering, and decision tree algorithms

to discriminate halophilic and non-halophilic proteins [6]. The

results showed that amino acid composition can be used to

efficiently discriminate between different halostable protein groups

with up to 98% accuracy. These results are possible when an

appropriate machine learning algorithm mines a large number of

structural amino acid attributes of the primary protein structure

[6]. In another recent study, we used data mining algorithms

to build a precise model to discriminate P1B-ATPase heavy

metal transporters in different organisms based on their structural

protein features [7]. Moreover, reliable models to predict the

hyperaccumulating activity of unknown P1B-ATPase pumps were

developed [7]. A support vector machines (SVMs) algorithm was

used to predict the functional class of lipid binding proteins [8]. In

our previous study, we observed that supervised decision tree

algorithms can be employed for extracting the protein attributes

that contribute to the thermostability of a protein [9]. Data mining

(machine learning) models may have the potential to link a

protein’s amino acid structure with its thermostability.

Hundreds or thousands of variables may be included in data

mining cases [10]. When very large numbers of variables are

utilised, more time may be needed to apply a neural network or a

decision tree to the dataset [11]. Because many attributes deter-

mine the different characteristics of a protein molecule [12,13], the

majority of time and process resources should be spent in

determining which variables to include in the model. Attribute

weighting (or feature selection) models create a more manageable

set of attributes for modelling by reducing the size of attributes

[14].

To organise data into a more meaningful form, clustering

algorithms partition the data into groups or clusters according to

various criteria [15]. Clustering, commonly called unsupervised

learning, may proceed according to some parametric model or by

grouping points according to some similarity or distance measures

(as in hierarchical clustering algorithms) [16]. A suitable unsuper-

vised algorithm is capable of discovering structure on its own by

exploring similarities or differences between individual data points

in a data set [17]. K-Means is one of the simplest unsupervised

learning algorithms for solving well-known clustering problems.

The procedure follows a simple method to classify a given data set

through a certain number of clusters (assume k clusters) fixed a

priori. Generally, the objective is to define k centroids, one for

each cluster [18]. The K-Medoids method uses representative

objects as reference points instead of taking the mean value of the

objects in each cluster [19]. The support vector clustering (SVC)

algorithm is a recently developed unsupervised learning method,

which was inspired by support vector machines. Cluster

assignment of each data point is the key step in the SVC

algorithm [20]. Expectation-Maximization Clustering (EMC) is an

effective, popular technique to estimate mixture model parameters

(cluster parameters and their mixture weights). The EMC

algorithm iteratively refines initial mixture model parameter

estimates to better fit the data, and it then terminates at a locally

optimal solution [21].

Artificial neural networks are computing systems that simulate

the biological neural systems of a human brain [22]. The basic

strategy for developing a neural-based model of a given material

behaviour is to train a neural network using the results of a series

of experiments on the material. Traditionally, the learning process

is used to establish proper interconnection weights, and the net-

work is trained to make proper associations between the inputs

and their corresponding outputs. Neural networks can be classified

into dynamic and static categories [23]. Dynamic networks can

also be divided into the following two categories: those that have

only feed-forward connections and those that have feedback, or

recurrent, connections [24]. The dynamic network’s memory and

response at any given time depends not only on the current input,

but also on the history of the input sequence. Elman neural net-

works are examples of recurrent neural networks. Elman networks

are multiple layer back propagation networks, which also have a

feedback connection from the output of the hidden layer to its

input [25]. The default method to improve generalisation of

neural networks is known as early stopping. In this technique, the

available data is divided into two subsets. The first subset is the

training set, which is used to compute the gradient and update the

network weights and biases. The second subset is the validation

set. The test set error is not used during training, but it is used to

compare different models. It is also useful to plot the test set error

during the training process. Cross validation [26] is used to train

and test models on all patterns. There must be no overlap between

training and testing sets to evaluate neural networks.

The aim of the present investigation was to determine the

most important amino acid attributes that contribute to protein

thermostability. We examined a variety of attribute weighting

algorithms and various supervised and unsupervised clustering

models on a large number (800) of amino acid properties. More

importantly, we successfully established an accurate expert system

to predict the thermostability of any input sequence. This result was

obtained by performing unsupervised clustering on attributes found

to contribute to thermostability by suitable attribute weighting

algorithm. In the present method, there is no need to utilise any

sequence similarity searches or protein tertiary/quaternary features.

Results

Data cleaning
The initial dataset contained 2090 records (protein sequences)

with 852 protein attributes. Of these records, 75% (1573 records)

were classified as T (mesostable) class, and the remainder (517 or

25% of records) were classified as F (thermostable) class. Following

removal of duplicates, useless attributes, and correlated features

(data cleaning) 2057 records and 794 features remained.

Attribute weighting
Data were normalised before running the models; it was

expected that all weights would be between 0 and 1.

Weighting by PCA. The following nine attributes weighed

equal to or higher than 0.80: the counts of Asp, Glu, Phe, His,

Met, Ser, Val, and Tyr.

Weighting by SVM. The following 27 attributes were

selected by this model: the frequencies of hydrophilic residues,

Gly, Asn, Tyr, Asp – Pro, Glu – Ile, Glu – Gln, Met – Leu, Met –

Thr, Asn – Asn, Pro – Tyr, Thr – Lys, Trp – Leu and Tyr – Val,

the counts of Gln, Glu – Gln, Lys – Gln, Asn – Asn, Trp – Leu and

frequency of other residues, and the percentages of Thr and Val.

Weighting by Relief. The following 7 attributes showed

weights higher than 0.50 when this model applied to the dataset:

the counts of Met – Gln and the frequency of other residues, the

percentage of Gln and the frequencies of hydrophilic residues,

Asn, Asn – Ile, and Gln – Leu.

Prediction of Thermostability from Amino Acid
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Weighting by Uncertainty. The following protein attributes

resulted in weights higher than 0.50: the frequency of hydrophilic

residues, the count of other residues, the count of Gln, the

frequency of Asn, the frequency of Arg, the percentage of Glu, the

percentage of Gln, the count of Asn – Asn, the count of Gln – Asn,

the frequency of Asn – Asn, and the frequency of Gln – Asn.

Weighting by Gini index. The count of Met – Tyr was the

only attribute with weight equal to 1.00.

Weighting by Chi Squared. The following five attributes

were weighted higher than 0.50: The frequency of hydrophilic

residues, frequency of Asn, the count of other residues, the

percentages of Glu, and the percentages Gln.

Weighting by Deviation. The following 27 attributes were

weighted higher than 0.50: count of ten dipeptides (His – Cys, His

–Trp, Met – Cys, Met – Trp, Gln – Cys, Gln –Trp, Trp – Cys,

Trp – His, Trp – Met, and Trp – Trp) and the frequencies of

seventeen dipeptides (His – Cys, His – Trp, Lys – Cys, Met – Cys,

Met – Trp, Gln – Cys, Gln – Trp, Arg – Cys, Trp – Cys, Trp –

His, Trp – Met, Trp – Pro, Trp – Gln, Trp – Thr, Trp – Trp, Trp

– Tyr, and Tyr – Cys).

Weighting by Rule. The following attributes were weighted

equal to or greater than 0.50 when rule algorithm run on dataset:

aliphatic index, non-reduced absorption at 280 nm, the per-

centage of Thr, the frequency of Asn – Asn and the contents of

Asn – Asn, Pro – Gln, and Gln – Asn.

Weighting by Correlation. Among the protein attributes

that were weighted equal to or greater than 0.50, the following 11

were selected: the frequency of hydrophilic, the count of other

residues, the count of Gln, the frequency of Asn, the frequency of

Arg, the percentage of Glu and Gln, the count of Asn – Asn, the

count of Gln – Asn, the frequency of Asn – Asn, and the frequency

of Gln – Asn.

Weighting by Information Gain. When this algorithm was

applied to the dataset, only the following 3 features had weights

equal to or higher than 0.50: the frequency of Glu, the percentage

of Asn, and the percentage of Val.

Table 1 highlights the most important attributes that were

confirmed, by different weighting algorithms, to be involved in

thermostability.

Unsupervised clustering algorithms
Four different unsupervised clustering algorithms (K-Means, K-

Medoids, SVC and EMC) were applied on ten datasets created

using attribute selection (weighting) algorithms. Some models,

such as the application of the EMC algorithm on datasets created

by Chi squared, Gini Index, Information Gain, Relief, Rule or

PCA were unable to differentiate T (mesostable) proteins from F

(thermostable) proteins (all proteins were selected as F class)

(Table 2). Application of the EMC algorithm to the Deviation

dataset was unable to assign any protein into its correct class.

Some other algorithms, such as the application of K-Medoids on

the Chi Squared dataset, assigned most of the T class proteins to

the F class. Interestingly, just application of EMC clustering

method to the uncertainly and correlation datasets was able to

categorise proteins into the correct clusters with 100% accuracy.

On the other words, combination of EMC clustering method with

either uncertainly or correlation attribute weighting selected the

right classes of T for 1544 mesostable proteins and F for 513

thermostable proteins (Table 2).

Supervised Clustering
Decision Tree. Of the 37 different decision tree models

applied on the datasets, just 8 of them (run on FCdb) resulted in

trees with roots and leaves; the others models were not able to

produce such trees. The following models produced trees with

roots and leaves: two Decision tree models (with Gain Ratio and

Information Gain criteria), two Random Forest models (with Gini

Index and Accuracy criteria), two Decision Tree Parallel models

(on Gain Ratio and Information Gain criteria), one ID3

Numerical Parallel (on Gain Ratio) and one Decision Stump

model (on Gain Ratio criterion).

The simplest tree was produced by the Decision Stump model

on the Gain Ratio criterion; the frequency of Gln – Asn was the

sole protein attribute used to build this tree. If the frequency was

greater than 0.500, the protein belonged to the F (thermostable

class; otherwise, the protein belonged to the T (mesostable) class.

The Parallel Decision Tree model induced a two-level tree; the

percentage of Glu was the most important feature to build the tree.

Specifically, when the value for this feature was higher than 0.322,

the proteins fell into the T class, but when the value was equal to

or lower than 0.322 and the frequency of hydrophilic residues was

higher than 0.550, the enzymes belonged to the F class; otherwise

the protein was assigned to the T class.

The frequency of Asn – Gln was the most important attribute

used to build the tree when the Random Forest model on Gini

Index criterion was applied to the dataset (Figure 1). When the

value for this feature was less than or equal to 0.050, the enzymes

fell into the T class; if the value was higher than 0.050 and the

frequency of Asn – Thr was less than or equal to 0.029, the

proteins again belonged to the T class. The frequency of Gly – Gly

and Asp – Pro were the other features used to build the rest of tree.

This tree was the best model to demonstrate the importance of

dipeptides in thermostability.

In the tree produced by the Random Forest (on Accuracy

criterion), the following protein attributes were used to build the

tree: the count of Met – Cys, the count of Asn – Gln, the weight

and the frequency of oxygen. Decision Trees on Information Gain

and Gain Ratio criteria, ID3 Numerical Parallel (on Gain Ratio)

Table 1. The most important protein attributes (features)
selected by different attribute weighting algorithms.

Attribute

The number of attribute
weightings that indicate
the attribute is important

The percentage of Gln 7

The frequency of hydrophilic residues 7

The count of other residues 7

The percentage of Glu 6

The frequency of Asn 6

The frequency of Asn- Gln 4

The count of Asn-Asn 4

The frequency of Asn-Asn 4

The count of Gln 3

The Percentage of Thr 3

The percentage of Val 2

The frequency of Arg 2

The count of Pro-Gln 2

The count of Lys-Gln 2

This table presents the number of algorithms that selected the attribute.
Weighting algorithms were PCA, SVM, Relief, Uncertainty, Gini index, Chi
Squared, Deviation, Rule, Correlation, and Information Gain.
doi:10.1371/journal.pone.0023146.t001
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and Parallel Decision Tree (on Information Gain criterion)

induced more complicated trees.

Figure 2 presents the Decision Tree on Gain Ratio model. As

may be inferred from the figure, Glutamine (Gln) content and

frequency of hydrophilic residues were the most important protein

attributes in distinguishing mesostable (T class) from thermostable

(F class) proteins. Higher frequencies of hydrophilic residues

(.0.596) generate thermostable proteins, while lower frequencies

of hydrophilic residues (,0.596) in combination with low Gln

(,0.217) generate mesostable proteins.

Neural Networks. In feed-forward model, the best overall

accuracy (90% ) was obtained when the number of hidden layers

was 3 and the number of neurons in layers was 50, 20, and 10; the

accuracy of true and false sections were 85% and 93%,

respectively (Table 3). With 4 hidden layers (50, 25, 10, and 5

neurons in hidden layers, respectively), the best overall true and

false accuracies in Elman neural networks were 91%, 0.83% and

0.95%, respectively (Table 3). Of the 794 features, 27 were ranked

as important contributors to protein thermostability. In networks

with 2 hidden layers and 40 or 20 neurons in hidden layers

(Table 3), the feed-forward network ran on selected features; the

best overall true and false accuracies were 91%, 83% and 95%,

respectively. The best results in Elman neural networks on selected

features (27 features) were 91%, 95% and 85% for overall true and

false accuracies, respectively, for 2 hidden layers and 10 and 5

neurons (Table 3). A detailed result of a 10-fold cross validation of

this neural network is presented in Table 4.

Testing the performance of the best neural networks in

predicting the thermostability of new sequence. To

evaluate the efficiency of feed-forward and Elman neural

networks in predicting the thermostability of other proteins, a

dataset of 65 proteins with known thermostability (approximately

half of the proteins had temperatures greater than 80uC, and the

other half had temperatures less than 80uC) was prepared and the

same features (794) were calculated. Then the best neural networks

from each category (feed-forward with 2 hidden layers and 40 or

20 neurons in hidden layers and Elman with 2 hidden layers and

10 and 5 neurons in hidden layers) were run on this dataset. The

results showed that the accuracies of both neural networks in

detecting the correct temperatures for the proteins with optimum

temperature higher than 80uC (thermostable group) were

approximately 80%. Their accuracies in detecting the optimum

temperature lower than 80uC (mesostable group) were higher than

90%. No significant (p.0.95) difference was seen between neural

networks running with and without a feature selection algorithm

(Table 5).

Discussion

Thermostable enzymes are best suited to harsh conditions, and,

thus, there is significant interest in engineering these enzymes for

industrial and biotechnical applications [27]. The activity levels of

thermostable enzymes are known to increase with increasing

temperature. However, at a sufficiently high temperature,

inactivation starts to occur [28]. A method to discriminate

between thermophilic and mesophilic proteins would be extremely

helpful in designing stable proteins [29]. Different models have

been proposed to determine the most important attributes that

contribute to the stability of proteins at higher temperatures. The

models have utilised the crystal structure of thermostable proteins

[30], logistic model tree extraction [31], mutant position [3],

machine learning algorithms [32], characteristic patterns of codon

usage, amino acid composition and nucleotide content [33],

disulphide bridge [27], analyses of three-dimensional structures
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[34], salt bridges [35], aromatic interactions [36], content of Arg,

Pro, His, Try [37], the isoelectric points [38], hydrophobicity [39]

and the content of electric charges [4]. In the present investigation,

we aimed to determine the most important feature contributing to

the stability of proteins in harsh thermal conditions. Various

modelling techniques were applied to study more than 800

attributes of mesophilic and thermophilic proteins.

When the number of variables or attributes is sufficiently large,

the ability to process units is significantly reduced. Data cleansing

algorithms were used to remove correlated, useless or duplicated

attributes which results in a smaller database [40,41]. About 10%

of the attributes discarded when these algorithms were applied on

the original dataset.

Each attribute weighting system uses a specific pattern to define

the most important features. Thus, the results may be different

[42], as has been highlighted in previous studies [9,43]. The

frequency of hydrophilic residues, the percentage of Gln, and the

count of other residues were the most important features to

distinguish between mesostable and thermostable enzymes, as

defined by 70% of the attribute weighting algorithms. This finding

agrees with previous reports. Furthermore, these results confirm

the importance of hydrophilicity in allowing tight folding of the

proteins and increasing their capacity to resist high temperatures

[44]. It has also been demonstrated that the thermostable

dehydrins in plant mitochondria are highly hydrophilic, and their

accumulation in some species, such as wheat and rye, induce

increased thermostability. It has been hypothesised that hydro-

philicity stabilises proteins in the membrane or in the matrix when

temperature increases [45]. Site-directed mutagenesis has been

used to understand thermostability of xylanase enzymes, which

confirms the importance of hydrophilicity and salt- bridge [35].

The importance of hydrophobicity (not hydrophilicity) has been

highlighted in some studies [32,39]. However, in a prominent

study in this field, the hydration entropy was shown to be a major

contributor to the stability of surface mutations in helical segments;

these results confirmed that the inverse hydrophobic effect was

generally applicable only to coil mutations [3]. An unusually large

proportion of surface ion pairs involved in networks that cross-link

sequentially separate structures on protein surfaces and an

unusually large number of solvent molecules buried in hydrophilic

cavities between sequentially separate structures in the protein

core of thermostable proteins have been reported [30]. An

Figure 1. Random Forest decision model on Gini Index criterion. The frequency of Asn – Gln was the most important attribute used to build
the tree. The frequencies of Asn – Thr, Gly – Gly, and Asp – Pro were the other features used to build the rest of tree. T: mesostable and F:
thermostable.
doi:10.1371/journal.pone.0023146.g001

Prediction of Thermostability from Amino Acid

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e23146



increase in the number of polar amino acids (such as the count of

Gln, as confirmed in this study) may contribute to an increase in

the hydrophilic properties of thermostable proteins.

Recent studies have shown that amino acid composition,

especially the presence of some polar amino acids such as Gln,

exerts a distinguishable effect on thermostability [33]. The most

remarkable effect was a two-fold decrease in the frequency of Gln

residues among thermophiles [46]. In another study [47], it was

shown that the frequency of Gln plays an important role in

enzyme thermostability, and our results confirmed this finding

[48]. A large number of polar molecules, which may increase

molecular hydrophilicity, have been found in the crystal structure

of thermostable beta-glycosidase [30]. It has been proposed that

amino acid substitution (toward polar amino acids such as Gln)

changes protein stability in harsh thermal conditions and might be

useful for protein engineering of novel proteins with increased

stability and altered function [3]. It has also been noted that

thermophiles possess more charged residues, such as Glu, and

more hydrophobic residues, as compared to mesophiles [32]. A

direct correlation between higher optimum pH and an increase in

the number of electrically charged residues, such as Arg, has been

observed [37]. This may explain why the number of Gln had

higher weights in the applied attribute weighting algorithms we

utilised in this study. The roles of other protein residues in

enzymes thermostability have been reported previously [49,50,51].

Therefore, thermostable proteins and enzymes can be distin-

guished from mesostable proteins by their amino acid composi-

tion, which results in functional adaptation [33]. Previous studies

Figure 2. Decision Tree on Gain Ratio model. As can be inferred from the figure, modulation of Glutamine (Gln) content and frequency of
hydrophilic residues are the most important protein attributes to distinguish mesostable (T) from thermostable proteins (T).
doi:10.1371/journal.pone.0023146.g002
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have shown that thermostable enzymes possess significantly higher

numbers of certain amino acids, including up to twice as many

Gln residues [33]. Additionally, there are significant differences

(p,0.01) in the number of certain amino acids (including Gln)

present in mesostable and thermostable enzymes [32].

So far, there has been little discussion about the role of

dipeptides in protein function. Our recent study has already

demonstrated that specific dipeptides play the central role in

protein halostability [6]. Furthermore, the role of dipeptides, such

as Asp-Gln, in thermostability has been shown in this study. In the

Random Forest Decision Tree, the frequency of Asn – Gln was the

most important attribute to discriminate between halotolerant and

halo-sensitive proteins (Figure 1).

Unsupervised clustering algorithms have been widely employed

in a variety of areas in the biological sciences, including diagnostics

and image processing [52], EST [17], cancer detection [53],

promoter analysis [17], gene and protein bioinformatics [29,35].

Here, we used four different unsupervised clustering methods (K-

Means, K-Medoids, SVC and MEMC) on 10 datasets created

from protein attributes, which were assigned high weights. The

performances of these algorithms varied significantly (Table 2).

Some were unable to assign even a single T protein into the

correct class (for example, the EMC algorithm, when applied to

most datasets, except Correlation and Uncertainty). Some

methods could not put F proteins into the correct class (such as

SVC algorithm on Deviation dataset). The results showed that the

EMC algorithm was able to classify T and F proteins into the

correct classes when runs on the Correlation and Uncertainty

datasets. When EMC algorithm combined with Correlation and

Uncertainty datasets, the numbers of proteins in each class were

exactly the same as in the original dataset, which represents 100%

accuracy of this algorithm on the mentioned datasets. To our

knowledge, this is the first report of the application of these

algorithms to classify thermostable and mesostable proteins.

Unsupervised clustering methods are preferred for prediction

because they are capable of discovering structure on their own

without the need to target variable by exploring similarities and

differences between individual data points in a given data set.

This study exploited 10 different attribute weighting methods

(including PCA, SVM, Relief, Uncertainty, Gini index, Chi

Squared, Deviation, Rule, Correlation, and Information Gain)

before importing the data to the above mentioned clustering

algorithms. Performance of a clustering algorithm such as EMC

can vary from 0.0% to 100%, depending upon which attribute

Table 3. Topologies and overall, true, and false accuracies of the best neural networks run on whole database (with 794 features)
and step-wised feature selected database (with 27 features).

Type of neural network

Number of
Hidden
Layers Number of Neurons in layer

Per cent of
accuracy in
predicting
thermostable
proteins

Per cent of
accuracy in
predicting
mesostable
proteins

Per cent of
Overall
accuracy

1 2 3 4

Feed-forward (27 features) 2 40 20 0.84 0.95 0.91

Elman (27 features) 2 10 5 0.84 0.95 0.91

Feed-forward (794 features) 3 50 20 10 0.85 0.93 0.90

Elman (794 features) 4 50 25 10 5 0.83 0.95 0.91

doi:10.1371/journal.pone.0023146.t003

Table 4. Ten-fold cross validation of Elman neural network (2 hidden layers with 10 and 5 neurons in each layer) run on a dataset
with selected features (with 27 features) presenting overall, mesostable, and thermostable prediction accuracies.

Run Size of training set Size of test set

Per cent of accuracy
in predicting
thermostable proteins

Per cent of accuracy
in predicting
mesostable proteins

Per cent of
Overall
accuracy

1 1851 206 0.81 0.85 0.83

2 1851 206 0.76 0.92 0.86

3 1851 206 0.89 0.91 0.90

4 1851 206 0.89 0.96 0.93

5 1851 206 0.90 1.00 0.96

6 1851 206 0.74 0.99 0.89

7 1851 206 0.89 0.96 0.93

8 1851 206 0.84 0.97 0.92

9 1851 206 0.84 0.98 0.92

10 1854 203 0.88 0.93 0.91

Average 0.84 0.95 0.91

doi:10.1371/journal.pone.0023146.t004
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weighting algorithm had summarised the attributes (features) of

the dataset prior to running the clustering algorithm (Table 2).

This finding highlights the importance of testing different attribute

weighting algorithms in biological studies; particular attribute

weighting may be unique to each biological case.

Both neural networks were suitable for determining the most

important features that contribute to protein thermostability, and

no significant differences (p.0.95) were found between neural

networks applied here. As mentioned earlier, feed-forward net-

works are simpler and impose smaller burdens on processors. In

this study, we found that the time required for a computer server

to run a feed-forward network was at least one third the time for

Elman networks. Prior application of a stepwise regression feature

selection algorithm showed that the number of variables can be

reduced without causing any significant difference in neural

networks’ accuracies. The use of stepwise regression is highly

recommended to minimise the processing time.

Our results show no significant difference (p.0.95%) in overall

accuracies of the neural networks (feed-forward and recurrent)

tested here. The neural networks resulted in accuracy values

slightly higher than 90%, and feature selection modelling did not

increase overall accuracies. In contrast, the accuracies of the

Elman neural networks applied to the feature selected dataset

increased 10% (from 85% to 95%), and its false accuracies

decreased to the same extent, demonstrating better efficiency in

detecting the correct temperatures.

The best neural networks (feed – forward with 2 hidden layers

and 40 and 20 neurons in each hidden layer and Elman with 2

hidden layers and 10 and 5 neurons in each hidden layer) were

tested on a separate new database of 65 proteins with known

optimum temperatures. The same patterns were observed with

total accuracies around 80% and better performances in detecting

optimum temperatures lower than 80uC. This result may be due to

the ratio of thermostable to mesostable false proteins. The models

in this study may be employed to predict the optimum tempera-

ture of any new protein sequence.

The major achievement of this study was the prediction of the

thermostability of any input protein sequence based on its amino

acid composition. These predictions did not require similarity

searches or gathering information about the complex, expensive,

and time-consuming features of the tertiary and quaternary

protein structure. The developed models can be further embedded

in web-based data banks to predict protein thermostability from

protein sequences. As a result, one can obtain an accurate estimate

of increased thermostability from a protein sequence before

beginning laboratory activity. In addition, these models provide a

new avenue for engineering thermostable enzymes based on the

important attributes in this study.

The current findings add to the growing body of literature on

engineering thermostable enzymes, which are urgently needed by

many industries. The methods used in this study may be applied to

broader research areas such as cancer research, prediction protein

function, and subcellular localisation. For example, we showed

that the above methods can be efficiently employed to distinguish

between different protein attributes found in malignant and

benign breast cancer proteins and to distinguish the proteins found

in different stages [54].

Materials and Methods

Protein sequences (2090) were extracted from the UniProt

Knowledgebase (Swiss-Prot and Tremble) database. More than

63% of the extracted proteins were enzymes. They were cate-

gorised into two groups: 1573 or 75% to T (optimum tempera-

ture,70uC, mesostable enzymes) and 517 or 25% to F (optimum

temperature.70uC, thermostable enzymes). Eight-hundred and

fifty-two protein attributes or features such as length, weight,

isoelectric point, count and frequency of each element (carbon,

nitrogen, sulphur, oxygen, and hydrogen), count and frequency of

each amino acid, count and frequency of negatively charged,

positively charged, hydrophilic and hydrophobic residues, count

and frequency of dipeptides, number of a-helix and b-strand, and

other secondary protein features were extracted using various

bioinformatics tools and softwares from ExPASy site http://www.

expasy.org and CLC bio software (CLC bio, Finlandsgade 10–12,

Katrinebjerg 8200 Aarhus N Denmark).

All features were classified as continuous variables, except

optimum temperature and N-terminal amino acids, which were

classified as categorical. A dataset of these protein features was

imported into Rapid Miner (RapidMiner 5.0.001, Rapid-I GmbH,

Stochumer Str. 475, 44227 Dortmund, Germany), and the opti-

mum temperature (categorised as T and F) was set as the target or

label attribute.

Then, the steps detailed below were applied to the dataset.

Data cleaning
Duplicate features were removed by comparing all examples

with each other on the basis of the specified selection of attributes

(two examples were assumed equal if all values of all selected

attributes were equal). Next, useless attributes were removed from

Table 5. Accuracies of the best neural networks gained found in this work in predicting the right temperature for a dataset of 65
new proteins with known temperature.

Dataset without feature selection (all 794) features

Accuracy% Feed-forward with 3 hidden layer Elman with 4 hidden layer

Thermostable proteins 78.46 80.00

Thermostable proteins 93.48 97.83

Overall 85.97 88.91

Dataset with feature selection (just selected 27) features

Thermo-stable proteins 78.46 78.46

False 95.65 95.65

Overall 87.05 87.05

doi:10.1371/journal.pone.0023146.t005
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the dataset. Numerical attributes which possessed standard

deviations less than or equal to a given deviation threshold (0.1)

were assumed as to be useless and removed. Finally, correlated

features (with Pearson correlation greater than 0.9) were omitted.

After cleaning, the number of attributes and records decreased to

794 and 2057 respectively; this database was labelled the final

cleaned database (FCdb).

Attribute Weighting
To identify the most important features and to find the possible

patterns in features that contribute to thermostability, 10 different

algorithms of attribute weightings were applied to the cleaned

dataset (FCdb) as described below.

Weight by Information gain. This operator calculated the

relevance of a feature by computing the information gain in class

distribution.

Weight by Information Gain ratio. This operator cal-

culated the relevance of a feature by computing the information

gain ratio for the class distribution.

Weight by Rule. This operator calculated the relevance of a

feature by computing the error rate of a OneR Model on the

example set without this feature.

Weight Deviation. This operator created weights from the

standard deviations of all attributes. The values were normalised

by the average, the minimum, or the maximum of the attribute.

Weight by Chi squared statistic. This operator calculated

the relevance of a feature by computing, for each attribute of the

input example set, the value of the chi-squared statistic with

respect to the class attribute.

Weight by Gini index. This operator calculated the relevance

of an attribute by computing the Gini index of the class distribution,

if the given example set would have been split according to the

feature.

Weight by Uncertainty. This operator calculated the

relevance of an attribute by measuring the symmetrical uncer-

tainty with respect to the class.

Weight by Relief. This operator measured the relevance of

features by sampling examples and comparing the value of the

current feature for the nearest example of the same and of a

different class. This version also worked for multiple classes and

regression data sets. The resulting weights were normalised into

the interval between 0 and 1.

Weight by SVM (Support Vector Machine). This operator

used the coefficients of the normal vector of a linear SVM as

feature weights.

Weight by PCA (Principle Component Analysis). This

operator used the factors of the first of the principal components as

feature weights.

Attribute selection
After attribute weighting models were run on the dataset, each

protein attribute (feature) gained a value between 0 and 1, which

revealed the importance of that attribute with regards to a target

attribute (optimum temperature of enzymes). All variables with

weights higher than 0.50 were selected and 10 new datasets (with

2057 records in each dataset) created. These newly formed

datasets were named according to their attribute weighting models

(Information gain, Information gain ratio, Rule, Deviation, Chi

Squared, Gini index, Uncertainty, Relief, SVM and PCA) and

were used to join with subsequent models (supervised and

unsupervised). Each model of supervised or unsupervised cluster-

ing were performed 11 times; the first time it was run on the main

dataset (FCdb) and then on the 10 newly formed datasets (the

results of attribute weighting).

Unsupervised clustering algorithms
The clustering algorithms listed below were applied on the 10

newly created datasets (generated as the outcomes of 10 different

attribute weighting algorithms (as well as the main dataset (FCdb).

K-Means. This operator uses kernels to estimate the distance

between objects and clusters. Because of the nature of kernels, it is

necessary to sum over all elements of a cluster to calculate one

distance.

K-Medoids. This operator represents an implementation of

k-Medoids. This operator will create a cluster attribute if it is not

yet present.

Support Vector Clustering (SVC). This operator represents

an implementation of Support Vector algorithm. This operator

will create a cluster attribute if not present yet.

Expectation Maximization (EM). This operator represents

an implementation of the EM-algorithm.

Supervised Clustering
Decision Trees. Six tree induction models including

Decision Tree, Decision Tree Parallel, Decision Stump, Ran-

dom Tree, ID3 Numerical and Random Forest were run on the

main dataset (FCdb). Each tree induction model ran with the

following four different criteria: Gain Ratio, Information Gain,

Gini Index and Accuracy. In addition, a weight-based parallel

decision tree model, which learns a pruned decision tree based on

an arbitrary feature relevance test (attribute weighting scheme as

inner operator), was run with 13 different weighting criteria (SVM,

Gini Index, Uncertainty, PCA, Chi Squared, Rule, Relief,

Information Gain, Information Gain Ratio, Deviation, Cor-

relation, Value Average, and Tree Importance).

Neural Network. Feed-forward and Elman (as a type of a

recurrent) neural networks were run on the two datasets. One

dataset had 794, and the next one had 27 protein features chosen

after stepwise feature selection algorithm with various hidden

layers in each neural network (Table 3). The stepwise regression

feature selection algorithm was applied to identify the attributes

that had a strong correlation with enzyme thermostability. The

algorithm considered one attribute at a time to determine how well

each one individually predicted the target variable. The important

value for each variable was then calculated as 12p, where p is the

p value of the appropriate test of association between the

candidate predictor and the target variable. When the target

value was categorical (as in our datasets), p values were calculated

based on the F statistic. This approach allows for one-way

ANOVA F testing of each predictor. Otherwise, the p value was

based on the asymptotic t distribution of a transformation of the

Pearson correlation coefficient. Other models, such as likelihood-

ratio, Chi-Square (also tests for target-predictor independence),

Cramer’s V (a measure of association based on Pearson’s Chi-

Square statistic), and Lambda (a measure of association that

reflects the proportional reduction in error when the variable used

to predict the target value) were conducted to check for possible

effects of calculation on the feature selection criteria. The pre-

dictors were then labelled as important, marginal, or unimportant,

when values were .0.95, between 0.95 and 0.90, and ,0.90,

respectively. Finally, the effect of each selected feature was

calculated by stepwise regression on the best neural network

tested in this paper. Data in each feature was divided into 10

nearly equal classes, and the accuracy was calculated from the

number of correct determined records by the network divided by

all the records in each class.

The learning algorithm in all networks was back propagation.

Cross validation was used to train and test the model on all

patterns with no overlap between training and testing sets. To
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perform cross validation, all the records (2057) were randomly

divided into 10 parts; 9 parts consisted of 206 records, and the last

one contained 203 records; nine sets were used for training and the

10th one for testing. The process was repeated 10 times and the

accuracy for true, false and total accuracy calculated. The final

accuracy is the average of the accuracy in all 10 tests.

Testing the efficiency of the developed neural networks

with new protein sequences. To evaluate the efficiency of the

developed networks in predicting the correct temperatures for

other proteins, a dataset of 65 proteins with known thermostability

(approximately half of the proteins had temperatures greater than

80uC, and the other half had temperatures less than 80uC) was

prepared and the same features (794) were calculated. Then, the

best developed neural networks were tested on this dataset to

predict thermostability. The calculated accuracy indicates the

performance of the developed models in predicting the

thermostability of new sequences.
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