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Abstract

Fetal hemoglobin, HbF (a2c2), is the main hemoglobin synthesized up to birth, but it subsequently declines and adult
hemoglobin, HbA (a2b2), becomes predominant. Several studies have indicated that expression of the HbF subunit c-globin
might be regulated post-transcriptionally. This could be confered by ,22-nucleotide long microRNAs that associate with
argonaute proteins to specifically target c-globin mRNAs and inhibit protein expression. Indeed, applying immunopurifica-
tions, we found that c-globin mRNA was associated with argonaute 2 isolated from reticulocytes that contain low levels of
HbF (,1%), whereas association was significantly lower in reticulocytes with high levels of HbF (90%). Comparing microRNA
expression in reticulocytes from cord blood and adult blood, we identified several miRNAs that were preferentially
expressed in adults, among them miRNA-96. The overexpression of microRNA-96 in human ex vivo erythropoiesis decreased
c-globin expression by 50%, whereas the knock-down of endogenous microRNA-96 increased c-globin expression by 20%.
Moreover, luciferase reporter assays showed that microRNA-96 negatively regulates expression of c-globin in HEK293 cells,
which depends on a seedless but highly complementary target site located within the coding sequence of c-globin. Based
on these results we conclude that microRNA-96 directly suppresses c-globin expression and thus contributes to HbF
regulation.
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Introduction

The major hemoglobin in the fetus is hemoglobin F (HbF; a2c2),

whereas in adult humans mainly hemoglobin A (HbA; a2b2), and,

to a lesser extent, hemoglobin A2 (a2d2) are expressed [1,2]. In

many hemoglobinopathies HbF expression persists or can be

induced by drugs, and it is known that increased HbF expression is

beneficial, as it can compensate for reduced or abnormal HbA

expression [3,4]. In an effort to understand the molecular regula-

tion of HbF expression numerous studies have identified cis-acting

DNA elements flanking the c-globin gene, and several transcrip-

tion factors that bind to these elements have been characterized

[1,5]. They form chromatin-protein complexes activating the

c-globin transcription in fetal-embryonic erythropoiesis, favoring

HbF expression. After birth these complexes are remodeled,

silencing the c-globin loci and activating the b-globin loci, and

hemoglobin expression is switched to HbA [1,2]. Besides such

transcriptional control, several studies have indicated that hemo-

globin expression may also be post-transcriptionally regulated

[6,7,8]. For instance, reticulocytes (immature erythrocytes) isolated

from sickle cell disease patients after treatment with butyrate

showed a significant increase in HbF protein, but no changes in

c-globin mRNA levels [7]. Moreover, c-globin transcription rates

[8] or c-globin mRNA levels [6] were higher than expected from

the low HbF protein levels measured in patients with Corfu

db-thalassemia and b-thalassemia, respectively. Although these

findings indicate that HbF expression in reticulocytes may be post-

transcriptionally regulated, there is no formal proof nor are the

underlying molecular mechanisms known to date.

MicroRNAs (miRNAs or miRs) are small, 19 to 25 nucleotide

long, non-coding RNAs, which target mRNAs in a sequence-

specific manner, inducing translational repression or decay [9,10].

Following nuclear processing, miRNA precursors (pre-miRNAs)

are exported to the cytoplasm and converted into mature miRNAs

by Dicer [11]; one-strand of the duplex is subsequently incor-

porated into miRNA-induced silencing complexes (miRISC)

comprised of a member of the argonaute (AGO) protein family

and importin 8 (Imp8) [12]. This complex assembles with se-

quences located mostly in the 39-UTRs of target mRNAs.

Although the rules of miRNA-target recognition are not yet fully

established, one determinant is the complementarity between the

target site and 6–7 nucleotides at the 59 end of the miRNA (region

known as miRNA ‘‘seed’’ and reviewed in [11]).

In humans, miRNAs have been detected in granulocytes,

monocytes, lymphocytes, platelets [13,14], during erythropoiesis

[15], and in red blood cells (RBCs) [16,17]. In both types of
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enucleated cells (platelets and RBCs), miRNAs have been shown

to regulate cell-type specific proteins [14,16]. More than 200

miRNAs have been identified in RBCs [16,18]. In reticulocytes,

miR-320 was shown to regulate the expression of the transferrin

receptor CD71 [16]. Additionally, elevated miR-210 levels have

been studied in the context of elevated c-globin levels in two cases

of hereditary persistence of HbF [19], while the let-7 family has

been associated with hemoglobin switching [18]. Recently, two

miRNAs, miR-221 and miR-222, have been identified to regulate

HbF expression in erythropoietic cells via regulation of the kit

receptor [20]. Further indirect regulation of HbF expression by

miRNAs was shown in trisomy 13 cases, in which miR-15 and

miR-16 levels were elevated, resulting in an enhanced down-

regulation of MYB, an inhibitor of the c-globin gene transcrip-

tion [21]. Nevertheless, whether c-globin mRNAs could also be

directly targeted by certain miRNAs has not been reported yet.

First, we demonstrate that c-globin mRNA is bound by AGO2-

containing miRISC in reticulocytes from adults with 0.5% HbF,

but less so in reticulocytes from umbilical cord blood with 90%

HbF. Secondly, we report that miRNA-96, miRNA-146a, let-7a,

miR-888 and miR-330a-3p are significantly more abundant in

reticulocytes obtained from adults than from umbilical cord blood.

Thirdly, we show that ectopic expression of miR-96 during ex-vivo

erythropoiesis suppresses HbF expression, whereas knockdown of

miR-96 increases HbF expression. Finally, we demonstrate that

miRNA-96 directly targets the ORF of c-globin mRNA. These

findings demonstrate that miRNAs contribute to HbF regulation

by the post-transcriptional inhibition of c-globin expression during

adult erythropoiesis.

Results

c-globin mRNA is bound by AGO2
Reticulocytes (immature erythrocytes) synthesize up to 20% of

their hemoglobin content after extrusion of the nucleus and release

from the bone marrow [22]. Several studies have indicated that

HbF expression in reticulocytes might be regulated post-transcrip-

tionally [6,7,23]. Although miRNA expression profiling showed a

number of miRNAs to be present in reticulocytes [16,18], to our

knowledge, no study has reported whether miRNAs regulate HbF

expression during erythropoiesis or in reticulocytes. In order to

clarify whether globin mRNAs might be targeted by miRNAs

respectively bound my miRISC, we decided to compare in a first

step the miRISC composition in reticulocytes from umbilical cord

blood (CB) expressing high HbF (90.361.0%) with reticulocytes

from healthy adult blood (AB) expressing low HbF (0.960.3%)

levels.

After probing with specific anti-human AGO antibodies, we

detected all 4 human AGO proteins AGO1, AGO2, AGO3 and

AGO4 proteins in reticulocytes from AB and CB (Figure 1A). Next

we decided to study AGO2 in further detail by investigating

whether AGO2 is associated with globin mRNAs. Accordingly, we

performed immunoprecipitations (IP) of AGO2 from AB and CB

reticulocytes (Figure 1B) using previously characterized monoclo-

nal rat anti-AGO2 antibodies [24,25,26]. Within these immuno-

precipitated miRISCs, we subsequently compared the amount of

AGO2-bound a-, b-, c- and d-globin mRNAs by quantitative real

time PCR (qPCR). From AB reticulocyte lysates, a-globin mRNA

was enriched 30.662.3 fold, b-globin 7.960.7 fold, d-globin

30.1621.6 fold and c-globin 199.2652.5 fold (mean6SEM) in

AGO2 IP compared to control IP performed with non-specific rat

IgG. Strikingly, from CB reticulocyte lysates, c-globin mRNA was

enriched 12.260.7 fold, i.e.15 times less than from AB reti-

culocytes, whereas b-globin was enriched 10.861 fold, almost two

times more than from AB reticulocytes (Figure 1C). In contrast,

after quantifying c-globin mRNA molecules we found that

reticulocytes from CB contain on average 393619 copies per

cell, whereas reticulocytes from AB contain 16612 copies per

cell, indicating that the majority of c-globin mRNAs are bound

by AGO2 in AB. Two control transcripts, glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) and DNA methyltransferase

3a (DNMT3a), could not be detected in AGO2 IP from AB and

CB reticulocytes (Figure 1C), demonstrating the specificity of the

IP. In addition, no globin mRNAs could be detected in AGO1 IPs

(Figure 1B; data not shown). Unfortunately anti-AGO3 and anti-

AGO4 antibodies did not precipitate AGO proteins at detectable

levels, within these precipitations neither globin mRNAs were

detected.

In order to verify the presence of AGO2 in the immunopre-

cipitated miRISC, IP samples were analyzed by liquid chroma-

tography-coupled tandem mass spectrometry (LC-MS/MS). 12

unique peptides for AGO2 were detected in AGO2 IP samples

(Figure S2), whereas no AGO peptides were found in the IgG

control samples.

Distinct miRNA patterns predict miRNAs targeting
c-globin mRNA

To gain insight into which miRNAs might contribute to the

regulation of HbF expression in reticulocytes, we analyzed miRNA

profiles in CB and AB reticulocytes. In both groups of reticulocytes

221 different miRNAs were could be quantified by qPCR (Table

S1). Among them, 190 miRNAs were less expressed in CB

compared to AB reticulocytes. To reduce this list of 190 miRNAs,

we employed an artificial in vitro system: we isolated a clone of the

myelogenous leukemia cell line K562 that did not express HbF at

detectable levels, whereas HbF increased to almost 50% of the

expressed hemoglobin after treatment with hemin [27,28,29].

However, the Philadelphia chromosome (Ph1)-positive K562 cells

cannot be compared to any normal stage of erythropoiesis, neither

before nor after hemin treatment [30]. Therefore we did not

regard this K562 clone as a model for erythropoiesis or for a shift

from CB to AB. Nonetheless, we compared miRNA expression

patterns of K562 cells before and after hemin-induced HbF

synthesis. Only five miRNAs - miR-96, miR-888, miR330-3p, let-

7a, and miR-146a - were significantly less abundant in CB

reticulocytes compared to AB reticulocytes and were also signifi-

cantly down-regulated in hemin treated K562 cells (Figure 2).

None of these five miRNAs was predicted to target c-globin

mRNA by TargetScan [31], a database representing computa-

tionally predicted mRNA targets for miRNAs. However, RNAhy-

brid [32] predicted that miR-96, miR-146a and let-7a could target

c-globin mRNA (Figure 3A). The program predicted a seedless

but highly complementary hybridization with few mismatches for

miR-96, whereas it predicted canonical target hybridization with a

seed sequence, a central loop formation and a 39 complementary

region for miR-146a and let-7a. Interestingly, these miRNAs were

predicted to hybridize to target sequences located within the open

reading frame (ORF) of the c-globin mRNA (Figure 3A) but not

within other globin mRNAs (data not shown). Consequently we

compared the amount of miR-96, miR-146a and let-7a bound to

AGO2 similarly as done for the globin mRNAs. Surprisingly only

miR-96 enriched significantly more in AGO2 complexes immu-

noprecipitated from AB compared to CB. In contrast miR-146

and let-7a showed no significant difference in enrichment in AB

compared to CB (Figure 3B). This result was the first indication

that probably miR-96 but not miR-146 and let-7a might directly

target the c-globin mRNA.

miR-96 Inhibits HbF Expression
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miR-96 inhibits c-globin expression in human
erythropoiesis

To investigate whether increased expression of miR-96, miR-

146a or let-7a in CB derived erythropoiesis leads to lower c-globin

expression, CB derived erythroblasts were transduced with vectors

encoding miRNA precursors for miR-96, miR-146a, let-7a,

shRNA against c-globin, and as a control, with vectors without

any insert. At day 11 and 14 in culture, levels of miR-96, miR-

146a, let-7a increased more than 20 times over the endogenous

level (Figure S3 A), reaching 10 fold higher miR-96 levels com-

pared to the respective stage of adult erythropoietic cells. Non-

transduced erythropoietic cells as well as cells transduced with

empty vector started to express c-globin after erythropoietin (EPO)

stimulation. At day 11 (d11) the c-globin was doubled, which

further increased more than 10 fold at d14. Erythropoietic cells

over-expressing miR-96 had about half of the c-globin levels of

non-treated cells. This was comparable to levels when c-globin is

specifically knocked-down with shRNA. On the other hand, the

over-expression of miR-146a and let-7a did not influence c-globin

expression levels (Figure 4 A, C).

To complement our set of experiments, after EPO stimulation

bone marrow (BM) derived erythroblasts were transduced with

vectors expressing anti-miRNAs. Only at day 14 of the culture, the

endogenous levels of miR-96, miR-146 and let-7a were decreased

to almost 50% of the levels seen in negative control cells,

transduced with scambled-RNAs (Figure S3 B). At this time point,

erythropoietic cells transduced with anti-miR-96 significantly

increased their c-globin content by 20% compared to the nega-

tive control, but also compared to cells transduced with anti-miR -

146a and anti-let -7a (Figure 4 B, D). In addition we also

incubated BM-derived erythroblasts with antagomirs [33], which

led to approximately 90% depletion of miR-96, miR-146 and let-

7a; however effects on c-globin expression were similar compared

to viral encoded anti-miRs (data not shown).

Important to note: neither miR-96 over expression nor miR-96

knock down led to a change of b-globin as shown by Western blot

(Figure S3E), which was expected, as none of the investigated

miRNAs was predicted to have a target site within the b-globin

mRNA.

After quantifying developmental stages during in vitro erythro-

poiesis, we observed that let-7a seemed to influence differentiation:

after overexpression miR-146 and let-7a in CB-derived erythro-

poiesis the relative abundance of late erythroblasts was signifi-

cantly decreased, whereas the relative abundance of early ery-

throblasts and intermediate erythroblasts were increased. Consis-

tently after knockdown of let-7a in BM-derived erythropoiesis the

relative abundance of early erythroblasts significantly decreased,

whereas intermediate and late erythroblasts significantly increased.

The same trend was observed for miR-146a but was not signifi-

cant. However neither miR-96 overexpression nor knockdown

showed any change in the differentiation stages of erythropoiesis

(Table S2).

Levels of c-globin mRNA did not change either after pre-miR

overexpression or following anti-miR overexpression; only shRNA

overexpression led to 50% reduction of c-globin mRNA levels

(Figure S3 C&D).

miR-96 targets the c-globin ORF
Finally, we performed luciferase reporter assays to investigate

whether miR-96 directly interacts with c-globin mRNA (Figure 3,

Figure 1. c-globin mRNA is bound by AGO2 in reticulocytes with low HbF content. (A) Western blot analysis of AGO1, 2, 3, 4, c-globin and
b-globin in reticulocytes purified from umbilical cord blood (CB) and blood from adults (AB). Actin was included as loading control. (B) AGO2-
containing RNA-protein complexes were immunoprecipitated from equal amounts of cord blood reticulocyte (CB) and adult blood reticulocyte (AB)
lysates using rat monoclonal anti-AGO2 antibodies; as isotype control, non-specific rat immuno-globulin (IgG) as well as rat monoclonal anti-AGO1
antibodies were used. Immunoprecipitations were compared to lysate (input) and subjected to immunoblot analysis using anti-AGO2 antibodies. (C)
The amounts of a-globin (HBA), b-globin (HBB), c-globin (HBG) and d-globin (HBD) mRNA immunoprecipitated together with AGO2 from CB and AB
were compared to amounts of globin mRNAs that were non-specifically immunoprecipitated with control IgG. As control GAPDH and DNMT3a
mRNAs were analyzed. For every sample the same amount of precipitated RNA was analyzed. The values are expressed as fold-enrichment over IgG
immunoprecipitations, and represent mean6SEM (n = 3).
doi:10.1371/journal.pone.0022838.g001

miR-96 Inhibits HbF Expression
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4). Therefore, a vector was constructed harboring the c-globin

cDNA downstream of the Renilla luciferase ORF (psiCHECK-2-c-

globin). A second reporter gene, firefly luciferase, present in

psiCHECK-2 allowed the normalization of Renilla luciferase

activity. Human embryonic kidney (HEK) cells were co-transfect-

ed with the reporter construct, and with pre-miRs for either miR-

96 or miR-146a. For miR-96, but not for miR-146a, a significant

decrease in the relative levels of Renilla luciferase activity

compared to those of Firefly luciferase activity was measured

(Figure 5A). In addition, the disruption of the predicted miR-96

target site within the c-globin coding sequence revealed luciferase

activity levels equal to those of the negative control samples,

indicating that miR-96 directly and sequence specifically targets

the ORF of c-globin mRNA at the predicted target site

(Figure 5B&C).

Discussion

In the present study we identified miR-96 as a direct inhibitor of

c-globin expression. Initially, we found that in CB reticulocytes,

the amount of c-globin mRNA bound by AGO2 miRISC was 15

times less compared to AGO2 miRISC from AB reticulocytes. On

the basis of these results, we speculate that miRISC binds residual

c-globin mRNAs that are still transcribed during erythropoiesis in

adult after the globin switch has been completed, thus leading to

an inhibition of c-globin expression.

Since c-globin mRNA is associated with miRISC in AB

reticulocytes and therefore likely interacts with miRNAs, we

investigated miRNA expression patterns in CB and AB. We were

able to identify miR-96, miR-146a, let-7a, 330-3p and miR-888 as

being present in significantly higher amounts in AB reticulocytes

compared to those from CB and therefore as being potential

inhibitors of c-globin expression. Consistently, a previous report

on miRNA expression profiling in CB and AB also identified miR-

96 and let-7a as being significantly less expressed in reticulocytes

from CB [18]. However only miR-96 was enriched significantly

more in immunoprecipitated AGO2 complexes from adult

reticulocytes compared to cord blood; let-7a did not show this

pattern, indicating that it might be less probable, that let-7a

directly targets c-globin mRNAs.

In addition we were able to elucidate the role of these miRNAs

for the HbF expression in further detail. In primary erythroid

cultures, only overexpression of miR-96 led to a 50% decrease of

c-globin protein expression in CB-derived erythropoietic cells

expressing high amounts of c-globin protein. Even more impor-

tant, the knockdown of the physiological miR-96 levels in BM-

derived erythropoietic cells, expressing low amounts of c-globin

mRNA and thus low amounts of HbF, led to a significant increase

of 20% in c-globin protein expression. Neither overexpression nor

knock down of the other miRNAs led to a change of c-globin

expression.

Further experiments then allowed us to demonstrate that miR-

96 in complex with AGO2 binds to a seedless but highly com-

plementary target site within the open reading frame of c-globin

mRNA. Although most miRNAs are believed to target mRNAs in

their 39-UTRs, both seedless target sites and target sites located

within the ORF have been previously reported [34,35,36,37,38].

To date, miR-96 has been shown to be crucial for the

development of the inner ear and hearing [39,40], and to inhibit

the expression of the platelet protein VAMP8 [41]. In addition up-

regulation of miR-96 has been associated with the transformation

or maintenance of breast cancer cells through the expression

inhibition of the transcription factor FOXO1 [42].

During the postnatal globin switch, chromatin remodeling of

the b-globin locus leads to an almost complete change from

c-globin transcription to b-globin transcription. A number of

transcription factors such as GATA-1 [43], EKLF [44,45], cMYB

[46], or BCL11A [47] have been described as being required for

the transcriptional switch from c-globin to b-globin expression.

Further, c-kit ligand activity has been shown to play a role in

the HbF switching: a recent study from Gabbianelli et al. [20]

reported a gradual increase in miR-221 and miR-222 expression

from pre-term to full-term CB to adult hematopoietic progenitor

cells which down-modulates c-kit. In support of this report we

identified miR-222 to be significantly 20 times less abundant in

reticulocytes from CB compared to AB (Figure 3).

However in adult erythropoiesis after the switch some residual

amounts of c-globin mRNAs are still transcribed and can be

detected in reticulocytes [48,49]. Here we demonstrate that these

few copies of c-globin mRNA in AB reticulocytes, about 40 times

less than in CB, are targeted by miR-96 leading to a further

repression of HbF expression.

Our study seems to be limited by the relative small changes of c-

globin expression after knock-down of endogenous miRNAs.

However, the transduction with anti-miRs led only to a decrease of

50% of endogenous miR-96. Therefore we speculate that the

residual endogenous miR-96 most likely continues to inhibit

c-globin expression. In addition, a study on the role of miRNAs for

the erythropoietic enucleation showed also changes of 15–25%

after miRNA depletion [50]. Relatively small but significant

changes can be expected by manipulating single miRNAs, as not

yet identified miRNAs might also target the c-globin mRNA.

Thus, the concerted knock-down of several miRNAs could lead to

a more pronounced increase of c-globin expression. To investigate

effects of microRNAs in complex with AGO2 on the globin

expression, AGO2 knock downs in erythropoietic cells could have

been investigated. However we refrained from knocking down

AGO2 as it was well documented that AGO2 is essential for a

normal erythropoiesis [51] Nonetheless, our results suggest that

translation of residual c-globin mRNA in adult erythropoiesis is

repressed by miR-96 in complex with AGO2, adding a fine-tuning

mechanism of globin gene regulation.

Our finding that expression of HbF is repressed by miR-96

raises intriguing questions as to what extent this regulation con-

tributes to the phenotypic heterogeneity observed in b-thalassemia

and sickle cell disease. Currently, we are studying the possibility

that altered miRNA expression, including that of miR-96, might

contribute to different HbF levels observed among patients. Along

these lines, our preliminary data on RBCs from a small cohort of

sickle cell patients (Azzouzi et al. unpublished data) indicate that

miR-96 expression levels inversely correlate with HbF content,.

Moreover, a recent study with sickle cell disease patients after

butyrate treatment showed increased binding of c-globin mRNA

Figure 2. miRNA expression-patterns in cells expressing high HbF-levels differ from cells with low HbF-levels. Total RNA isolated from
reticulocytes from cord blood (CB) (n = 3), adult blood (AB) (n = 3), K562 cells treated with hemin (n = 3) and untreated K562 cells (n = 3) was used to
generate miRNA expression profiles. Red color indicates higher expression and blue color lower expression compared to the global mean. miRNAs
were classified into three groups: miRNAs significantly less expressed in cells with high HbF content, i.e. CB compared to AB and K562 cells treated
with hemin compared to untreated K562 cells (down), miRNAs significantly less expressed in CB compared to AB (downregulated in CB), miRNAs less
expressed in cells with high HbF content (upregulated in CB). The relative quantification (RQ) values, representing the fold enrichment, and the
corresponding p values (determined by two tailed Student’s t-test) are presented.
doi:10.1371/journal.pone.0022838.g002

miR-96 Inhibits HbF Expression
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to ribosomes in reticulocytes [7]; one could speculate that this drug

might interfere with the binding of miRNAs and AGO proteins to

c-globin mRNA, leading to increased HbF expression.

In conclusion, we have been able to demonstrate direct

regulation of c-globin expression by miR-96. Further studies are

needed to assess if miRNA regulation also interferes with the

hemoglobin switch occurring during pre- and postnatal develop-

ment. In addition, the possibility of using miRNA inhibitors for the

therapeutic induction of c-globin in patients with hemoglobinop-

athies needs to be studied.

Figure 3. miR-96, miR-146a, let-7a are predicted to target the open reading frame of the c-globin mRNA. (A) Represented are the 59
untranslated region (59UTR, light blue), open reading frame (ORF, dark blue) and 39UTR (gray) of c-globin mRNA (HBG). By using RNA hybrid [32], the
free energy of the individual miRNA:mRNA hybridization was determined and the corresponding base pairing shown. The hybridizations of c-globin
mRNA with miR-96, miR-146a and let-7a (black squares) showed either well-defined mRNA:miRNA pairing (miR-146a and let-7a) consisting of a seed
region containing eight base pairs, followed by a four-base pair bulge region and a 39 complementary region as described [11] or seedless base
pairing (miR-96), all within the open reading frame (ORF) of HBG. (B) The amounts of miR-96, miR-146a and let-7a immunoprecipitated together with
AGO2 from CB and AB were compared to amounts of miR-96, miR-146a and let-7a that were non-specifically immunoprecipitated with control IgG.
For every sample the same amount of precipitated RNA was analyzed. The values are expressed as 1000-fold-enrichment over IgG
immunoprecipitations, and represent mean6SEM (n = 3). P values were determined by the Student’s t-test.
doi:10.1371/journal.pone.0022838.g003
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Materials and Methods

Blood sampling and reticulocyte purification
The institutional ethics board of the University Children’s

Hospital, Zurich and of the Canton of Zurich approved the study

protocol, and all subjects provided written informed consent to

participate in accordance with the Declaration of Helsinki. The

venous blood samples were collected during routine blood tests.

For the venipuncture, a cream composed of 5% lidocaine and 5%

prilocaine (EMLA; Astra Zug, Switzerland) was applied. Five to

10 ml of venous blood was collected into heparin. The blood was

washed three times with 10 ml of phosphate-buffered saline

containing 2 mM Ethylenediaminetetraacetic acid (EDTA) and

separated in a Ficoll-Hypaque gradient (GE Healthcare, Glatt-

brug, Switzerland) to remove mononuclear cells and platelets.

Reticulocytes were then filtered through a leuko-depletion filter

(Purecell Neo; Pall, Basel, Switzerland) (Figure S1 A). The

leukodepleted reticulocytes were washed and resuspended in

phosphate-buffered saline/EDTA. The purity grade of reticulo-

cytes was assessed by an automated blood cell analyzer (Sysmex

Digitana, Horgen, Switzerland), as well as by flow cytometry for

surface expression of CD45 with fluorescence-labeled antibodies

(Becton Dickinson, Rotkreuz, Switzerland) (Figure S1 B). In

addition, depletion of leukocytes and platelets, and enrichment of

reticulocytes was analyzed by quantitative real time PCR (qPCR)

of the pan-leukocyte marker CD45 as well as of mRNAs encoding

different hemoglobin subunits (Figure S1 C).

Cell cultures
Erythroid cells were cultured using a 2-phase liquid system.

Mononuclear cells isolated from umbilical cord blood and bone

marrow (Stemcell Technologies, Grenoble, France) and cultured

for 7 days in phase I medium consisting of serum-free StemSpan

(Stem Cell Technologies, Vancouver, BC) supplemented with

100 ng/ml fetal liver tyrosine kinase 3 ligand, 100 ng/ml throm-

bopoietin and 100 ng/ml stem cell factor (ProSpec, Rehovot,

Israel). Cells were incubated at 37uC, 5% CO2. After 7 days,

nonadherent cells were collected and reseeded at a concentration

of 56105 cells/ml in phase II medium (StemSpan supplemented

with 50 ng/ml insulin-like growth factor-1, 50 ng/mL stem cell

factor, and 3 U/ml human recombinant erythropoietin (Merck,

Darmstadt, Germany). Cell samples were collected from phase II

cultures after 8, 11 and 14 days of culture.

K562 and HEK293T were grown in IMDM (PAA, Coelbe,

Germany) supplemented with 10% fetal bovine serum, 4 mM

glutamine, and 16 Antibiotic-Antimycotic reagent (Invitrogen

AG, Basel, Switzerland). HbF induction in K562 cells was

performed, as described [27,28,29] with minor modifications, by

adding 50 mM of hemin (Sigma, Buchs, Switzerland) to the

medium for two days.

AGO co-immunoprecipitation
Co-immunoprecipitation experiments were performed as de-

scribed [25,52] with modifications: 500 ml of packed RBCs were

lysed with 1.5 ml of lysis buffer (20 mM Tris-HCl pH 7.5,

150 mM NaCl, 0.5% IGEPAL, 2 mM EDTA, 0.5 mM DTT,

heparin 0.2 mg/ml, one tablet protease inhibitor (Roche,

Rotkreuz, Switzerland), 50 U/ml RNase OUTTM (Invitrogen

AG, Basel, Switzerland), 50 U/ml SuperaseNINTM (Applied Bio-

systems, Rotkreuz, Switzerland)). Lysates were cleared by centri-

fugation at 14,000 g for 10 minutes three times. Twenty mg of cell

extract protein were used for each experiment. AGO2 monoclonal

antibody-containing hybridoma (11A9) supernatant (2.5 ml) was

coupled to 50 ml protein G-Sepharose (GE Healthcare, Switzer-

land) overnight at 4uC. Coupled beads were washed three times

with NT2 buffer (50 mM Tris-HCl pH 7.5, 300 mM NaCl,

5 mM MgCl2, 0.05% IGEPAL) and resuspended in NT2-RIP

(NT2 buffer supplemented with 12.5 ml RNase OUTTM (50 U/

ml), 25 ml SuperaseNINTM (50 U/ml), 20 ml 1 M DTT (2 mM),

4 ml heparin 0.02 mg/ml). Beads were then incubated with RBC

lysates for six hours at 4uC. IP samples were washed three times

with NT2 buffer and proteins were eluted with SDS-EDTA

solution (50 mM Tris pH 8, 100 mM NaCl, 10 mM EDTA, 1%

SDS) at 65uC for 15 minutes. An aliquot of each eluate was kept

for immunoblotting and the remainder was used for RNA isolation

using the mirVanaTM microRNA isolation kit (Applied Biosys-

tems, Rotkreuz, Switzerland).

Following electrophoresis by SDS-PAGE the gel slices corre-

sponding to the size of AGO2 (100 kDa) were cut out and

dehydrated in 100% acetonitrile. Proteins were in-gel digested

using Sequencing Grade trypsin (Promega, Dübendorf, Switzer-

land) as described by Shevchenko [53]. The peptide samples were

then analyzed on an Agilent 1100 micro HPLC system (Agilent,

Morges, Switzerland) coupled to an LTQ linear ion trap mass

spectrometer (Thermo Electron, San Jose, CA) equipped with a

nanoelectrospray ion source (Thermo Electron, San Jose, CA).

Peptides were separated on an RP-HPLC column (10 cm length

and 75 mm inner diameter) packed with C18 resin (Magic C18 AQ

3 mm; Michrom Bioresources) with a linear gradient from 95%

buffer A (water, 0.1% formic acid) and 5% buffer B (water, 0.1%

formic acid and 90% Acetonitrile) to 60% buffer A and 40%

buffer B at a flow rate of 0.5 mL/min. The data acquisition mode

was set to acquire one MS scan followed by three collision induced

dissociation MS/MS scans. The MS full scans were recorded over

a mass range of 400–1600 m/z. The normalized collision energy

was set to 35%.

Acquired raw data files were converted with ReAdW into

mzXML files [54] which were searched with Sorcerer-SEQUEST

[55] against the human protein database of the UniProtKB/Swiss-

Prot Protein Knowledgebase (Version 57.15). The Trans-Proteo-

mic Pipeline TPP [56] v4.0 JETSTREAM rev 2 including

PeptideProphet [57] and ProteinProphet [58] was used for the

statistical analysis of the search results. The false discovery rate was

set to 1%, corresponding to a ProteinProphet probability score of

0.9. The remaining set of proteins was evaluated manually and

common contaminations were eliminated.

Quantitation of mRNAs and miRNAs
a-, b- d- and c-globin mRNAs, as well as control GAPDH

mRNA, were quantified using the TaqManH Gene Expression

Cells-to-CTTM Kit and specific primers (Applied Biosystems,

Rotkreuz, Switzerland). To determine the mRNA copy numbers

Figure 4. miR-96 inhibits c-globin expression in human erythropoiesis. (A,C,E) Cord blood-derived erythroid cultures (CB) were transduced
with miRNA precursors; (B,D,F) Adult bone marrow-derived erythroid cultures (BM) were transduced with anti-miRNAs. Cells were harvested and
analyzed at day 8 (d8), 11 (d11) and 14 (d14). (A–B) Specific amounts of c-globin per total protein concentration and (C–D) relative amounts of c-
globin compared to negative control, which was set to 100%, were measured by ELISA. Values represent mean 6 SEM of 3 experiments (n = 3). P
values were determined by the Student’s t-test. * p,0.05. (E–F) Representative cytospins of erythroid cells on d8, d11 and d14. The cytospins were
stained with May Grünwald Giemsa and images were acquired with a Zeiss Axioskop2 microscope equipped with a Zeiss Plan-Apochromat 636/1.4
oil immersion objective lens and a Zeiss AxioCam MRc digital camera. Images were recorded using Zeiss AxioVision AC release 4.5.0 software.
doi:10.1371/journal.pone.0022838.g004
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of the target gene, Ct-values were measured for serial dilutions

(300,000, 30,000, 3,000, 300 and 30 copies) of globin cDNA or

GAPDH cDNA. Using the equation of the standard curves for

each gene the actual copy number of globin genes and GAPDH

were calculated for each sample. The globin data were normalized

by calculating the ratio between globins and GAPDH.

For miRNA expression profiling, total RNA samples were

prepared from RBCs and K562 cells using the mirVanaTM micro-

RNA isolation kit (Applied Biosystems, Rotkreuz, Switzerland)

following the manufacturer’s protocol. For each sample, 360 ng of

total RNA were reverse transcribed using the MegaplexTM Pools

(Applied Biosystems, Rotkreuz, Switzerland) and screened for the

presence of 350 known human miRNAs by qPCR using low-density

arrays (Applied Biosystems, Rotkreuz, Switzerland). For the re-

sulting Ct values for each miRNA, a complementary Ctc (40–Ct)

was calculated; the normalized DCtc (Ctcgene–Ctcendogenous control)

value heatmaps were then generated.

For single miRNA analysis, 25 ng of RNA isolated from

cultured erythroid cells were used for real time PCR quantification

using the TaqManH MicroRNA Cells-to-CTTM Kit and specific

primers (Applied Biosystems, Rotkreuz, Switzerland) according to

the manufacturer’s instructions.

Figure 5. miR-96 targets the c-globin ORF. HEK239T cells were co-transfected with the psiCHECK-2 reporter vector expressing Renilla luciferase
fused to c-globin cDNA and the control mimic (neg ctrl), miR-96 mimic, miR-146a mimic or small interfering RNA against c-globin (siRNA). (A) Relative
Renilla luciferase activity in cell lysates normalized to firefly luciferase are shown. (B) Relative Renilla luciferase activities after co-transfection of the
control mimic (black) or miR-96 mimic (grey) with wild-type (wt) c-globin cDNA or mutated c-globin cDNA (mut) at the predicted miR-96 target site
are represented. Values represent mean6SEM of six experiments. P values were determined by the Student’s t-test. (C) Predicted miR-96 binding site
within the ORF of c-globin and binding site mutations tested (indicated in bold italics).
doi:10.1371/journal.pone.0022838.g005
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Immunoblotting and ELISA
RBC lysates in protein extraction buffer (4 mM CaCl2, 4 mM

MgCl2, 1% Triton, 20 mM HEPES, 2 mM PMSF) or eluates from

AGO co-immunoprecipitation were used for immunoblotting.

Protein samples were resolved on NuPAGE 4–12% Bis-Tris

polyacrylamide gels (Invitrogen AG, Basel, Switzerland), transferred

to PVDF membrane and blocked with 5% non-fat dried milk in

Tris-buffered saline (20 mM Tris, 150 mM NaCl, pH 7.4) with

0.1% Tween-20. Membranes were incubated with the following

primary antibodies: rat anti-human AGO1, AGO2, AGO3, AGO4

[12,24,26], b-globin, c-globin, b-actin (Santa Cruz Biotechnology,

Heidelberg, Germany), followed by HRP-conjugated secondary

antibodies (Jackson Immunology, Newmarket, UK) and developed

with ECL reagent (GE Healthcare, Switzerland).

c-globin ELISA was performed using cell lysates in ELISA lysis

buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5% IGEPAL)

with the Human Fetal Hemoglobin ELISA Quantification kit

(Bethyl, Montgomery, TX, USA) according to the manufacturer’s

protocol.

miRNA overexpression and miRNA knockdown
Pseudoviral particles were generated using lentivector-based

miRNA precursor and miRZIPTM lentivector-based anti-miRNA

constructs following the manufacturer’s instructions (System

Biosciences, Mountain View, CA). Retroviral particles were

prepared from a mixture of 4 HuSH 29mer shRNA constructs

against the c-globin mRNA (Origene Technologies, Inc., Rock-

ville, MD, USA) and used as control. To achieve stable expression

during erythropoiesis primary erythroid cultures were transduced

with pseudoviral particles (10/cell) containing vectors coding for

miRNA precursors or anti-miRNAs after 8 days of culture. A

transduction efficiency of 90% was achieved.

Luciferase reporter assay
The c-globin cDNA was subcloned from the TrueClone

NM_000559.2 vector (Origene, Rockville, MD, USA) into the

psiCHECK-2 vector (Promega AG, Duebendorf, Switzerland). The

c-globin mir-96 mutant reporter was constructed with PhusionTM

Site-Directed Mutagenesis (Finnzymes, Espoo, Finland), which

created a four base pair change in the mir-96 target site (bold

and underlined) (AAGCUCCUGGGAAAUGUGCUGGUGACCGU to

replace AAGGUCCUGGGAAAUGUCCUGGUCACGGU).

To evaluate the effect of miR-96 and miR-146a on c-globin

activity, we used precursor miRNA (Applied Biosystems, Rotk-

reuz, Switzerland). HEK293T cells were co-transfected with 10 ng

psiCHECK reporter and 500 nM of miRNA precursors for each

experiment, using siPORT NeoFX Transfection Agent (Applied

Biosystems, Rotkreuz, Switzerland). After 24 hours, the transfect-

ed cells were washed and lysed with passive lysis buffer (Promega

AG, Duebendorf, Switzerland). The luciferase activities (firefly and

Renilla) were then determined by a luminometer (Berthold

Technology, Regensdorf, Switzerland) using the Dual luciferase

reporter assay kit (Promega AG, Duebendorf, Switzerland). The

relative reporter activities were calculated by normalization of

firefly to the Renilla luciferase activities determined in the same

lysates. To confirm the target site of miR-96 on the c-globin

cDNA, its target site was cloned into the psiCHECK-2 vector as

well as the mutated target site.

Supporting Information

Figure S1 Purification of reticulocyte. (A) The venous

blood or umbilical cord blood samples were collected into heparin

and leukodepleted by Ficoll density gradient and filtration. (B) The

purity of reticulocytes was assessed by flow cytometry and (C) by

real-time PCR. (B) Following leukodepletion, cells were stained

with an antibody against CD45, which is specific to leukocytes. No

CD45-positive cells were detected after leukodepletion by flow

cytometry. (C) The analysis of purified reticulocytes at the mRNA

level showed no CD45 mRNA after leukodepletion, whereas all

globin mRNAs were detected. All subsequent experiments were

perform with reticulocytes containing both reticulocytes and

mature erythrocytes, in order not to lose any reticulocytic RNA

from the relatively small blood samples. HBA, a-globin; HBB, b-

globin; HBD, d-globin; HBG, c-globin; PBMC, peripheral blood

mononuclear cells; reti, leukodepleted reticulocytes; WB, whole

blood.

(TIF)

Figure S2 Analysis of immunopurified AGO2 by LC-
MS/MS. (A) Amino acid sequence of human AGO2. Tryptic

peptides identified by LC-MS/MS are highlighted. (B) Represen-

tative MS/MS spectrum, amino acid sequence and annotated

fragment ions from an identified human AGO2 peptide.

(TIF)

Figure S3 RNA and protein levels in erythroid cell
cultures after overexpression and knockdown of miR-
NAs. (A) Relative quantification of miRNAs after transduction of

miRNA-precursors and (B) after transduction of anti-miRNAs.

miRNA levels in erythropoietic cells transduced with negative

control were given a relative value of 1.0. All levels of over-

expressed miRNAs were expressed as n-fold change compared

with the negative control. (C) Quantification of c-globin mRNA

after transduction of miRNA-precursors and (D) after transduction

of anti-miRNAs. All c-globin mRNA quantities were expressed as

copy numbers per cell. Cells were harvested and analyzed at day 8

(d8), 11 (d11) and 14 (d14). Values represent three independent

experiments (n = 3). (E) Western blot analysis of c-globin and

b-globin in CB-derived erythroid cultures transduced with

miR-96 precursors (miR-96) and BM-derived erythroid cultures

transduced with anti-miR-96. As negative control (neg ctrl), cells

were transduced with empty vector. Actin was included as loading

control.

(TIF)

Table S1 Ct values obtained by real time PCR.

(XLS)

Table S2 Quantification of morphological development stages

of erythropoietic cells.

(PDF)

Acknowledgments

We thank Karin Zurbriggen, Marlis Schmid and Alexandra Förderer for

excellent technical assistance. We thank Dr. Gunter Meister for the kind

gift of AGO1, AGO2, AGO3, AGO4 and Imp8 antibodies, and Dr.

Alessia Galgano for advice regarding the IP procedure. We thank Dr.

Heather Murray for editing the manuscript.

Author Contributions

Conceived and designed the experiments: IA HM APG M. Schmugge OS.

Performed the experiments: IA HM JW OS. Analyzed the data: IA HM

OS. Contributed reagents/materials/analysis tools: J-CF M. Stoffel BW

APG M. Schmugge. Wrote the paper: IA M. Schmugge OS. Attended and

enrolled patients: M. Schmugge. Provided umbilical cord blood samples: J-

CF.

miR-96 Inhibits HbF Expression

PLoS ONE | www.plosone.org 10 July 2011 | Volume 6 | Issue 7 | e22838



References

1. Bank A (2006) Regulation of human fetal hemoglobin: new players, new

complexities. Blood 107: 435–443.

2. Schechter AN (2008) Hemoglobin research and the origins of molecular

medicine. Blood 112: 3927–3938.

3. Bunn HF (1997) Pathogenesis and treatment of sickle cell disease. N Engl J Med

337: 762–769.

4. Platt OS, Orkin SH, Dover G, Beardsley GP, Miller B, et al. (1984)

Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia.
J Clin Invest 74: 652–656.

5. Sankaran VG, Xu J, Orkin SH (2010) Advances in the understanding of

haemoglobin switching. Br J Haematol 149: 181–194.

6. Efremov DG, Dimovski AJ, Sukarova E, Schiliro G, Zisovski N, et al. (1994)

gamma-mRNA and Hb F levels in beta-thalassaemia. Br J Haematol 88:
311–317.

7. Weinberg RS, Ji X, Sutton M, Perrine S, Galperin Y, et al. (2005) Butyrate
increases the efficiency of translation of gamma-globin mRNA. Blood 105:

1807–1809.

8. Chakalova L, Osborne CS, Dai YF, Goyenechea B, Metaxotou-Mavromati A,

et al. (2005) The Corfu deltabeta thalassemia deletion disrupts gamma-globin

gene silencing and reveals post-transcriptional regulation of HbF expression.
Blood 105: 2154–2160.

9. Ambros V (2004) The functions of animal microRNAs. Nature 431: 350–355.

10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function.

Cell 116: 281–297.

11. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-

transcriptional regulation by microRNAs: are the answers in sight? Nat Rev

Genet 9: 102–114.

12. Weinmann L, Hock J, Ivacevic T, Ohrt T, Mutze J, et al. (2009) Importin 8 is a

gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell
136: 496–507.

13. Merkerova M, Belickova M, Bruchova H (2008) Differential expression of
microRNAs in hematopoietic cell lineages. Eur J Haematol 81(4): 304–10.

14. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, et al. (2009) Existence
of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16:

961–966.

15. Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CZ
(2007) MicroRNA expression dynamics during murine and human erythroid

differentiation. Exp Hematol 35: 1015–1025.

16. Chen SY, Wang Y, Telen MJ, Chi JT (2008) The genomic analysis of

erythrocyte microRNA expression in sickle cell diseases. PLoS ONE 3: e2360.

17. Wang B, Love TM, Call ME, Doench JG, Novina CD (2006) Recapitulation of

short RNA-directed translational gene silencing in vitro. Mol Cell 22: 553–560.

18. Noh SJ, Miller SH, Lee YT, Goh SH, Marincola FM, et al. (2009) Let-7

microRNAs are developmentally regulated in circulating human erythroid cells.

J Transl Med 7: 98.

19. Bianchi N, Zuccato C, Lampronti I, Borgatti M, Gambari R (2009) Expression

of miR-210 during erythroid differentiation and induction of gamma-globin
gene expression. BMB Rep 42: 493–499.

20. Gabbianelli M, Testa U, Morsilli O, Pelosi E, Saulle E, et al. (2010) Mechanism
of human Hb switching: a possible role of the kit receptor/miR 221–222

complex. Haematologica 95: 1253–1260.

21. Sankaran VG, Menne TF, Scepanovic D, Vergilio JA, Ji P, et al. (2011)

MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in

human trisomy 13. Proc Natl Acad Sci U S A 108: 1519–1524.

22. Skadberg O, Brun A, Sandberg S (2003) Human reticulocytes isolated from

peripheral blood: maturation time and hemoglobin synthesis. Lab Hematol 9:
198–206.

23. Smetanina NS, Gu LH, Simjanovska L, Momirovska A, Petkov GH, et al. (1997)
Alpha-, beta-, and gamma-mRNA levels in beta-thalassemia; transcriptional and

translational differences in heterozygotes, homozygotes, and compound

heterozygotes. Hemoglobin 21: 27–39.

24. Rudel S, Flatley A, Weinmann L, Kremmer E, Meister G (2008) A

multifunctional human Argonaute2-specific monoclonal antibody. Rna 14:
1244–1253.

25. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of
human microRNA targets from isolated argonaute protein complexes. RNA Biol

4: 76–84.

26. Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, et al. (2008) A

human snoRNA with microRNA-like functions. Mol Cell 32: 519–528.

27. Villeval JL, Pelicci PG, Tabilio A, Titeux M, Henri A, et al. (1983) Erythroid
properties of K562 cells. Effect of hemin, butyrate and TPA induction. Exp Cell

Res 146: 428–435.

28. Testa U, Thomopoulos P, Vinci G, Titeux M, Bettaieb A, et al. (1982)

Transferrin binding to K562 cell line. Effect of heme and sodium butyrate
induction. Exp Cell Res 140: 251–260.

29. Testa U, Vainchenker W, Beuzard Y, Rouyer-Fessard P, Guerrasio A, et al.

(1982) Hemoglobin expression in clones of K562 cell line. Eur J Biochem 121:
649–655.

30. Sutherland JA, Turner AR, Mannoni P, McGann LE, Turc JM (1986)
Differentiation of K562 leukemia cells along erythroid, macrophage, and

megakaryocyte lineages. J Biol Response Mod 5: 250–262.
31. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian

mRNAs are conserved targets of microRNAs. Genome Res 19: 92–105.
32. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective

prediction of microRNA/target duplexes. Rna 10: 1507–1517.

33. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, et al. (2005)
Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689.

34. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, et al. (2009) miR-24
Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via

binding to ‘‘seedless’’ 39UTR microRNA recognition elements. Mol Cell 35:

610–625.
35. Elcheva I, Goswami S, Noubissi FK, Spiegelman VS (2009) CRD-BP protects

the coding region of betaTrCP1 mRNA from miR-183-mediated degradation.
Mol Cell 35: 240–246.

36. Qin W, Shi Y, Zhao B, Yao C, Jin L, et al. (2010) miR-24 regulates apoptosis by

targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS
ONE 5: e9429.

37. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008) MicroRNAs to
Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell

differentiation. Nature 455: 1124–1128.
38. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R (2008) miR-148

targets human DNMT3b protein coding region. Rna 14: 872–877.

39. Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, et al. (2009) An
ENU-induced mutation of miR-96 associated with progressive hearing loss in

mice. Nat Genet 41: 614–618.
40. Mencia A, Modamio-Hoybjor S, Redshaw N, Morin M, Mayo-Merino F, et al.

(2009) Mutations in the seed region of human miR-96 are responsible for

nonsyndromic progressive hearing loss. Nat Genet 41: 609–613.
41. Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, et al. (2009) VAMP8/

Endobrevin is over expressed in hyperreactive human platelets: suggested role
for platelet micro-RNA. J Thromb Haemost 8: 369–378.

42. Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a,
miR-96, and miR-182 in breast cancer cells. J Biol Chem 284: 23204–23216.

43. Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, et al. (2005)

Proximity among distant regulatory elements at the beta-globin locus requires
GATA-1 and FOG-1. Mol Cell 17: 453–462.

44. Borg J, Papadopoulos P, Georgitsi M, Gutierrez L, Grech G, et al. (2010)
Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary

persistence of fetal hemoglobin. Nat Genet 42: 801–805.

45. Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM (2010) KLF1 regulates
BCL11A expression and gamma- to beta-globin gene switching. Nat Genet 42:

742–744.
46. Jiang J, Best S, Menzel S, Silver N, Lai MI, et al. (2006) cMYB is involved in the

regulation of fetal hemoglobin production in adults. Blood 108: 1077–1083.
47. Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, et al. (2008) Human fetal

hemoglobin expression is regulated by the developmental stage-specific repressor

BCL11A. Science 322: 1839–1842.
48. Goh SH, Josleyn M, Lee YT, Danner RL, Gherman RB, et al. (2007) The

human reticulocyte transcriptome. Physiol Genomics 30: 172–178.
49. Oneal PA, Gantt NM, Schwartz JD, Bhanu NV, Lee YT, et al. (2006) Fetal

hemoglobin silencing in humans. Blood 108: 2081–2086.

50. Zhang L, Flygare J, Wong P, Lim B, Lodish HF (2011) miR-191 regulates mouse
erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 25:

119–124.
51. O’Carroll D, Mecklenbrauker I, Das PP, Santana A, Koenig U, et al. (2007) A

Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA
pathway. Genes Dev 21: 1999–2004.

52. Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, et al. (2008)

Comparative analysis of mRNA targets for human PUF-family proteins suggests
extensive interaction with the miRNA regulatory system. PLoS ONE 3: e3164.

53. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion
for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:

2856–2860.

54. Pedrioli PG, Eng JK, Hubley R, Vogelzang M, Deutsch EW, et al. (2004) A
common open representation of mass spectrometry data and its application to

proteomics research. Nat Biotechnol 22: 1459–1466.
55. Eng J, McCormack AL, Yates JR, 3rd (1994) An approach to correlate tandem

mass spectral data of peptides with amino acid sequences in a protein database.

Journal of the American Society for Mass Spectrometry 5: 976–989.
56. Keller A, Eng J, Zhang N, Li XJ, Aebersold R (2005) A uniform proteomics

MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:
2005 0017.

57. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical
model to estimate the accuracy of peptide identifications made by MS/MS and

database search. Anal Chem 74: 5383–5392.

58. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for
identifying proteins by tandem mass spectrometry. Anal Chem 75: 4646–4658.

miR-96 Inhibits HbF Expression

PLoS ONE | www.plosone.org 11 July 2011 | Volume 6 | Issue 7 | e22838


