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Abstract

We provide novel functional data that posttranscriptional silencing of gene RPL19 using RNAi not only abrogates the
malignant phenotype of PC-3M prostate cancer cells but is selective with respect to transcription and translation of other
genes. Reducing RPL19 transcription modulates a subset of genes, evidenced by gene expression array analysis and Western
blotting, but does not compromise cell proliferation or apoptosis in-vitro. However, growth of xenografted tumors
containing the knocked-down RPL19 in-vivo is significantly reduced. Analysis of the modulated genes reveals induction of
the non-malignant phenotype principally to involve perturbation of networks of transcription factors and cellular adhesion
genes. The data provide evidence that extra-ribosomal regulatory functions of RPL19, beyond protein synthesis, are critical
regulators of cellular phenotype. Targeting key members of affected networks identified by gene expression analysis raises
the possibility of therapeutically stabilizing a benign phenotype generated by modulating the expression of an individual
gene and thereafter constraining a malignant phenotype while leaving non-malignant tissues unaffected.
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Introduction

Ribosomal proteins (RPs) comprise a complex super-family of

proteins [1] highly conserved throughout evolution, indicating their

functional importance to living organisms [2]. This assertion is

supported by the number of RP pseudogenes and gene duplications

together with shared regions of identity between homologous proteins

in prokaryotes and eukaryotes [3]. Eukaryotic ribosomes contain

approximately 80 RPs together with four ribosomal RNAs (rRNA)

and require some 150 non-ribosomal factors to become organized

into their constituent small (40S) and large (60S) subunits [4]. Initially

considered to be involved only in protein synthesis, certain RPs are

recognized as pleiotropic and to mediate a variety of extra-ribosomal

regulatory functions [5,6]. Such RPs, include L5 [7], L11 [8], L13 [9]

and S7 [10]. In zebrafish (Danio rerio) a powerful role for RPs as

tumor-suppressors has been demonstrated whereby mutation or

suppression in any of several RP genes impairs control of p53, thus

promoting malignancy [11,12]. Recently, the concept of ‘‘ribosomo-

pathy’’ has become established whereby mutation of a particular RP

is pathogenic for a specific disease [13]. Approximately 25% of cases

of Diamond-Blackfan anemia are caused by mutation of ribosomal

protein gene RPS19 while in another 20%, mutations occur in other

ribosomal protein genes [14]. Currently, some 77 individual RPS19

mutations have been described [15]. In addition, haploinsufficiency

for ribosomal proteins has been shown, in some cases, to be an

underlying cause for Diamond Blackfan anemia [16].

Presently, mechanisms relating mutations in RP genes to cancer

remain unknown [17]. For the proximal long arm region of

chromosome 17 where the RPL19 gene is located (17q), major

cancer-specific changes have been described. These include

amplifications and copy number changes, particularly those of

the region that include oncogene ERBB2, formation of isochro-

mosome 17q, duplications, deletions, mutations and other

genomic rearrangements. Previously [18], we identified enhanced

expression of RPL19 mRNA in prostate cell-lines and tissues to

correlate with an aggressive malignant phenotype. Since elevated

RPL19 mRNA occurred as one of a relatively small number of

sequences over-expressed in prostate cancer, we hypothesized that

its effect was likely to be selective rather than part of a global non-

specific elevation in gene expression. Ribosomal protein L19e

(RPL19) belongs to the L19E super-family of proteins and, in

eukaryotes, is a component of the ribosomal large 60S subunit.

The gene is expressed throughout much of evolution, particularly

in eukaryotes and archaea but is absent from bacteria [19,20]
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although there is homology between sequences in rat L19 and

E.coli ribosomal proteins L18, L30 and S2 [21] Surprisingly, for

such an apparently important gene, RPL19 has thus far received

little attention. In humans, RPL19 maps on chromosome 17 at

17q11.2–q12 where it encodes 9 potential splice variants. In a

series of human breast cancer biopsies, RPL19 has been reported

as being expressed and co-amplified together with ERBB2 and

genes PNMT, PSMB3 and NR1D1 [22]. This complex region

containing multiple genes has been suggested as a possible

amplicon [23,24] extending for some ,547 kb from RPL19

through STRAD3 and ERBB2 to GRB7 in the region 17q11.2–q12.

Presently, no data have substantiated this speculation. In prostate

cancer, amplification of erbB2 is infrequent, being reported in only

0.04% [25] to 2% [26] of cases, and therefore not a common

mechanism of RPL19 over-expression. Since our initial identifi-

cation of RPL19 in prostate cancer [18], its expression has been

shown to define poor-prognosis colorectal cancer [27] and as a

novel tumor antigen in lung adenocarcinoma [28].

Global changes in genes modulated in human prostate cancer

have previously been profiled using DNA expression array analysis

[29] that have detected changes in gene expression following

selective up-regulation of individual target genes [30,31] or

following gene-knockdown using antisense [32] or RNAi [33]

technology with subsequent transformation of the malignant

phenotype. The differentially-expressed genes and their associated

networks have been assessed as biomarkers to segregate different

prostate cancer phenotypes according to behavior and response to

therapy [34]. However, an altered level of gene expression does not,

ipso facto, confirm a primary role in the malignant process. Genomic

instability is the hallmark of malignant transformation [35] and the

effects of gain or loss of a single gene are likely to be transmitted

throughout the genome with the consequence that expression of

other genes becomes secondarily modulated [36]. Such changes

either may have immediate and active relevance to the resulting

cellular phenotype or their altered expression is passive and

inconsequential. To assess the functional relevance of a particular

gene, suppression of its transcription allows analysis of its immediate

effects on genome-wide expression. Previously, we have transfected

malignant prostatic epithelial PC-3M cells with a 436 bp-long

antisense oligonucleotide to knock-down expression of FABP5 that

ameliorated the malignant tumor phenotype both in-vitro and in-vivo

[37]. herein, we have employed the more surgical technique of

RNA interference (RNAi) with potentially greater specificity and

efficiency, depending upon the particular gene being targeted [38].

Our previous data [18] indicated that expression of RPL19

might be functionally important in promoting prostatic malignan-

cy. We have now tested this hypothesis by selectively reducing

RPL19 expression using RNAi. The resulting PC-3M cells exhibit

an abrogated malignant phenotype both in-vitro and in-vivo when

submitted to phenotypic assessment and gene expression analysis.

The data support the possibility of a functional role for RPL19,

acting within a spectrum of altered gene expression, in

maintaining the malignant phenotype of human prostate cancer

cells. Confirmation of such a scenario would allow selective

therapeutic targeting of RPL19, either immunologically [28] or

using small molecules, to modulate discrete subsets of cellular

proteins that are key promoters of the malignant phenotype.

Results

siRNA knockdown of RPL19 in parental PC-3M cells
Transient transfection. qPCR analysis of the parental PC-

3M cells using the primers defined in Table 1 revealed strong

RPL19 mRNA expression, confirmed by nucleotide sequencing.

Thereafter, transient transfection of siRNA sequences to RPL19

exon 1 (Table 2) revealed Target #1 to be the most effective

sequence for RNA silencing, reducing its expression to only 7% of

its initial level (Figure 1A). While the other sequences were

effective, only the combination of all three simultaneously was

better than Target #1, alone. Thereafter, Target #1 was used for

all subsequent experiments.

Stable transfection. Levels of RPL19 mRNA were measured

in PNT2, PC-3Mparental, PC-3Mscramble and si-RPL19-PC-3Mtarget

#1 transient transfectant cells (Figure 1B). In accordance with the

Table 1. Primer sequences employed for qPCR identification and quantification of mRNAs.

Primer Direction Sequence Amplicon Size

RPL19 Forward GGGCATAGGTAAGCGGAAGG 149

Reverse TCAGGTACAGGCTGTGATACA

Human b-actin Forward AGCCTCGCCTTTGCCGA 174

Reverse CTGGTGCCTGGGGCG

stromelysin 1 (MMP3) Forward AAATCCCTCAGGAAGCTTGA 137

Reverse GCCCAGAATTGATTTCCTTT

stromelysin 2(MMP10) Forward CAGGACACAGTTTGGCTCAT 101

Reverse GGTGCCTGATGCATCTTCT

collagenase 3(MMP13) Forward GGCAAACTTGACGATAACAC 139

Reverse GGGTGTAATTCACAATTCTGTAGG

Fas (TRNF6) associated factor 1 (FAF1) Forward CTTCAGCGTTTCGACCTGTA 225

Reverse GGACCGTACTGTCTTCCACA

nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha (NFkBIA)

Forward TCCGAGACTTTCGAGGAAAT 143

Reverse ACACGTGTGGCCATTGTAGT

stonin 2 (STON2) Forward AGCAACTGGGTTCAGTTTGA 90

Reverse GGTCAATGGTAGGGCTGTCT

doi:10.1371/journal.pone.0022672.t001
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previous study [33], expression in PC-3Mscramble cells was set at

unity and relative expressions in the other cell-lines were

compared as fold-differences. RPL19 expression in PC-3M was

4.9 times greater than that of the PNT2 cells and consistent with

our previous studies confirmed by Northern blot analysis [18]. In

the si-RPL19-PC-3Mclone ST-3 transfectant cells, expression of

RPL19 was reduced to only 1.3 times greater than the PNT2 cells.

PC-3Mscramble cells revealed a 2.3 fold reduction in RPL19 when

compared to PC-3Mparental, although this value was not

statistically significant. Single cell cloning [33] followed by

qPCR and Western blotting confirmed si-RPL19-PC-3Mclone ST-

3 expressed the lowest levels of RPL19 mRNA and protein. This

clone of cells was thereafter employed for detailed phenotypic

analysis.

Growth characteristics of si-RPL19cells in-vitro
Clones of transfected si-RPL19-PC-3M cells grown under

standard conditions exhibited differences in morphology

(Figure 1C). Compared to PC-3Mparental cells, si-RPL19-PC-3M

cells were generally less adherent to substrate. However, these cells

maintained an ability to proliferate and could be successfully sub-

cultured, although a large proportion of the cells remained in

suspension. Other si-RPL19-PC-3M cells showed an increase in

multinucleate forms, suggesting impaired completion of mitosis.

Proliferation assays (Figure 2A) revealed that during the

logarithmic phase of growth, the rate of cell division by the si-

RPL19-PC-3Mclone ST-3 transfectant cells was not significantly

affected (p$0.05) when compared to PC-3Mparental and si-PC-

3Mscramble. The ability of si-RPL19-PC-3Mclone ST-3 cells to invade

an extracellular collagenous matrix (ECM) was compared to that

of the PNT2, PC-3Mparental and PC-3Mscramble cell-lines

(Figure 2B). The number of cells that invaded through the ECM

were: (PNT2) 0.660.6, (PC-3Mparental) 279 6 33.7 and (PC-

3Mscramble) 317 6 28.3 (p,0.001). The si-RPL19-PC-3M cells

exhibited a comparatively poor invasive potential at only 60 6

10.7 transmigrating cells (p,0.001). Thus, silencing RPL19

reduced the invasive potential of PC-3M cells approximately 5-

fold. Endogenous (basal) levels of apoptosis within the PC-

3Mparental and PC-3Mscramble cells (Table 3 and Figure 2C) were

similar to those obtained during comparable studies of the PRKCZ

gene [33]. Basal levels of apoptosis in the four cell-lines were not

statistically different (p.0.05). Although sensitivities of the PC-

3Mparental and si-RPL19-PC-3Mclone ST-3 cells to camptothecin

were not altered, this agent increased apoptosis in PNT2 and PC-

3Mscramble cells (p,0.0001).

Tumorigenicity and RPL19 protein expression in-vivo
In all groups of animals, tumors became apparent on day 2

following inoculation (Table 4). However, more appeared sooner

in the PC-3Mparental (3/8) and PC-3Mscramble (4/8) groups. In the

two transfectant clone groups, tumors took longer to appear (2/8

tumors in animals carrying the si-RPL19-PC-3Mclone ST-3 cells and

1/8 tumors in animals carrying the si-RPL19-PC-3Mclone #2 cells).

Initially, all tumors were similar in size. After 7 days the PC-

3Mparental and PC-3Mscramble groups developed larger tumors than

two transfectant groups (Figure 2D). At autopsy, 15 days after

inoculation, a significant difference (p,0.001) was apparent in the

mean weights of the control and RPL19-knockdown tumors

(Figure 2E). PC-3Mparental exhibited a wide range in tumor weight,

one animal producing a tumor of 810 mg in 15 days, the

maximum allowed by the Project License. Conversely, another

animal developed a tumor of only 10 mg. A similar phenomenon

occurred within the PC-3Mscramble group with tumors ranging

from 10-140 mg. The final weights of the PC-3Mparental tumors

were not significantly different from those of the PC-3Mscramble

group (Mann-Whitney U Test, p.0.05). Thus, si-RNA suppres-

sion of RPL19 affected the size of the tumors generated in-vivo

(p,0.05) but not on their latency. No micrometastases were

identified at autopsy or on subsequent histopathological examina-

tion of the excised tissues.

Immunohistochemistry of tumor xenografts detected strong

expression of RPL19 protein in both the PC-3Mparental and si-PC-

3Mscramble cells (Figure 2F). Knockdown cell lines si-RPL19-PC-

3Mclone ST-3 and si-RPL19-PC-3Mclone ST-1 exhibited compara-

tively little staining, indicating continued suppression of the RPL19

gene in the majority of tumor cells. Detection of small amounts of

RPL19 protein in some tumor cells is considered to represent

clonal variation resulting from continued low-level expression of

the gene, rather than its total inhibition, as identified by qPCR of

the cells in-vitro and the results of the Western blotting studies.

While expression of mRNA and corresponding protein in prostatic

epithelium are not always concordant [39], apparent discrepancies

between in-vitro and in-vivo studies may be due to the in-vivo effects

of a surrounding stromal matrix affecting tumor cell adhesion or to

other influences including growth factors modulating individual

low-level gene expression [40–42].

Comparative gene expression profiling of si-RPL19-PC-
3Mclone ST-3 cells

Genome-wide expression profiles obtained from DNA oligonu-

cleotide microarrays (unmodified Agilent Human Genome 44K)

were employed to identify genes modulated following RPL19

knockdown. Comparison of genes expressed by PC-3Mparental and

PC-3Mscramble cell-lines revealed no statistically significant differ-

ences (p$0.05), indicating that the transfection technique was not

responsible for appreciable off-target effects that might bias the

experimental data. A total of 916 DNA sequences, representing

768 genes, were identified as differentially expressed (p#0.05,

Benjamini and Hochberg multiple testing correction applied). Of

these, 404 were enhanced and 364 down-regulated. Within that

data set, 184 different genes were modulated at least four-fold, 62

being up-regulated and 122 down-regulated. The top 50

differentially-expressed genes in these two categories are summa-

rized in Supporting Information Tables S1 and S2 and graphically

Table 2. Details of potential target sequences to silence RPL19 in PC-3M cells.

Target Sequence Position in gene sequence Exon silenced Variants affected

#1 AAGCTCATCAAAGATGGGCTG 15 11 a, b, c, d, e, g

#2 AAACAAGCGGATTCTCATGGA 43 18 a, c, d, f, h

#3 AAGATACCGTGAATCTAAGAA 86 15 a, b, c, d, e

This Table identifies the particular exon silenced and the alternative splice variants predicted to be affected.
doi:10.1371/journal.pone.0022672.t002
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(Figure 3). Expression data derived from the arrays were validated

by qPCR providing independent quantifiable evidence of the

magnitude and direction of change of individual genes. The

observation that only 768 genes were modulated following RPL19

knockdown, with the levels of mRNA for a wide range of proteins

either maintained or elevated, suggests that ribosomal protein

RPL19 is differentially involved in protein synthesis rather than

affecting all cellular protein synthesis in a non-specific manner.

Figure 1. Effect of silencing RPL19 relative to PC-3Mparental cells. A. qPCR analysis of RPL19 expression levels following transient silencing of
different targets in PC-3Mparental cells. Target #1 (T1) was the most efficient with only 7% residual level detected. This reduction was only exceeded
by the simultaneous combination of T1+T2+T3. B. qPCR analysis of RPL19 expression levels following stable silencing of Target #1. These data are
compiled from experiments performed in triplicate. Measurements are relative to the expression of RPL19 in si-PC-3Mscramble cells. Comparative levels
in benign PNT2 cells are also shown. C. Morphological appearances of (i) PC-3Mparental cells and various of the colonies (ii-iv) following stable
knockdown of RPL19. Some colonies (ii) were poorly adherent with the majority of cells growing in suspension. Others (iii) contained predominantly
multinucleate forms. The majority (iv) comprised cells that were smaller than the parental. Clone ST-3 cells used in all subsequent experiments are
shown in this panel. (Magnification 6200)
doi:10.1371/journal.pone.0022672.g001
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Functional enrichment analysis identifying some 20 Gene

ontology (GO) biological process terms and three molecular

function terms (Supporting Information Table S3) to be

significantly associated (p,0.001) with the knockdown (p,0.001).

Additionally 13 KEGG pathways had a significantly over-

representation of genes differentially expressed between RPL19-

PC-3Mclone ST-3 and PC-3Mscramble (Supporting Information

Table S4). Ingenuity pathway analysis was used to identify

significant biological networks and pathways in which the genes

expressed differentially as a consequence of PRKC-f knockdown

were involved. The top five ranked interlinked pathways

(Supporting Information Table S5) and the three Gene ontology

(GO) molecular function terms (Supporting Information Table S6)

are highly significant (p#10227) with respect to genes differentially

expressed after RPL19 knockdown.

Ribosomal protein genes. The hypothesis that siRNA-

induced down-regulation of RPL19 might be compensated by

modulation of other ribosomal proteins was addressed by

assessment of the relative expression of the mitochondrial large

ribosomal protein gene sequences (n = 71) and the cytoplasmic

large ribosomal protein gene sequences (n = 136) to discover

whether up-regulation of a gene already expressed or

neoexpression of a previously silent ribosomal protein gene had

occurred. Of the latter cohort, 44 genes encoded known RPs, 7

were RP-like and 5 were RP pseudogenes. The number of

sequences representing each gene ranged from one (19 genes) to

14 (RPL21). RPL19 was identified by a single sequence. According

to SCOP (Structural Classification of Proteins, latest release 9th

November 2010, http://scop.mrc-lmb.cam.ac.uk/scop) RPL19 is

a member of the protein superfamily of translation proteins

containing the SH3-like barrel structural domain within the Class

comprising all beta proteins. The family also contains ribosomal

proteins RPL14e, RPL21e and RPL24p and the C-terminal

domain of RPL2 (http://supfam.org/SUPERFAMILY/cgi-bin/

scop.cgi?sunid = 50104). Alternatively, RPL19 protein could be

replaced by RPL29 or RPL39e, being structurally similar

members of the a-helical group of globular RPs with extended tails

able to bind mRNA [43]. Although fluctuations occurred in the

levels of expression of individual RPL gene sequences following

RPL19 knockdown, these were not significant, including that of

ribosomal protein gene RPL23A also located on chromosome

17q11.2. Only expression of mitochondrial MRPL42 was

significantly down-regulated (p,0.05). No enhanced expression

of any RP gene was detected. Thus, inhibition of RPL19 with loss

of RPL19 protein was not compensated by a different RP gene.

Conversely, the effects of reducing RPL19 could be mediated by

the coding-independent function of the gene or its pseudogene

mRNAs [44].

Glycosyltransferase genes. Transformation of epithelial cells

from a benign to a malignant phenotype is often accompanied by

structural changes in the oligosaccharide domains of cellular

glycoproteins and glycolipids [45]. Particularly, expression of sialylated

and b-1,6 branched N-linked oligosaccharides are required for cancer

cell invasion and metastasis [46]. The key enzyme in this process is

mannosyl (a-1,6-)-glycoprotein b-1,6-N-acetyl-glucosaminyltransferase

encoded by gene MGAT5 and regulated by signaling pathway RAS-

RAF-MAPK. Together with PTEN, MGAT5 regulates the membrane

dynamics of PI3K/Akt signaling to promote the invasive malignant

phenotype [47]. In the event that malignancy is reduced following

manipulation of cellular phenotype, changes in cell-surface

oligosaccharide structures are postulated to occur. Such changes,

mediated by glycosyltransferases may be evidenced by altered

expression of the corresponding genes. Of the 768 genes differentially-

expressed, only two glycosyltransferase genes were significantly

affected following RPL19 knockdown (Supporting Information

Table S7). Unlike the spectrum of glycosyltransferases modulated

following si-RNA knockdown of PRKC-f in PC-3M cells [33], no

change was apparent in silayl- or fucosyl-transferase genes.

However, a 4-fold reduction was identified in the level of

MGAT4A (p,0.05) that encodes the enzyme mannosyl (a-1,3-)-

glycoprotein b-1,4-N-acetylglucosaminyltransferase and is

involved in mediating glycosylation of the proteins encoded by

SLC43A3 (proteoglycan 2), SLC14A1 (urea transporter) and

SLC8A1 (sodium/calcium exchanger), thereby controlling their

cell-surface expression. Indeed, all three latter genes were modulated

following RPL19 knockdown. Conversely, a 2,3-fold increase was

identified in the level of GALNACT-2 (p,0.05) that encodes the enzyme

chondroitin sulfate N-acetylgalactosaminyltransferase 2 and transfers

N-acetylgalactosamine (GalNAc-) from UDP-GalNAc [48] to

chondroitin, chondroitin sulfate, preferentially to complex oligosac-

focharides containing b1R4 linkages[49], such as those generated by

MGAT4A.

Ion channels and associated genes. The malignant

phenotype of prostatic epithelial cells can be modulated by

differential expression of ion channels [50–52]. Studies from this

laboratory [52] and elsewhere [53] have established a functional

relationship between voltage-gated ion channels and the invasive

Table 3. Comparative effects of RPL19 knockdown on
apoptotic rates in prostate cells.

Cell-line
Basal level of
apoptosis (%)

Level of apoptosis
following
camptothecin (%)

Student’s
t test (p)

PNT2 5.6863.4 24.561.4 ,0.0001

PC-3Mparental 5.5361.4 4.7461.4 .0.05

PC-3Mscramble 7.661.9 21.561.4 ,0.001

si-RPL19-PC-
3Mclone ST-3

3.960.9 4.4361.4 .0.05

doi:10.1371/journal.pone.0022672.t003

Figure 2. Growth characteristics of si-PC-3Mclone ST-3 cells in-vitro and in-vivo. A. Relative growth of cell-lines in monolayer culture revealing
no statistical difference in the rate of proliferation between the knockdown cells (si-RPL19-PC-3Mclone ST-3) and that of PC-3Mparental cells. B. Invasion
assay in-vitro comparing the same populations of cells as those shown in (A) and revealing an 83% decline in the invasive capacity of the RPL19
knockdown cells relative to PC-3Mscramble cells. C. Resting levels of apoptotic indices were not significantly different in the benign (PNT2), parental
(PC-3M) or knockdown cells. After challenge by camptothecin, no change was identified in the PC-3Mparental or si-RPL19-PC-3Mclone ST-3 cells. While an
increase in apoptosis was found in the benign cells and in the scramble-transfected cells, these were not significant. D. Growth of tumor cells in-vivo
by estimated volume revealed a highly significant (p,0.005) suppression of growth by two of the stable transfectant clones, when compared to the
PC-3Mparental and PC-3Mscramble cells. Growth of PNT2 cells is not included since we have already shown [33] the growth of tumors to be infrequent,
particularly over the time-span of these experiments. E. Analysis of tumor weights in-vivo confirmed clones ST-1 and ST-3 to generate tumors
significantly (p,0.005) smaller than the PC-3Mparental or the si-PC-3Mscramble cells. F. Immunohistochemical analysis of tumors growing as xenografts
in-vivo supported the mRNA levels data (Figure 1B) that whereas the original PC-3Mparental (i) and si-PC-3Mscramble (ii) cells expressed RPL19 protein at
high level. The si-RPL19-PC-3Mclone ST-3 cells (iii) expressed RPL19 heterogeneously and at only very low levels. (Magnification 6350)
doi:10.1371/journal.pone.0022672.g002
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phenotype of prostate cancer cells [50]. Interrogation of the

expression arrays revealed several ion channels and some

associated genes to be modulated following RPL19 knockdown

(Supporting Information Table S3). Potassium channels showed a

mixed response. The voltage-gated K+ channel alpha and beta

subunits (KCNQ2 and KCNAB2) were down-regulated 3.5- and

2.25-fold, respectively (p,0.05 for both). The inward-rectifier K+

channels (KCNJ6 and KCNJ12) showed a mixed response, being

up-regulated 5.5-fold and down-regulated 2.5-fold, respectively

(p,0.01 for both). Two voltage-gated Na+ channel genes (SCN3A

and SCN9A) were both up-regulated, 9-fold (p,0.005) and 2.3-fold

(p,0.05), respectively. Finally, two voltage-gated Cl- channels/
Cl--H+ antiport transporters (CLCN4 and CLCN5) were both up-

regulated, 2.1 and 1.8-fold, respectively (p,0.05 for both).

Other genes and associated networks. None of the cell-

cycle control genes, including the 31 we previously showed to be

associated with a high probability of prostate cancer progression

[54] were modulated in their expression following knockdown or

RPL19. Similarly, none of the genes recognized to mediate

apoptosis were modulated in the transfectants. Of the 19

sequences covering the caspase family of apoptosis genes, CASP1

was down-regulated ,7-fold (p,0.005) following RPL19

knockdown. The expression of other members of the family was

not altered. In support of the array data, Western blotting

confirmed that cleaved caspases -3 and -9 were not expressed

either in the PC-3Mparental or in the si-RPL19-PC-3Mclone ST-3

transfectant cells. These findings support the proposition that

altering expression of RPL19 does not affect either the cell-cycle or

the apoptotic pathways. Conversely, the major pathways affected

following RPL19 knockdown involve networks of genes regulating

homeostasis and the interaction between the malignant cells and

their environment (Figure 4). As an example, expression of the

regulator gene AGR2 we identified to be elevated in prostate

cancers of aggressive phenotype [55] was down-regulated ,11-

fold (p,0.02) following RPL19 knockdown. The product of this

gene binds to the receptor ErbB3 and is regulated by the forkhead

DNA-binding transcriptional regulators Foxa1 and Foxa2.

Western blotting confirmed abolition of this protein in the

knockdown cells (Figure 5), supporting the array data

(Supporting Information Tables S1 & S2). In contrast, HOXB13

encoding a transcription factor belonging to the homeobox gene

family that we showed to be a tissue-specific biomarker of benign

and malignant prostatic epithelium [56] was elevated ,3-fold

(p,0.001) following RPL19 knockdown.

Phenotypic gene expression in prostatic malignancy
Protein expression. The finding that the rate of cell

proliferation did not decline following gene knockdown

suggested that global suppression of protein synthesis was

unlikely to have occurred despite expression of an individual

ribosomal protein being significantly reduced. However, a

differential effect was identified with respect to individual

proteins (Figure 5), exemplified by AGR2 that was abrogated in

the si-RPL19-PC-3Mclone ST-3 cells while expression of ERBB2 was

simultaneously enhanced. The observation that individual proteins

were differentially affected suggests the biological effects of

reducing RPL19 to be gene-specific and protein-specific rather

than a global down-regulation of protein synthesis. The enhanced

level of ERBB2 provides additional evidence against a common

amplicon in chromosomal region 17q11.2–q12 since expression of

RPL19 and ERBB2 were divergent (Figure 5).

Hsp-27 expression and phosphorylation status. Western

blotting confirmed the level of total Hsp-27 protein to be lower in

the si-RPL19-PC-3Mclone ST-3 and si-FABP5-PC-3M cells than in

the PC-3Mparental, PC-3Mscramble and the si-PRKC-f-PC-3MT1-6

cell-lines (Figure 5). A global reduction in site-specific

phosphorylation of si-RPL19-PC-3Mclone ST-3 cells was also

identified when compared to PC-3Mparental and PC-3Mscramble,

in contrast to the effect of knocking-down PRKC-f [33].

Glycoconjugate expression. Lectin histochemistry,

employed to test the hypothesis that RPL19 knockdown would

modulate the profile of sialylated glycoconjugates, revealed no

qualitative difference in expression of Neu5Aca2R3Gal- and

Neu5Aca2R6Gal- (using Sambucus nigra and Maackia amurensis,

respectively) when the PC-3Mparental and si-RPL19-PC-3Mclone ST-3

cells were compared. Staining was abolished in all cell-lines

following neuraminidase digestion, confirming specificity of sialic

acid expression. Similarly, the lectins from Ulex europaeus, Lotus

tetragonolobus and Aleuria aurantia revealed no changes in terminal

fucosyl linkages. Thus, suppression of the metastatic phenotype by

knockdown of RPL19 did not involve appreciable loss of sialic acid

from the cell surface.

Discussion

This study provides evidence that posttranscriptional silencing

of RPL19 using RNAi not only abrogates the malignant phenotype

of PC-3M prostate cancer cells but is selective with respect to

transcription and translation of other genes. In prostate cancer,

expression of RPL19 is significantly elevated, functionally involved

in maintaining the malignant phenotype and hence a potential

target for therapeutic intervention. Despite its involvement in

ribosome structure and function, the data show that the effects of

reducing RPL19 are not global but restricted to a defined cohort of

genes and proteins. This observation supports the accumulating

evidence of eukaryotic ribosomal specialization in which loss of

Table 4. Incidence and latency period of tumors produced by transfectants in nude mice.

Cell-line
No of animals
inoculated Incidence of tumors*

Median latent period in
days (range)

Mean weight of tumors
(mg.)**

No %

PC-3Mparental 8 8 100 5.25 (2–12) 337.56266.5

PC-3Mscramble 8 8 100 4.275 (2–12) 120683.7

si-RPL19-PC-3Mclone ST-1 8 8 100 6.875 (2–12) 36.0635.0

si-RPL19-PC-3Mclone ST-3 8 4 50 4.25 (2–5) 7.5613.9

*Tumor incidence is the percentage of mice with tumors/total number of inoculated animals.
**The final weights of the si-RPL19-PC-3Mclone tumors were significantly less than the PC-3Mparental and the PC- 3Mscramble tumors (Mann-Whitney U Test, p,0.05).
doi:10.1371/journal.pone.0022672.t004
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Figure 3. Graphical representation of gene expression modulated following RPL19 knockdown. Heat map of top 50 genes up-regulated
and top50 genes down-regulated following expression-profiling of mRNA expressed by si-RPL19-PC-3Mclone ST-3 cells when compared to PC-3Mparental

cells using PC-3Mscramble cells as the common denominator. Hierarchical clustering is shown. Green indicates genes over-expressed in a sample
compared to scramble-transfected cells. Red indicates genes down-regulated in the sample when compared to scramble-transfected cells.
Corresponding numerical data are presented in Supporting Information Tables S1 & S2.
doi:10.1371/journal.pone.0022672.g003
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function phenotypes of individual ribosomal proteins is associated

with changes to specific signaling pathways and tissues [57]

suggesting that core ribosomal proteins may contribute differen-

tially to translation of distinct subpopulations of mRNAs [58].

Within ribosomes, the role of RPL19 remains undefined.

Nevertheless, importance of the gene may be inferred from the

number of its paralogous sequences maintained within the

eukaryotic genome [59] and the finding that expression of

RPL19 is one of the most stable and consistent genes within the

human genome [60,61]

Analysis of the 768 genes modulated following RPL19

knockdown revealed a genetic profile distinct from that obtained

after siRNA reduction of PRKCZ [33] or FABP5 [62] in the same

PC-3M cells. The cohort of modulated genes did not contain any

cell cycle-associated genes [54], DNA-binding genes (e.g. RAD51)

or transcriptional activation genes (e.g. Id-1) we have already

reported in aggressive primary prostate cancers [63,64]. Further-

more, the affected gene-networks did not involve cell adhesion

genes or other ribosomal protein genes identified in metastatic

breast cancer [65]. However, AGR2 was down-regulated (.10-

fold, p,0.001) in the knockdown cells, consistent with our previous

finding in non-malignant prostatic epithelium [55]. Although the

levels of some ion channel and glycosyl transferase genes were

appreciably modulated, individual members of these cohorts were

different from those identified following RNAi gene-knockdown of

PRKCZ [33] providing additional evidence that gene expression is

heterogeneous within the benign phenotype.

While enhanced expression of some RP genes has been reported

in other human malignancies [66], including lung [28], colorectal

[67], prostate [68] and RPL19 in breast cancer [69] this is the first

report to define a functional role for RPL19 in the malignant

phenotype. Although RPL19 protein is an integral component of

the large 60S subunit of eukaryotic ribosomes [59,70] its ribosomal

function has not been defined. Nevertheless, reduction in its

expression sufficient to modulate the behavioral phenotype from

malignant to benign did not involve a detectable alteration in cell

proliferation or apoptosis indicating that the phenotypic effects

were not simply due to the target cells becoming compromised

either metabolically or by diminished protein synthesis. In the

absence of non-specific global effects, the data indicate that

reducing RPL19 expression affects discrete populations of genes

and proteins, thus shifting the balance of gene expression from a

malignant to a benign phenotype.

Intuitively, loss of RPL19 protein might be expected to cause a

general decline in ribosome biosynthesis with compromised

functionality and commensurate loss in protein synthesis. Under

such circumstances, cell proliferation would have decreased

without specific effects on particular cellular functions. In contrast,

Figure 4. Gene Ontology (GO) enrichment pathway analysis. Analysis of genes modulated following RPL19 knockdown identified five
interlinked pathways principally affected (Supporting Information Table S5). Four of these include genes encoding MMP enzymes (A); the ICAM1-
integrin complex (B); the NFkB complex (C) and PI3K regulation (D). This analysis confirmed several genes modulated by down-regulated expression
of RPL19 to be interconnected, emphasizing the numerous pathways for cross-talk between apparently distinct biological processes.
doi:10.1371/journal.pone.0022672.g004
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the data indicate the effects to be selective with respect to cell

adhesion, stromal invasion and tumorigenesis. Although the role of

individual RPs in determining the cellular phenotype of eukaryotic

cells remains unclear, current evidence reveals mutations within

individual ribosomal proteins to be associated with specific

changes in cellular phenotype [71,72] rather than a general

down-regulation of protein synthetic activity. Examples emerging

within other fields of protein biology indicate that alternative genes

may be recruited to replace defective or deficient proteins [73–75].

Although such mechanisms would be important to maintain

structure-function relationships within complex organelles, no

such examples have been reported to compensate for deficient

ribosomal proteins. Subsequent to the loss or replacement of an

individual ribosomal protein, the functional activity of the

modified organelles would not be identical to that of the original

structure, thus providing a drive towards adaptation and evolution

of a novel phenotype [76,77] In addition to protein biosynthesis,

many RPs also fulfill extra-ribosomal functions, particu-

larly regulating the quality of gene expression through coupling

transcription mechanisms with the processing and transportation

of mRNAs [78,79]. Such effects are stochastic and cannot be

predicted because of the complexity gene interactions [80].

Nevertheless, mathematical models are emerging to analyze the

effects of insertions and deletions in protein-protein interaction

networks and the global changes consequentially induced in

cellular structure and function [81–83]. Despite protein synthesis

being a general function of ribosomes, the precise function of each

ribosome depends upon its complement of ribosomal proteins,

ribosomal RNAs (rRNAs) and a range of ribosome-associated

proteins (PARs) [84]. Ribosome biogenesis is complex and highly

regulated [85,86]. Continuity of the cell-cycle depends upon

fidelity of ribosome biogenesis and ceases if ribosome biogenesis

becomes impaired [10,87–89], leading to a variety of ribosomo-

pathies [90]. Such data provide evidence that structurally-

defective ribosomal components (rRNAs, RPs or PARs) cause

disruption of a cell’s translational apparatus [91], resulting in

alterations to cellular phenotype [92] with the consequence that

small changes in molecular structure may cause significant

alterations in ribosomal function.

Herein we confirm a functional role for RPL19 in promoting the

malignant phenotype of human prostate cancer cells. Despite

significant reduction in the levels of RPL19 mRNA and protein,

the finding that cell proliferation was not demonstrably affected

challenges the supposition that RPL19 protein is essential for

ribosomal structure and/or function and suggests a level of

adaptation within ribosomal protein function that enables global

protein synthesis to be maintained despite loss of a core ribosomal

component. If RPL19 is not a critical component of ribosome

structure and/or function, its importance to the malignant

phenotype may be related to its extra-ribosomal activities, with

the implication that there is no necessity for protein substitution or

adaptation at the ribosomal level. Our finding that the patterns of

genes and their associated networks modulated by RPL19

knockdown are distinct from the patterns following PRKCZ

knockdown in identical cells is consistent with two propositions:

First, that loss of individual ribosomal proteins is associated with

specific alterations in cellular phenotype. Second, that the non-

malignant phenotype is not defined by a single immutable pattern

of gene expression but is in flux[93] in the same manner that the

patterns of genes expressed in malignant cells are heterogeneous

[94,95]. The possibility of flux between metastable gene networks

raises the exciting possibility of therapeutically stabilizing a benign

phenotype generated by modulating expression of a key gene and

hence constraining a malignant phenotype while leaving non-

malignant genomes unaffected.

Materials and Methods

Cell lines
Human prostate cell-lines PNT2 (benign) and PC-3Mparental

(highly malignant) are identical to those described previously [33].

PNT2 cells are non-malignant, androgen-independent and

derived from SV-40 immortalization of normal prostatic epithelial

cells [96]. PC-3M cells are malignant, also androgen-independent

and derived from the bone marrow metastasis of a 62 year-old

man [97]. These cells exhibit a high incidence of tumorgenicity

and metastasis when xenografted into nude mice [98]. Both cell-

lines are histogenically the closest currently available having

contrasting behavioral phenotypes and hence the most appropri-

ate as comparators. Gene knockdown derivatives of the PC-3M

cell-line si-FABP5-PC-3Mclone 3 [62] and si-PRKCZ-PC-3MT1-6

[33] described in comparable studies and were employed to reveal

similarities and differences in gene-expression following abrogation

of the malignant phenotype in PC-3M cells using an identical

technique. All cell-lines were grown as monolayer cultures in

RPMI 1640 (Invitrogen, Paisley, UK) supplemented with 10% (v/

v) fetal calf serum (FCS, Invitrogen), penicillin (1000units/ml),

streptomycin (100 mg/ml), and L-glutamine (2 mM). Media for

the culture of all subsequent transfected cell-lines were also

supplemented with 1 mg/ml Geneticin (Sigma).

siRNA Knockdown of RPL19 in PC-3M cells
Transient transfection. Transient transfections were

performed by the reverse transfection technique using siPORT

NeoFX Transfection Agent (Ambion, Warrington, UK). Three

sequences were initially assessed as potential targets for stable

transfection to silence variant ‘‘c’’, the NM version of the RPL19

gene (NM_000981). All three sequences were potentially capable

of silencing seven of the alternative eight splice variants (a, b, c, d,

e, f, g, h) of RPL19. The alternative 168 bp variant ‘‘i’’ was

incomplete since it did not contain the target. The transfection

targets, listed in Table 2, were BLAST-searched and showed

Figure 5. Analysis of protein expression by cells following knockdown of RPL19. In these studies, comparison was made with si-PRKC-f-PC-
3MT1-6 [33] and si-FABP5-PC-3Mclone 3 [62] RNAi-knockdown cells to confirm that changes in protein levels were specific to RPL19 knockdown and not
part of a general response to gene inhibition using si-RNA. After staining with primary antibodies, membranes were re-stained for beta-actin. The
intensity of this band was used to normalize individual protein levels. A. RPL19: Following RPL19 knockdown, levels reduced to ,5% of those in the
PC-3Mparental cells whereas levels were maintained in si-PRKC-f-PC-3MT1-6 and si-FABP5-PC-3Mclone 3 cells. B. S11A4: Levels were maintained in all cell-
lines, being unaffected by RPL19 knockdown. C. AGR2: Expression of protein abrogated following RPL19 knockdown but maintained in si-PRKC-f-PC-
3MT1-6 and si-FABP5-PC-3Mclone 3 cells. Absence of AGR2 defines, in part, the non-malignant phenotype of prostate epithelium [55]. D. ERBB2:
Enhanced expression of ERBB2 occurring in the RPL19 knockdown cells is strong evidence against a single functional amplicon in prostate cancer that
contains both RPL19 and ERBB2. In contrast, levels of ERBB2 were reduced in the si-PRKC -f-PC-3MT1-6 cells and undetectable in the si-FABP5-PC-
3Mclone 3 cells. E. Differential expression of Hsp-27 in prostate cancer cell-lines, including locus-specific forms of the phosphorylated protein, showing
selective loss of the protein following RPL19 knockdown, although not in the si-PRKC-f-PC-3MT1-6 cells. Loss of total Hsp-27 is characteristic of the
non-malignant phenotype of prostatic epithelial cells [105].
doi:10.1371/journal.pone.0022672.g005
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homology and similarity only to RPL19. Sequences to targets were

designed using Ambion’s online target design algorithm and

purchased from Ambion was also included, pre-annealed at a

concentration of 20 nmol.

A negative control siRNA was also included that comprised a

nucleotide sequence similar in composition to that of the siRNA

but not homologous to any known gene of interest and purchased

pre-designed from Ambion. This ‘‘scramble’’ sequence was used to

discount non-specific changes in gene expression profiles due to

siRNA delivery. Preliminary experiments optimized transient

transfection conditions for PC-3M cell-lines. Reverse transfection

was performed in a 96 well plate format. Cells were seeded at a

density of 86103 cells/well. The short strand RNA (ssRNA)

oligonucleotide sequences were then diluted in a reduced serum

medium (OPTI-MEM 1; Invitrogen, Paisley, UK) to a final

concentration of 30 nM. This was then overlaid onto the cells that

were then incubated at 37uC in 100% humidity in 5% CO2/air

for 24 hours. Transfection of the RNA oligonucleotide sequences

into the cells occurred spontaneously as the cells adhered to their

substrata.

Stable transfection. After transient transfection had

identified Target #1 as the most successful to silence RPL19

expression, this sequence was used to generate a hairpin siRNA.

The following oligonucleotides were purchased from Ambion:

Top Strand:

59-GATCCGCTCATCAAAGATGGGCTGTTCAAGAGA-

CAGCCCATCTTTGATGAGCTTA-39

Bottom Strand:

59-AGCTTAAGCTCATCAAAGATGGGCTGTCTCTT-

GAACAGCCCATCTTTGATGAGCG-39

The default Ambion loop sequence, TTCAAGAGA, was used

to complete the hairpin structure. The siRNA expression vector kit

used was pSilencerTM 4.1-CMV neo (Ambion). Top and bottom

strands of the siRNA hairpin oligonucleotide were diluted to

1 mg/ ml in TE buffer and annealed in 50 ml solution according to

the manufacturer’s instructions. The annealed siRNA template

was ligated into the pSilencer 4.1-CMV vector using T4 DNA ligase

(5 U/ml) and the products cloned into DH5a cells (Invitrogen).

Transformed cells were grown for 16 hours on LB plates

containing 100 mg/ml ampicillin at 37uC. A negative control of

non-transformed competent cells was also included. Clones were

picked and the DNA plasmid isolated using a Qiaprep spin

Miniprep Kit (Qiagen, Crawley, UK). Isolated plasmids were

digested with BamHI and HindIII (New England Biolabs, Hitchin,

UK) and the presence of the siRNA 55 bp insert was confirmed by

sequencing prior to the siRNA expression vector being used to

transfect recipient prostate cancer cell-lines. Orientation of the

insert was confirmed by DNA sequencing (Lark Technologies,

Essex, UK) using internal sequence primers.

Transfection of siRNA RPL19 silencing construct and

control. 1.56105 PC-3Mparental cells were transfected with

pSilencer 4.1 CMV RPL19 siRNA (1 mg) using SiPORT XP-1 (3 ml)

reagent (Ambion, Warrington, UK) in 6-well-plates (35 mm

diameter). 24 hours after transfection, 500 ng/ml of G418 was

added to medium RPMI1640 for selection. After 9-10 days

selection, individual colonies from single cells containing stable

clones were isolated using ring cloning and transferred into 24-well

plates with medium containing G418 at 500 ng/ml.

Simultaneously, 1.56105 PC-3Mparental cells were transfected with

pSilencer 4.1 CMV-scramble-insert (1 mg). Thereafter, these cells

were cultured, cloned and employed as the controls to assess

changes in expression of genes and proteins by the knockdown cells.

RNA extraction and cDNA synthesis. Total RNA was

extracted with RNeasy Mini Kits (Qiagen). Total RNA

concentration was measured using a NanoDrop instrument

(Labtech, Ringmer, UK) and RNA integrity assessed with a

2100 Bioanalyser (Agilent, Santa Clare, USA). The RNA integrity

number (RIN) for all RNA used exceeded 9.0. First strand cDNA

was synthesized from 0.5 mg total RNA using AffinityScriptTM

Multiple Temperature cDNA synthesis kits (Stratagene, La Jolla,

USA) according to the manufacturer’s protocol.

Quantitative Real-Time PCR (qPCR). RPL19 mRNA

expression levels were quantified by qPCR and normalized

relative to human b-actin mRNA expression. An MX3305P

Real Time PCR machine (Stratagene) was used for all reactions.

Reaction volumes were in 25 ml comprising 12.5 ml Stratagene’s

BrilliantH SYBRH Green Master Mix (2X), 0.5 mM of both

forward and reverse primers and 1 ml cDNA and 11.5 ml water.

Primers for qPCR were designed to span exon/exon boundaries

within the mRNA to avoid amplification of genomic DNA.

Primers designed for RPL19 and human b-actin are listed in

Table 1. Both primers were optimised at 60uC. Cycling conditions

for the reaction were: 95uC for 15 minutes, then 40 cycles at 94uC
for 15 seconds, 63uC for 30 seconds, plate read and 72uC for 30

seconds with a final extension at 72uC for 10 minutes. Melting

curves were generated to detect primer-dimer formation and to

confirm gene-specific peaks for targets.

Growth characteristics and invasiveness of si-RPL19 cells

in-vitro. An assay was established to identify the effect of RPL19

suppression on cellular proliferation. The relative growth rates of

PNT2, PC-3Mparental, PC-3Mscramble and si-RPL19-PC-3Mclone ST-3

transfectant cells were measured by proliferation assay. Ex-

ponentially-growing cells were seeded in triplicate sets at a

density of 16103 cells/ml/well in 24-well plates. Over 10 days

at 24–48 hour intervals, cell proliferation was calculated by

measuring the increase in cell numbers in each replicate using a

conventional MTT assay [99]. Apoptosis was quantified using

flow cytometry. Cells from PNT2, PC-3Mparental, PC-3Mscramble

and two si-RPL19-PC-3M clones were seeded at 26105 cells/ml

in 75 cm2 tissue culture flasks and the assay started prior to cells

reaching confluence. Duplicate flasks were established in which

cells were exposed to 4 mM camptothecin (Sigma-Aldrich)

dissolved in DMSO for 24 hours before harvesting.

Camptothecin, a potent inhibitor of topoisomerase I, induces

apoptosis in a dose-dependent manner in-vitro [100,101]. Cells

were harvested by trypsinization, washed twice with PBS and

re-suspended in buffer from the BioVision Annexin V-FITC kit

in a 5 ml flow cytometry tube. AnnexinV-FITC (5 ml) and

propidium iodide (10 ng in 5 ml aqueous solution) were added

and the tubes incubated for 10 minutes in darkness at 4uC.

Quantitative analyses of apoptotic cell levels were performed

using an Epics Flow Cytometer (Beckman Coulter). The

procedure was performed three times using biological

replicates. Invasiveness of the si-RPL19 transfectants was

assessed in-vitro [52]. At 24-hour intervals, following fixation

and staining with Crystal Violet (Sigma-Aldrich, St Louis, USA),

invasion was measured by counting the number of cells

transmigrating the membrane to its under-surface [33].

Tumorigenicity and RPL19 protein expression in-

vivo. All studies were performed under the conditions of UK

Home Office Project License PPL 40/2270 [33]. Tumorigenicity

was assessed by injecting cells (26106 cells in 0.2 ml PBS) into a

single subcutaneous site in the right shoulder of 8 week old male

Nu/nu mice (Harlan Ltd., Oxon, UK). Four groups of cells were

assessed: PC-3Mcontrol, PC-3Mscramble and si-RPL19-PC-3M

clones -#1 and -#2. Of these two, si-RPL19-PC-3Mclone ST-3

exhibited the most pronounced suppression of RPL19 and was

used in the microarray and invasion assay experiments. Clone
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si-RPL19-PC-3M#2 exhibited suppression mid-way between that

of si-RPL19-PC-3M-#1 and si-RPL19-PC-3Mscramble. Tumor

growth was monitored twice-weekly by measuring the largest (a)

and smallest (b) superficial diameters. Tumor volume (V) was then

calculated using the formula V = a x b2/2 [102]. When any tumor

reached the maximum size allowed under the conditions of the

Home Office Project Licence PPL 40/2270, all mice were

sacrificed. Each animal was submitted to autopsy to identify

appearance of metastatic tumor nodules. Subcutaneous primary

tumors together with heart, liver and lungs were removed and

weighed. All tissues were processed and embedded in paraffin wax.

Histological sections cut at 4 mm and stained with Gill’s

hematoxylin for microscopic examination.

Expression of RPL19 protein in human prostate epithelial cells

grown as xenografts in nude mice was detected using a mouse

monoclonal antibody (Abnova, Taiwan; #H0000 6143-MO1)

diluted to 1:1000 in REAL antibody dilutent (Dako, cat.

no. S2022). Prior to staining, antigen retrieval employed PT-Link

with EnVision FLEX, high pH target retrieval solution. Staining

was performed on a Dako Autostainer using a labeled polymer-

HRP detection system (Dako, EnVision FLEX, K8000). Immu-

nostained sections were counterstained with hematoxylin, dehy-

drated and mounted. Negative controls comprised duplicate tissue

sections processed identically but with replacement of the primary

antibody by a 1% (w/v) solution of bovine serum albumin.

Specimens were considered positive only when at least 5% of the

epithelial cells (either normal or malignant) unequivocally

expressed RPL19 staining [103]. This cut-off was the same as

that used to distinguish positive and negative immunohistochem-

ical staining in our previous studies [104,105]. Staining was

assessed as negative, weakly positive or only focally positive (low-

level expression), or strongly positive (high-level expression) and

scored as 0, 1, 2 or 3, respectively.

Microarray analysis
Microarray validation. Gene expression profiles were

validated in the knockdown cells using qPCR to confirm the

expression level of NFKB1A, TNFSR6, MMP3 and MMP10

(Supporting Information Figure S1) in addition to PLAT,

HSPB1, CDKN2C and FOXA2, previously employed to validate

these arrays [33] when normalized against human b-actin. The

primers and amplicon sizes are listed in Table 1. All annealing

temperatures were 60uC and cycling conditions as described

previously [33].

Gene microarray and expression analysis. The effect of

suppressing RPL19 by gene knockdown on whole genome

expression profiles was investigated using two-color Agilent

Human genome 44k microarrays. Each hybridization was a

distinct biological replicate. The design incorporated five cell-lines

treated as fixed biological factors: PNT-2, PC-3Mparental, si-PC-

3Mscramble, PC-3Mpool and si-RPL19-PC-3Mclone ST-3 (RPL19

knockdown). The si-PC-3Mscramble cell-line was employed as the

common control comparator to identify differences in gene

expression between these cells and all other cell-types.

Hybridizations and data acquisition were performed according

to the Agilent Human Genome Microarray (MA) 44K protocol.

Spatial representations of the hybridization signals were examined

to confirm absence of technical artifacts. The distribution of

background and foreground signals and pre-normalization MA

plots were examined to measure the quality of the hybridization.

Low quality spots identified by the Agilent image processing

software were not used in the subsequent analyses. Expression

signal estimates were derived from the red (Cy3) and green (Cy5)

Agilent Processed Signal data by normalizing using the LOESS

algorithm and background correction using a fitted convolution of

normal and exponential distributions [106,107]. Expression

analysis of log2 transformed normalized data was performed in

the R statistical programming language (R v 2.10.0) using the

BioConductor framework [108]. Gene expression was modeled

with a fixed effects linear model using BioConductor limma [109].

Various contrasts were examined such as ‘‘PNT vs scramble’’ and

‘‘knockdown vs scramble’’. For each contrast, a moderated t-

statistic was computed for each probe with the resulting p-values

adjusted for multiple testing using Benjamini and Hochberg’s

method to control the false discovery rate [110]. This is the same

as an ordinary t-statistic except that the standard errors have been

moderated across genes using a Bayesian model. Those sequences

with an adjusted p-value,0.05 were considered significantly

differentially expressed between the two groups being compared.

GO terms and KEGG networks that were significantly associated

with the genes expressed differentially between si-RPL19-PC-

3Mclone ST-3 and PC-3Mparental cell lines were assessed using

hypergeometric tests (p,0.001) [111]. The list of genes expressed

differentially between si-RPL19-PC-3Mclone ST-3 and PC-

3Mparental cell lines was uploaded into the Ingenuity pathway

analysis application (IngenuityH Systems, www.ingenuity.com). A

score was computed for each network according to the fit of the

original set of significant genes. This score reflects the negative

logarithm of the p-value, which indicates the likelihood of the focus

genes in a network being found together as a result of random

chance. To be considered significant, the adjusted p value of the

differences between the level of expression in the two cell lineages

were #0.01. Genes were grouped according to whether they were

significantly up-regulated (Supporting Information Table S1) or

significantly down-regulated (Supporting Information Table S2)

and thereafter according to function. The obtained gene

expression data are MIAME-compliant and have been deposited

with the NCBI GEO database.

Phenotypic gene expression in prostatic malignancy
Protein expression. To analyse the effect of reducing RPL19

expression on the protein-synthetic function of ribosomes, Western

blotting was performed using a range of commercially-available

antibodies (Supporting Information Table S8). Proteins were

extracted from ,16107 cells from each line. Cell pellets were

suspended in 1 ml of CelLytic-M lysis buffer (Sigma C2978)

containing 10 ml protease inhibitor cocktail (Sigma P8340), 10 ml

PMSF (0.1 mg/ml), Na3VO4 (1 mM) and NaF (1 mM). Protein

concentrations were determined by Bradford assay (BioRad kit 500-

0006). Aliquots containing ,10 mg cell lysate proteins were

separated electrophoretically at 150 V in 12.5% (w/v)

polyacrylamide NextGel quick-cast separating gels (Amresco,

Solon, OH). Separated proteins were transferred onto PVDF

membranes (GE Healthcare, RPN303F), at 100 V for 1 hour,

blocked with a suspension of powdered dried milk in PBS (100 mM,

pH 7.6) before incubation at 4uC with primary antibodies. After

washing and incubation with the corresponding anti-(mouse Ig)- or

anti-(rabbit Ig)-HRP antiserum at 1:10,000 dilution for 1 hour,

washing and incubation in ECL Plus reagent (GE Healthcare, RPN

2133) for 5 minutes, exposure to Amersham Hyperfilm (GE

Healthcare, 28906839) for 5 seconds before being developed and

fixed. To quantify protein expression, membranes were re-

incubated with an anti-beta actin mouse monoclonal antibody for

30 minutes. Bound anti-actin antibody was detected as described. A

strong single band at 42 kDa was observed in all cases.

Hsp-27 expression and phosphorylation status. Hsp-27

is an independent biomarker of the aggressive malignant

phenotype of human prostate cancer [105]. Although no
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functional relationship has been reported between Hsp-27 and

PKC-f, it was hypothesized that amelioration of malignancy

following RPL19 knockdown would be accompanied by a

reduction in the level of Hsp-27 expression. Expression of Hsp-

27 is a validated biomarker of prostate cancer malignancy

[105,112]. Therefore, Western blotting was performed on the

proteins extracted from ,16107 cells from each line to identify

total Hsp-27 as well as the differential phosphorylation of this

protein at Ser15, Ser78 and Ser82. All methodologies used were

identical to those previously reported [33].
Glycoconjugate expression. The behavior of malignant

epithelial cells is influenced by expression of cell-surface complex

glycoconjugates, particularly sialic acids [46,113–115]. To assess

the potential effects of RPL19 knockdown on cell-surface

oligosaccharide expression, cell-blocks were prepared from cell-

lines PNT2, PC-3Mparental, PC-3Mscramble, and si-RPL19-PC-

3Mclone ST-3. Cell pellets were processed and embedded in paraffin

wax blocks [33,116]. Sections were cut at 5 mm and stained for

Neu5Aca2R3Gal- and Neu5Aca2R6Gal- using biotinylated

lectins (Vector Laboratories, Peterborough, UK) from Sambucus

nigra and Maackia amurensis respectively [117,118]. The biotinylated

lectins from Ulex europaeus, Lotus tetragonolobus and Aleuria aurantia

were employed to detect terminal fucosyl linkages. Negative

controls included the absence of staining when the lectins were not

included in the staining protocol and the abolition of staining

following pre-treatment of the slides with neuraminidase prior to

incubation with the lectins [119]. Lectin-binding was detected

using an avidin-peroxidase conjugate visualized following

polymerization of 3-39 diaminobenzidine (DAB).

Supporting Information Material
This information contains Supporting Information Figure S1

confirming the validation of the arrays by PCR and additional

data-tables providing detailed information on the alterations in

gene expression, including their involved networks, induced

following knockdown of RPL-19. This material supports, but does

not extend, the findings and conclusions of this study.

Supporting Information

Figure S1 As well as the gene-sequences employed previously

[33] four additional sequences were used to interrogate genes up-

regulated and down-regulated and thus validate the levels of

expression detected by array-analysis. As with the arrays, the levels

were quantified relative to PC-3Mscramble cells that were set at unity.

(TiFF)

Table S1 Top 50 genes up-regulated (fold change). Genes

are arranged in descending order according to log2 fold change

with corresponding p-values.

(DOCX)

Table S2 Top 50 genes down-regulated (fold change).
Genes are arranged in descending order according to log2 fold

change with corresponding p-values.

(DOCX)

Table S3 Gene ontology terms. Gene ontology (GO)

biological process terms found to be significantly associated with

genes significantly differentially expressed after knockdown of

RPL19 using hypergeometric tests.

(DOCX)

Table S4 KEGG pathways. KEGG pathways containing

genes significantly differentially expressed after RPL19 knockdown

using hypergeometric tests.

(DOCX)

Table S5 Pathways modulated after RPL19 knockdown.
Top five interlinked pathways containing genes significantly

differentially expressed after RPL19 knockdown using hypergeo-

metric tests.

(DOCX)

Table S6 Gene ontology molecular function terms. Gene

ontology (GO) molecular function terms significantly associated

with genes differentially expressed after knockdown of RPL19

using hypergeometric tests.

(DOCX)

Table S7 Glycosyltransferase and ion-channel genes
modulated following RPL19 knockdown. Following RPL19

knockdown, modulated expression of only two glycosyltransferase

genes was detected but with more profound changes to ion

channels indicating significant changes to cellular homeostasis.

(DOCX)

Table S8 Characteristics of antibodies used to analyze
changes in proteins expressed following RPL19 knock-
down. Details of protein expression by Western Blotting analysed

using a range of mono-specific antibodies to define changes in

cellular phenotype following RPL19 knockdown.

(DOCX)
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