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Abstract

The availability of electronic health care records is unlocking the potential for novel studies on understanding and modeling
disease co-morbidities based on both phenotypic and genetic data. Moreover, the insurgence of increasingly reliable
phenotypic data can aid further studies on investigating the potential genetic links among diseases. The goal is to create a
feedback loop where computational tools guide and facilitate research, leading to improved biological knowledge and
clinical standards, which in turn should generate better data. We build and analyze disease interaction networks based on
data collected from previous genetic association studies and patient medical histories, spanning over 12 years, acquired
from a regional hospital. By exploring both individual and combined interactions among these two levels of disease data,
we provide novel insight into the interplay between genetics and clinical realities. Our results show a marked difference
between the well defined structure of genetic relationships and the chaotic co-morbidity network, but also highlight clear
interdependencies. We demonstrate the power of these dependencies by proposing a novel multi-relational link prediction
method, showing that disease co-morbidity can enhance our currently limited knowledge of genetic association.
Furthermore, our methods for integrated networks of diverse data are widely applicable and can provide novel advances for
many problems in systems biology and personalized medicine.
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Introduction

Many diseases do not occur in isolation. Diseases with similar

genetic, environmental, and lifestyle risk factors may be co-morbid

in patients, or the disease products themselves may be risk factors

for additional conditions. Also, many serious chronic diseases, such

as cancer and diabetes, are complex diseases influenced by a

combination of environment and epistasis between many genes

[1–3]. In this way, diseases may share many distinct types of

relationships with varying levels of impact for important problems

such as patient risk or drug efficacy. Thus, a singular view of

dependencies among diseases is not sufficient. Rather, disease

mechanisms form a complex system. The underlying goal is to

combine all available information and develop the most complete

models of interaction between these many factors, simultaneously

using information widely applicable and patient specific.

Schadt [3] suggests that diseases can be seen as emergent from a

complex network of underlying molecular activity influenced by

genes and environment. Indeed, complex networks are a natural way

of representing any data with complicated dependency relationships.

Unfortunately, most network studies and standard tools are

insufficient for the task, limited to treating all relationship types

equally or separate analysis of each type. Both of these approaches

represent a loss of information. In this study, we use patient medical

histories (phenotype data) and previously discovered disease-gene

associations to construct, analyze, and compare disease-disease

networks. We then take a novel approach to studying interplay

between patients, diseases, and genes by merging the heterogeneous

data into a multi-relational network and analyzing the structure of

interaction between shared genes and clinical co-mordibidity.

Finally, we demonstrate how the multi-relational structure can be

applied to enhance the link prediction task of determining good

targets for further gene association research.

Both gene-based [4] and patient-based [5] disease-disease

networks, constructed similarly to ours, have been previously

studied. These separate studies explore different questions, while

our approach is to compare and combine the networks and take

the composite view. In [6], Park et al. begin exploring relationships

between the network links, showing that genetic association is

correlated with co-morbidity and thus justifying integrated study.

However, they do not take advantage of the network structure,

and there are still many questions to be addressed for useful

inference between the networks. Also, as our networks will show,

diseases show far more co-morbidities than genetic links to other

diseases, so direct inference based on shared genetic association

only applies to a limited subset of co-morbidities. Park et al.

acknowledge that many disease pairs share genes but are not co-

morbid, and we will further show that there are far more disease

co-morbidities without significant gene overlap. Our explicit

integration of the networks facilitates inference based on a

neighborhood of interactions, providing a richer pool of data

than pairwise correlation.

Many other studies have explored integrating diverse evidence

to answer biological questions, using various types of data [7–11].
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We have already mentioned some of the limitations of simple

correlation studies, particularly with respect to inference tasks.

Another approach which has been used is classification using

diverse evidence, such as the work on predicting gene-disease

associations performed by Radivojac et al. in [9]. Classification has

proven to be a good tool for many tasks, but we claim that

network-based inference has certain differences that may be

advantageous for biological data. Most currently available data,

particularly on the molecular level, is incomplete, biased, and

noisy, which corresponds to a great deal of missing or unreliable

data. Classification methods must impute values for missing data

to create positive and negative profiles for each decision class,

which can hurt performance [12]. Most complex networks

methods, including the link prediction method we will introduce,

apply naturally to whatever partial information is known.

There have been a limited number of recent studies on link

prediction in multi-relational networks [13–15]. Latent feature

models have been extended for potentially overlapping multi-

relational link prediction. In [14], each relation is separately

predicted based on a global set of latent features by generating a

separate set of weights for each feature. In [15], a single set of

prediction weights is scaled by a different factor for each relation.

Unlike these approaches, the main focus of our work is directly

capturing the correlation structure between relationship patterns.

Results and Discussion

Network Descriptions
We constructed a phenotypic disease network (PDN) [5] from

real patient data in which nodes are diseases and edges indicate co-

morbidity of the diseases. Co-morbidity can be broadly defined as

co-occurrence in the same patients significantly more than chance.

We included edges between disease pairs for which the co-

occurrence (joint probability) is significantly greater than the

random expectation based on population prevalence of the diseases

(product of marginal probabilities). Statistical significance is

determined by a one-tailed two proportion z-test with 95%

confidence. Additionally, diseases are required to have a minimum

co-occurrence in 2 patients to avoid noise from lone rare events.

Diseases with no significant relationships are omitted. For additional

details about the data, see Materials and Methods. Our phenotypic

disease network consists of 437 unique diseases nodes and 40,579

co-morbidity relationships, creating a very dense network.

We also constructed a genetic disease network (GDN) [4] from

gene-disease associations compiled from previous studies. Nodes are

unique diseases, which are connected when the diseases share a

significant number of genetic associations. Similar to the PDN,

disease pairs have an edge if they share significantly more gene

associations than randomly expected based on the generality of the

diseases. We approximated the generality with the marginal

probability of the disease being associated with a random gene

from the dataset. Again, significance was decided by a two

proportion z-test with 95% confidence. The genetic disease network

has 399 nodes connected with 7817 significant genetic links.

For the methods in this paper, we primarily utilized unweighted

networks. However, we found a weighting scheme to be useful for

some observations. We weighted the edges using a mutual

information metric which quantifies how much greater the edge

relationship is with respect to chance. For details, see Materials and

Methods.

Diseases considered for inclusion in the networks were limited to

those which appeared in both datasets; that is, diseases which are

associated with at least one gene and occur in at least one patient.

However, we do not necessarily require significant relationships in

both. The overlap of the network is 399 nodes; all diseases in the

GDN also had at least one significant co-morbidity. However, the

PDN contains 38 additional diseases that have significant co-

morbidities, have some known gene associations, but are not

sufficiently genetically similar to any other diseases.

In both networks, the diseases are classified by Disease Ontology

(DO) codes, which have a hierarchical structure. The structure is

arranged such that a code may be a subset of other codes at many

levels of generality, creating long chains of ‘is-a’ relationships. For

example, Toxic pneumonitis is a Pneumonia is a Non-neoplastic lung

disorder. Obviously, the is-a relationship is fundamentally different

from other edges in the networks and should be treated as such.

These links are essential to the structure of the network, so they

were included but not weighted.

Network Analysis and Comparison
For each network, we calculated the degree distribution and

spectrum of clustering coefficients, which are shown in Figure 1.

Figure 1. Global network properties. (A) Degree distributions and (B) clustering spectrums of the phenotypic (PDN) and genetic (GDN) disease
networks. The PDN has higher average degree and clustering coefficient due to very high edge density. Interestingly, the degree distribution of the
GDN generally decreasing while the PDN is more uniform, indicating that many diseases are co-morbid with a large number of other diseases, often
with few or no underlying shared genes.
doi:10.1371/journal.pone.0022670.g001

Multi-Relational Gene and Phenotype Networks
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The extremely high density of the PDN suggests that diseases

generally have more co-morbidities than genetic associations.

Thus, it is unsurprising that the phenotypic network has higher

average degree and clustering coefficient. More interesting,

however, is the remarkable difference in degree distribution.

While the degree distribution in the genetic network is generally a

decreasing function, the phenotypic degree distribution is more

uniform. Neither of these networks have a power-law degree

distribution [16]. Since these networks mostly contain the same

nodes, this difference indicates that many conditions are highly co-

morbid despite few or no shared genes. For example, migraines do

not have significant genetic link to any other disease, but are co-

morbid with more than 200 conditions. Note that a lack of genetic

edges does not mean the conditions are not genetic, but rather that

their known genetic profile is not similar to other diseases.

Both networks were computationally clustered using Walktrap,

a hierarchical clustering tool for networks based on the intuition

that random walks are often trapped within dense network regions

corresponding to clusters. Algorithm details are provided in [17];

we use the implementation provided by the authors with the

default parameters. The reported clusters correspond to the

partition with the highest modularity [18]. The clustered networks

are provided in Figure 2, along with limited descriptions of the

clusters. Due to the high density, the visual representations are

limited to strongest 10% of edges in each network according to the

mutual information weights. All of the nodes remain present. The

reduced networks are for visual clarity only; the clusters and

associated descriptions correspond to the full network. We describe

the content of each cluster by finding the DO term(s) that are most

pure or complete within the cluster. Each node has a DO code

which is further associated with a hierarchy of more general terms.

For each DO term and cluster, we define purity as the percentage

of all cluster members which are contained by the term, and

completeness as the percent of all nodes contained by the term that

also belong to the cluster. A detailed example of these calculations

can be found in Materials and Methods. Intuitively, the purity

indicates the homogeneity of the cluster, while completeness

measures the uniqueness relative to other clusters. Dynamic, fully

labeled representations of the networks are available at http://

www.nd.edu/dial/plosone/diseasenetworks/in Cytoscape format,

an open source tool for visualizing and analyzing networks [19].

The PDN was partitioned into 10 clusters, four of which are of

acceptable quality due to size, purity, and completeness. By

acceptable, we simply mean that the cluster is non-trivial and has a

reasonably specific universal theme. These clusters can be roughly

classified as neuromuscular and neuro-degenerative disease, sensation

disorders, malignant neoplasms, and female reproductive system disorders.

Four of the remaining clusters are tiny groups of related

conditions, consisting almost entirely of is-a edges. The final two

clusters are enormous ‘‘catch-all’’ clusters of mixed conditions,

accounting for 56.98% of all disease nodes in combination. One of

these large clusters contains the famously complex relationships

between heart disease, diabetes, strokes, obesity, and many other chronic

diseases believed to be lifestyle influenced. The other large cluster

contains most of the congenital deformities. Both of these clusters

additionally contain many other disease categories which were not

easily separable, forming a chaotic picture of intra-connections

across disease families and organ systems.

The GDN was separated into 11 clusters, with seven high

quality clusters. Again, neoplasms and nervous system disease form

fairly pure clusters. Genetic clusters also form for heart disease,

endocrine diseases, and diseases of the hematopoietic system. Similar to the

PDN, there are 3 tiny clusters, but only one mixed cluster of

moderate size, accounting for about 19.55% of the nodes. Overall,

clusters in the GDN are more specific and separated than the

PDN, although in both cases there are many conditions which do

not form distinct modules.

Network Integration
The PDN and GDN provide insight into the way genes

associate with diseases and the way diseases occur in patients, but

little information about the interplay between the two mecha-

nisms. The structures suggest that the two networks express

different information for understanding disease mechanisms,

which is not unexpected. There are multiple possible reasons,

both biological and artificial, which we can speculate are behind

these differences. Two diseases being associated with the same

gene might not have a practical effect, especially if the diseases are

associated with different loci, alleles, or expression levels. This

corresponds to a connection in the GDN and none in the PDN. In

the other direction, some diseases may be co-morbid only because

they are influenced by the same environmental conditions. Finally,

both networks are likely to have collection biases, although we

expect that the PDN is more complete. However, these differences

do not preclude the possibility of important patterns and

dependencies between the structures. We combined the individual

network information into a multi-relational disease network

(MRDN) and probabilistically analyzed local structures to draw

more specific conclusions about how genetic influences relate to

disease co-morbidity.

We previously mentioned that the patient-based and gene-based

networks were constructed from the same pool of diseases. While

some diseases have significant relationships only in the PDN, the

majority of the node sets overlap. Thus, the networks contain

many of same disease nodes but with a different pattern of

connections and weights. This allows them to be easily overlaid

and represented as a single multi-relational network with multiple

edge types. The edge type can be thought of as a nominal edge

attribute. If both a phenotypic and a genetic edge is present

between two diseases, it was treated as a single edge of type ‘both’.

The multi-relational structure also allows the is-a relationship to be

explicitly treated as a unique edge type. This fundamental disease

relationship supersedes any other correlations. Thus, the MRDN

has four possible edge types: (G)enetic, (P)henotypic, (B)oth genetic

and phenotypic, and (I)s-a. The clusters from the original networks

can be retained as separate node attributes.

The integrated MRDN is shown in Figure 3. The edge colors

represent the relationship type. The two-tone nodes indicate

original cluster membership in the GDN (inner circle) and PDN

(outer circle). Areas matching the white background color indicate

that the node was omitted from one of the networks. Groups of

nodes with a matching two-tone pattern are overlaps between

clusters found in the separate networks. It is visually apparent that

substantial overlap between the cluster results is common.

However, the clusters never fully overlap, nor are they contained

within each other. In general, phenotypic influence tends to

extend far beyond the bounds of genetic similarity. Consistent with

Park et al.’ s result that sharing genes is correlated with co-

morbidity [6], we observe that 72% of genetic edges underlie a

phenotypic edge. In Figure 4, we plot the genetic mutual

information versus the phenotypic mutual information for the

4465 disease pairs which have both relationships. While the

positive correlation between the values is highly significant

(Pearson correlation of 0.473, probability of random observation

p~0 according to a Monte Carlo permutation test of 1 million

permutations), it is a weak-to-moderate correlation in the general

sense, i.e. the strongest genetic relationships do not necessarily

translate to high co-morbidity, and vice versa. More details on the

Multi-Relational Gene and Phenotype Networks
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Figure 2. The Phenotypic and Genetic Disease Networks. (A) The phenotypic disease network (PDN) is constructed based on clinical history of
700,00 patients. Each node represents a unique disease, and two nodes are connected if the diseases co-morbid significantly more than randomly
expected according to population prevalence. (B) The genetic disease network (GDN) is constructed on the same disease nodes, but edges instead
indicate that the disease pair shares a significant number of gene associations. In both networks, black edges indicate hierarchically related diseases
(is-a relationships). For each network, the accompanying table displays the most relevant Disease Ontology codes associated with each cluster. Purity
corresponds to the percent of member nodes which are accurately described by the DO term, and completeness indicates the percentage of
descendants of the DO term which belong to the cluster. For a detailed definition, see Materials and Methods. It is clear that the PDN and GDN are
structurally different. Nonetheless, both networks form some easily defined clusters but also have some dense regions containing diverse DO terms.
doi:10.1371/journal.pone.0022670.g002

Multi-Relational Gene and Phenotype Networks
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permutation test are available in the Materials and Methods

Section.

Despite visually different structures, there are definite depen-

dencies between genetic association and co-morbidity, but pair-

wise correlations are weak indicators on their own. Nonetheless,

even weak evidence can be very valuable for inference tasks,

particularly in combination with complementary evidence, which

is our approach. Furthermore, we suspect that the PDN can be

very valuable for inference in regions of the GDN which have

been sparsely studied, perhaps due to rarity or low morbidity.

Multi-relational Local Structure
Construction and manual observation of the multi-relational

network has already confirmed significant interplay between the

genetic and phenotypic networks. However, there are still many

questions about the basic rules and probabilities that govern these

influences, particularly in terms of strength. In addition to

furthering biological understanding of disease mechanisms,

understanding the probabilistic properties of the network structure

will be instrumental to locating additional genetic associations or

recognizing the role of genetics in poorly understood co-

morbidities.

We approach these global questions through the local

substructures, which can provide manageable and interpretable

insights into the global structure [20]. For this study, we counted

the occurrence of each unique 3-node structure, traditionally

called triad census [21,22] and more recently defined as counting

3-node graphlets [23]. Triad census has been widely used in social

network analysis, often for evaluating local structure hypotheses

such as transitivity [24]. The triad census trivially extends to multi-

relational networks; the only difference is the number of unique

structures. While a traditional directed network yields 16 possible

structures, our network has 30 unique connected triad patterns of

the four edge types. Of course, the hypothesis space becomes

increasingly complex with each additional relation. For this work,

our use of triad counts is more similar to the context of recent work

Figure 3. The Multi-Relational Disease Network. This network is created by overlaying the phenotypic (PDN) and genetic (GDN) networks,
which contain the same disease nodes. Blue edges indicate phenotypic links, red edges are genetic, green edges are both genetic and phenotypic,
and black edge are is-a relationships. The two-tone nodes indicate original cluster membership in the GDN (inner circle) and PDN (outer circle).
Regions where multiple nodes share the same color pattern correspond to groups of diseases which cluster together in both the PDN and the GDN.
These overlaps are common and in some cases quite large, such as the teal-and-green cluster containing the heart diseases. Still, none of the overlaps
fully contain a PDN or GDN cluster. The overlapping regions are listed in the accompanying table, along with the most relevant Disease Ontology
codes associated with the cluster.
doi:10.1371/journal.pone.0022670.g003

Figure 4. Genetic vs. phenotypic mutual information. Each data
point represents a disease pair which is linked in both the PDN and the
GDN. The plot illustrates the correlation between the mutual
information edges weights in each respective network. There is some
upward trend but the effect is far from linear. In aggregate, the values
have a Pearson correlation of .473, a weak-to-moderate positive
correlation.
doi:10.1371/journal.pone.0022670.g004

Multi-Relational Gene and Phenotype Networks
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on graphlet distribution, where substructure counts are used to

thoroughly characterize the local structure [25]. Instead of

hypothesizing about which structures are important, we wish to

probabilistically weight all relationship patterns. The triad census

provides the probability of each structure, which further translates

to the probability that a partial triad is closed by each edge type. A

pictorial example is shown in Figure 5, and the probabilities found

in the real network can be seen in supplementary Table S1.

Multi-Relational Link Prediction
One of the great challenges for studying biological networks and

systems biology in general is the incompleteness and noise of the

data. In any large scale molecular context, especially considering

phenomena such as epistasis, experimentally exhausting all

combinations is not a viable option. Even experimental studies,

especially high-throughput methods, may be inconsistent or can

result in high false positive rates, thus requiring many trials or

diverse evidence to be reliable. Computational approaches such as

disease-gene prioritization are essential for targeting future

experiments, directing time and money towards the most likely

successes.

In complex networks, finding missing associations is the link

prediction problem, which can be broadly generalized as follows:

Given two nodes a and b that are not connected by an edge,

predict whether the edge actually does exist, or in the case of

dynamic interactions, will form in the near future. Usually, this

prediction is in the form of a score for each disease pair. The

scores are then ranked to determine the nodes pairs that are

relatively most likely to have an edge. Many link prediction

methods exist for networks; a survey of these methods can be

found in [26,27]. For this work, we focus on unsupervised

topological models.

However, most traditional link prediction methods have no

direct applicability to multi-relational networks other than treating

all edges equally, which can be detrimental to their performance

for many reasons. Different link types contain different informa-

tion by nature, and various combinations introduce different

amounts of evidence to the link prediction task. This is particularly

troublesome when the link types have very different frequency or

distribution, which is clearly the case in our multi-relational

disease network. In a sufficiently complicated system, some edge

types may be irrelevant or redundant with respect to certain

prediction tasks. Even if these barriers could be overcome, treating

all edges equally provides no information about the type of link

being predicted.

We propose a novel multi-relational link prediction (MRLP)

method which addresses all of these issues to predict the location

and type of new edges. The most important component of our

MRLP method is an appropriate weighting scheme for different

edge type combinations. In Multi-relational Local Structure, we

explained how a triad census can be used to place a probability

on local substructures, which conveniently translates to a non-

arbitrary, data-justified weighting scheme. To account for

frequency disparity, the probabilistic weights are normalized by

the marginal probabilities of the edge types involved. Implemen-

tation details of our MRLP method and related traditional link

predictors can be found in Materials and Methods. Ours is a general

algorithm for multi-relational networks, which can also be trivially

extended to multiple node types.

We applied our probabilistically weighted MRLP to the multi-

relational disease network. For this application, we only generated

prediction scores for genetic links, since ‘is-a’ relationships are

known and we assume that the patient data completely represents

significant co-morbidities. We compared our performance to

traditional neighborhood-based link prediction methods as applied

to the genetic disease network (GDN). The algorithms used are

Common Neighbors, Jaccard coefficient, and the Adamic/Adar

measure (details in Materials and Methods). These methods provide a

baseline for how well the genetic links in our network can be

predicted without the benefit of multi-relational analysis. For all

experiments, we use 10-fold cross validation, holding out 10% of

the genetic edges for each run. The comparative performance is

shown by the receiver operating characteristic (ROC) curves and

precision-recall curve [28] in Figure 6. The MRLP outperforms

the traditional methods with respect to AUROC. The precision-

recall curve, which is potentially less biased by the extreme

imbalance between actual links versus all possible pairs, shows that

MRLP performs particularly well on the top 50 rankings, but is

not optimal for all decision boundaries, as one would expect. The

drop in precision as recall increases is expected, as it is

accompanied by an increase in false positives. When predicting

possible genetic links for further investigation, it is also important

to have fewer false positives, and thus the operating range might

be constrained to top-50 or top-100 rankings (precision at 50 or at

100, for instance). The MRLP also reaches 100% recall with

higher precision than the other methods, which we hypothesize is

due to an improved ability to distinguish between edges with very

low genetic evidence. These results indicate that phenotypic

information can help improve the prediction of genetic links

between diseases, even though less than 12% of the phenotypic

relationships coincide with an underlying genetic association.

We then applied the MRLP to a more difficult problem: a

disease with no known genetic associations, only a phenotypic

profile. Such a disease is disconnected in the GDN, and thus

cannot be predicted by the baseline algorithms applied to the

GDN as in previous experiment. The link predictions can be made

based on the PDN, but phenotypic evidence alone is weak. The

multi-relational approach provides a connection while allowing

the genetic associations of the other diseases in the network to still

play a role. Experimentally, we simulated this scenario by holding

Figure 5. Finding edge probabilities given partial structures.
This toy example demonstrates how to calculate the probability of a
specific edge type closing an open triad pattern, based on the triad
counts for the full network. This calculation corresponds the Equation 3.
The numbers in this example do not represent the real network. The
table of actual edge probabilities for the MRDN can be found in Table
S1.
doi:10.1371/journal.pone.0022670.g005

Multi-Relational Gene and Phenotype Networks

PLoS ONE | www.plosone.org 6 July 2011 | Volume 6 | Issue 7 | e22670



out all genetic associations for each disease individually, and then

using the MRLP to predict the correct locations of the removed

associations. Figure 7 shows the AUROC achieved for each

disease using the MRLP versus Adamic/Adar applied to

phenotypes only. Similar trends hold for MRLP versus the other

benchmark algorithms, slightly shifted leftward due to lower

average performance. The strong majority of diseases fall above

the diagonal, indicating that the multi-relational approach

improved the predictions for that disease. The genetic associations

were most easily predicted using phenotypic relationships for

alopecia, hypothyroidism, and complications of diabetes mellitus. The most

poorly predicted were schizophrenia, polymyositis, and frontotemporal

dementia.

Materials and Methods

Ethics Statement
The IRB at the University of Notre Dame, deemed the research

to be Exempt Under Category 4 (Research involving the collection

or study of existing data, documents, records, pathological

specimens, or diagnostic specimens, if these sources are publicly

available or if the information is recorded by the investigator in

such a manner that subjects cannot be identified, directly or

through identifiers linked to the subjects.).

The assurance number at Notre Dame is FWA00002462

expiration 09/23/2013 and IRB NUMBER is 00000329.

The exempt document is filed in records, and is dated 18th

March, 2009.

Data
We determined genes shared between diseases based on known

disease-gene associations extracted from OMIM, Swiss-Prot, and

HPRD. The diseases are classified by Disease Ontology (DO)

codes and the gene names are based on the HUGO Gene

Nomenclature. The Disease Ontology project is intended to

develop a controlled medical vocabulary to unify diverse medical

languages and ontologies such as UMLS, ICD, and SNOMED. It

is implemented as a directed acyclic graph indicating the

hierarchical structure of the disease terms.

Disease co-morbidity was calculated from real patient medical

histories collected from a group of 77 physicians within a regional

health system. This includes data for the last 12 years, from 1997

to 2009, with a total of 5.5 million visits for approximately 700,000

patients. Each data record is a single visit represented by an

anonymized patient ID and a primary diagnosis code, as defined

by the International Classification of Diseases, Ninth Revision,

Clinical Modification (ICD-9-CM). For consistency with the first

dataset, the ICD-9-CM codes have been converted to Disease

Ontology codes based on mappings provided within the DO

coding. The mapping is many to many, so a single ICD-9-CM

Figure 6. Link prediction performance. (A) Receiver operating curves (ROC) and (B) precision-recall curves for the multi-relational link predictor
(MRLP) and three traditional neighborhood-based link prediction methods: common neighbors, Jaccard coefficient, and the Adamic/Adar measure.
MRLP is the best method with respect to area under the receiver operating curve (AUROC). The precision-recall curve, which is less biased, shows that
MRLP is most accurate with the highest ranked predictions, but is not always optimal for lower prediction thresholds.
doi:10.1371/journal.pone.0022670.g006

Figure 7. Link predictor performance by individual disease.
Area under the receiver operating curve (AUROC) comparison of link
predictor performance for each unique disease. The experiments were
hold-one-out, where all genetic associations of the testing disease were
removed. The x axis shows the performance of Adamic/Adar on the
phenotypic data only, and the y axis is the performance using the MRLP
on the multi-relational network. Each point which falls above the
diagonal indicates that multi-relational evidence improved link
prediction performance for the corresponding disease.
doi:10.1371/journal.pone.0022670.g007

Multi-Relational Gene and Phenotype Networks
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code often translates to a list of DO codes, and a DO code may

apply to multiple ICD-9-CM codes as well.

Mutual Information Weighting
The mutual information weight w(d1,d2) between two diseases

d1 and d2 is defined as

w(d1,d2)~log
p d1,d2ð Þ

p d1ð Þp d2ð Þ

� �
ð1Þ

where the numerator is the observed co-occurrence (joint

probability) and the denominator is the random expectation of

co-occurrence (product of marginal probabilities). Co-occurrence

refers to the number of shared patients in the PDN, or the number

of shared genes in the GDN. This weighting scheme is used to

avoid bias based on disease prevalence, which is necessary since

previous work with the data [29] has shown that a few common

diseases tend to dominate other correlations.

Permutation Test
In order to determine if genetic mutual information and

phenotypic mutual information are significantly correlated for the

disease pairs in our networks, we used a Monte Carlo permutation

test. Each permutation was determined by randomly pairing each

genetic mutual information value with a phenotypic value using a

Fisher-Yates shuffle of each value set, respectively. We generated 1

million permutations, each with a corresponding Pearson correla-

tion value. The correlation values were within the range

½{0:0702,0:0699� with a mean value of 1e{5. The observed

Pearson correlation in our networks was 0.473, which falls well

outside the range generated from the permutations, which

corresponds to probability p~0 of random observation. We

concluded with high confidence that genetic and phenotypic mutual

information of the disease pairs is significantly positively correlated.

Cluster Purity and Completeness
As mentioned in Network Analysis and Comparison, we calculate the

purity and completeness of each network cluster with respect to

each DO term associated with the cluster members. We defined

purity as the percent of all cluster members which belong to a given

term and completeness as the percent of all nodes belonging to the

term that also belong to the cluster.

We now provide a detailed example of this calculation for a cluster

of disease terms {coccidiosis, malaria, arthropod diseases, helmintiasis, parasitic

intestinal diseases}, which corresponds to the five blue nodes on the

upper right side of Figure 2A. These are all children of the DO term

infectious diseases, so the purity with respect to that term is
5

5
~1.

However, these are only 5 of the 21 infectious diseases in the network, so

the completeness is
5

21
~0:238. Similarly, 4 of the 5 terms are parasitic

diseases (purity:
4

5
~0:8) and only one other parasitic disease is

included elsewhere in the network (completeness:
4

5
~0:8).

Purity and completeness can be determined for all cluster-DO

term pairs. The terms provided in Figure 2 are those that best

describe each cluster. While the determination of the best terms

was subjective, most clusters had clear winners. Otherwise, the

clusters have been marked as ‘‘mixed’’.

Link Prediction Algorithm
Our multi-relational link prediction (MRLP) approach works as

follows. Nodes a and b form a partial triad with each common

neighbor, and each partial triad provides a probabilistic weight

based on the triad census. We can then add the weights. Prediction

scores are found individually for each link type of interest.

Formally, the prediction score for edge type x between nodes a
and b is

scorex(a,b)~
X

n[DNa
T

Nb D

wn ð2Þ
where

wn~
P type a,bð Þ~xDtype a,nð Þ,type b,nð Þð Þ

P type a,nð Þð ÞP type b,nð Þð Þ ð3Þ

As mentioned earlier, the denominator of the weight term is a

normalization factor to account for the frequency disparity

between edge types.

We further extend this equation to include the inverse frequency

principle, since it has been shown to increase performance in many

cases. The integration is direct except that the degree is counted only

with respect to the relevant node types. The prediction score becomes

scorex a,bð Þ~
X

n[jNa
T

Nbj

wn

1

log
degreetype(a,n)n type a,nð Þ~type b,nð Þ

degreetype(a,n)nzdegreetype(b,n)n type a,nð Þ=type b,nð Þ

( ð4Þ

where degreex(n) is defined as the number of edges of n with edge

type x.

In supplementary Text S1, we describe additional approaches

using hierarchical clustering information as prior weighting for the

MRLP, which did not prove to be beneficial.

Benchmark Methods. We considered the neighborhood-

based topological methods, which are better suited to our networks

and make for a strong benchmark to the proposed MRLP. In this

case, topological refers to methods that rely only on the structure

of the network to draw conclusions.

Common neighbors is the simplest method, where the link

prediction score for the node pair a and b is

score(a,b)~DNa

\
NbD ð5Þ

where Nx is the set of all nodes connecting to node x (the

neighbors of x). Another well-known common neighbor method is

the Jaccard coefficient, where

score(a,b)~
DNa

T
NbD

DNa

S
NbD

ð6Þ

A third variation which usually improves performance significantly

is the Adamic/Adar measure [30], which weights the impact of

neighbor nodes inversely with respect to their total number of

connections. Specifically,

score(a,b)~
X

n[DNa
T

Nb D

1

log degree nð Þð Þ ð7Þ

This inverse frequency approach is based on the principle that

rare relationships are more specific and have more impact on

similarity, which is justified in our network (recall the clustering

spectrum, Figure 1) and many other real world scenarios.
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Table S1 Triad probabilities derived from the multi-relational

disease network.
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Text S1 An experimental approach for including Disease

Ontology distance and hierarchical clustering weights in MRLP.

(PDF)
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