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Abstract

Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We
demonstrate that zinc finger nucleases (ZFNs) introduced into fertilized oocytes can inactivate a chosen gene by
mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first
gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit
immunoglobulin M (IgM) locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized
oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional
knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM+ and
IgG+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in
rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with
,1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in
18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an
essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient
targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic
engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other
research fields.
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Introduction

Rabbits are important laboratory animals, widely used in many

areas of biomedical research, including the production of

antibodies and recombinant proteins. Rabbit models have

contributed to the understanding of human diseases and the

development of therapeutic compounds, devices and techniques.

However it has not been possible to engineer precise genetic

alterations in rabbits because they have so far been refractory to

the two key enabling technologies; (I) rabbit embryonic stem (ES)

cells capable of contributing to the germ line have yet to be

derived, and (II) rabbits are particularly difficult to produce by

somatic cell nuclear transfer [1].

The power and facility of gene targeting in ES cells has made

the mouse by far the most intensively studied mammal [2].

Extending gene targeting to other species would deepen our

understanding of gene function and further the development of

many valuable biomedical applications, but the lack of fully

functional ES cells has been a long-standing obstacle.

Nuclear transfer from cultured somatic cells (SCNT) was

developed to circumvent the requirement for ES cells to generate

gene-targeted animals. This is, however, technically difficult, and

more than ten years since our first demonstration of targeting

COL1A1 in sheep [3], there are still few other examples: PRNP in

sheep, cattle and goats [4]–[6], GGTA1 in pigs [7], [8], IGH in

cattle and pigs [5], [9], [10], IGKC in pigs [11] and CFTR in

pigs [12].

Zinc-finger nucleases (ZFNs) are new tools that promise to

radically simplify gene knockout and targeted gene replacement.

An appropriately designed ZFN can create a double-strand break

at a single predetermined site in the genomic DNA of an organism.

In eukaryotes, double-strand break repair pathways often create

small insertions and deletions at the break site, a useful means of

inactivating genes of interest (for review, see Urnov et al. [13]).
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ZFN cleavage can also stimulate homology-directed genetic

exchange between an episomal donor construct and a chromo-

somal locus, as first demonstrated for a native locus in Drosophila

[14] and for endogenous loci in human cells [15]–[17].

A particularly promising approach is ZFN-mediated gene

knockout directly in early embryos, because it offers a one-step

method without any cell intermediate, as shown for zebrafish [18],

[19], rats [20], [21] and mice [22]. Most recently, ZFN-mediated

gene targeting by homologous recombination has been achieved in

mice and rats [23], [24]. However ZFNs are likely to make their

greatest impact in species where classical means of gene targeting

are not available. Here we demonstrate that ZFNs enable precise

genetic engineering in a particularly intractable species.

Results

Given the failure of other techniques, we wished to investigate

whether ZFN technology offers a practical means of targeted gene

inactivation, addition or replacement in the rabbit. The immuno-

globulin M locus was chosen as a suitable target because

inactivation of endogenous immunoglobulins is a necessary first

step for the production of human antibodies in a human

immunoglobulin transgenic rabbit model.

ZFN design and validation
ZFNs directed against exons 1–4 of rabbit IgM (Figure S1) were

designed using an archive of pre-validated zinc finger modules as

described [14], [15], [17]–[20]. The ZFNs were ranked for activity

using a budding yeast based system previously shown to identify

nucleases active in editing endogenous loci in zebrafish and rat

[18], [20], and the highest-ranking ZFN for each exon was

selected for in-vivo use. Target sequence, structure and recognition

helices of the selected ZFNs are shown in Figure 1 A–C.

Establishment of rabbit oocyte microinjection conditions
The kinetics of ZFN activity in fertilized oocytes should be as

rapid as possible, preferably before the first cleavage, to ensure

that ZFN induced mutations are included in the germ line. ZFN

activity should also be transient, to avoid possible accumulation of

additional mutations in the developing embryo. In pilot experi-

ments we microinjected EGFP mRNA diluted in either EDTA

solution (0.1 mM, pH 8), or Tris/EDTA buffer (5 mM/0.1 mM,

pH 7.5) into one of the two pronuclei or the cytoplasm of fertilized

rabbit oocytes. Microinjection was verified in each oocyte by

observing slight swelling of the pronucleus, or disturbance in the

cytoplasm caused by solution streaming from the capillary. Of the

oocytes injected into the pronucleus, only those injected with Tris/

EDTA survived and developed further. Following cytoplasmic

injection, survival and development was better in embryos injected

with EDTA. Cytoplasmic microinjection of mRNA diluted in

EDTA also led to earlier onset and higher EGFP expression at

lower concentrations than pronuclear microinjection of mRNA in

Tris/EDTA (Table S1).

We then examined technical parameters that could affect

embryo viability and the levels of ZFN activity. These included

ZFN mRNA concentration, site of microinjection (cytoplasm or

pronucleus), and in vitro polyadenylation of mRNA. Injected

embryos were cultured in vitro and monitored visually for

development up to blastocyst stage. Exons 1 or 2 of the IgM

locus were then amplified from blastocysts by nested PCR. Results

indicated that: the optimal mRNA concentration range was

between 3 to 6 ng/ml; microinjection of non-polyadenylated

mRNA did not lead to effective mutagenesis; and microinjection

into the pronucleus did not lead to effective mutagenesis (shown

for exon 1 in Table S2). For gene inactivation experiments we

therefore microinjected a 1:1 mixture of polyadenylated mRNAs

coding for the two components of a ZFN heterodimer, diluted to a

total of 3 to 5 ng/ml in 0.1 mM EDTA, into the cytoplasm of

pronuclear stage fertilized rabbit oocytes.

Microinjection of ZFN mRNA produces rabbits mosaic at
the IgM locus

mRNA coding for ZFN pair 18255/18257 targeted to IgM

exon 1 (see Figure 1) was injected into 267 oocytes, 208 embryos

were transferred into recipients and 17 live offspring were born.

mRNA coding for ZFN pair 18276/18277 targeted to IgM exon 2

(see Figure 1) was injected into 259 oocytes, 212 embryos were

transferred into recipients, and 17 live offspring were also born.

Sequence analysis of the IgM locus in these 34 rabbits revealed

that six animals carried mutations in exon 1, and four had

mutations in exon 2. Eighteen stillborn rabbits were also analyzed.

Mutations at the IgM locus were detected in six animals (Table 1),

a similar proportion as observed in the live offspring. DNA

sequence analysis of live and stillborn rabbits revealed a variety of

mutations at the IgM locus, including deletions of 1 to 25 bp,

single base insertions, and combinations of small deletions and

insertions. Results are summarized in Figure 1D. Two live and one

stillborn animal were found to carry two independent mutations at

the IgM locus, suggesting that these were compound heterozy-

gotes.

ZFN induced mutant IgM alleles are transmitted through
the germline

Of the ten rabbits identified as carrying ZFN induced mutant

IgM alleles, eight (four males and four females) survived to sexual

maturity and were used as founders to produce a F1 generation.

Seven F0 rabbits transmitted mutant IgM alleles at frequencies

ranging from 1.3% to 50% (Table 1). Among these, one male

(22826) and one female (22821) both carried two independent

mutations. The female failed to pass on either mutation to the next

generation, but the male transmitted both mutations at a similar

rate, suggesting that founder rabbits had different degrees of

mosaicism.

IgM knockout rabbits are IgM and IgG deficient
In the immune response, the first antibodies to appear are of the

IgM class. IgG, IgA, or IgE are then generated from IgM via class-

switch recombination. Lack of IgM should therefore result in the

absence of other isotypes. To determine if this was the case in our

rabbits, we generated IgM knockout rabbits by breeding ZFN-

treated founders and measured both IgM and IgG in serum.

The D1 (male founder 22826) and D7 (female founder 22830)

mutations in exon 1 both result in frameshifts in the IgM coding

region and were predicted to disrupt expression of full-length

protein. The founder male 22826 was intercrossed with the

founder female 22830 to generate D1/D7 compound heterozygous

animals. Three mutated F1 animals were obtained, one carrying

the D1 mutation, one carrying the D7 mutation, and one D1/D7

compound heterozygote. The D7 mutation was also bred to

homozygosity in an F2 generation. Serum IgM and IgG levels in

these animals were determined by ELISA at 10 weeks of age. IgM

and IgG levels were similar to wild type in D1 and D7

heterozygotes, but were undetectable in D1/D7 and D7/D7

rabbits (Table 2). The peripheral B-cell population in D1/D7 and

D7/D7 rabbits was characterized by FACS analysis; only ,0.1%

of PBMCs stained positive for surface IgM (sIgM), and sIgG

positive PBMCs were completely absent. In contrast, control wild

ZFN IgM Knock Out and Homologous Recombination
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type animals showed 21.4% of PBMC positive for sIgM and 0.7%

positive for sIgG, typical for rabbit blood. A rabbit pan B-cell

specific antibody [25] also revealed significantly fewer stained cells

in the D1/D7 animal (1.5%) than in wild type (22.9%), see Figure 2

A and B. A second and well-defined B cell-specific marker is

CD79a, constituting a part of the B cell receptor. Using an

antibody that binds to the highly conserved intracellular domain of

CD79a [26], no B cell receptor positive cells could be detected in

D1/D7 and D7/D7 rabbits, whereas 41.4% of all PBMCs were

marked as B cells in control animals (Figure 2 C).

The founder 22826 (D1 mutation) was also crossed with founder

25035, which carries a D15 deletion in exon 2 predicted to result

in an in-frame loss of 5 amino acids. Serum analysis of D1/D15 F1

offspring revealed normal levels of IgM and IgG (Table 2). Thus,

the D15 mutation does not appear to affect functional IgM

expression or B-cell development.

These results show that ZFN-induced knockout alleles of the

rabbit IgM gene transmit normally through the germline, and in

homozygous form result in animals that are IgM- and IgG-deficient,

but otherwise do not display obvious phenotypic abnormalities. It

Figure 1. ZFN-mediated disruption of rabbit IgM. A. Recognition sequences in the rabbit IgM locus for ZFNs used in this study. B. Screening
data using a budding yeast proxy system (see Materials and Methods) for ZFNs shown in panel A. The first sample represents positive control ZFNs
that target the human CCR5 locus [51]. The grey and black bars represent reporter gene correction levels at low and high levels of ZFN synthesis,
respectively. As detailed in Doyon et al. [18], the ZFN-encoding transgene is inducible, and this allows measurement of ZFN activity at different levels
of the nuclease. C. DNA target sequences and recognition helices for the ZFNs used in the present work. The binding regions of left (ZFN-L) and right
(ZFN-R) zinc finger protein array are underlined. Bases in capital letters are those that contribute to binding of the ZFP arrays. D. Summary of rabbit
IgM mutant alleles obtained and characterized in offspring from ZFN microinjections. Stillborn animals are marked with an asterisk. The genotype of
each allele is indicated to the right of the DNA sequence; inserted sequences are highlighted in red.
doi:10.1371/journal.pone.0021045.g001
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remains to be elucidated what effect the loss of IgM and IgG has on

overall immunological function in these rabbits.

ZFN-mediated targeted sequence replacement
We then tested if ZFN-mediated targeted sequence replacement

was feasible directly in the oocyte. A gene targeting vector, IgME1,

was designed to replace IgM exon 1 with a PGK neo cassette,

providing ,1.9 kb of novel sequence. The strategy is illustrated in

Figure 3; the full sequence of the gene-targeting vector is shown in

Figure S2. Although the presence of the PGK neo gene was used

for screening, no antibiotic selection was used to enrich for neo-

positive embryos.

Mixtures of MluI linearised IgME1 DNA (concentrations ranging

from 5 to 15 ng/ml) and ZFN 18255/18257 mRNAs (concentra-

tions ranging from 3 to 9 ng/ml of each) were injected into

pronuclear stage fertilized oocytes, see Table 3. Since ZFN mRNAs

are most effective when injected into the cytoplasm, but IgME1

targeting vector DNA must be located in the nucleus to serve as the

donor during homology-directed repair, we employed a two-step

microinjection procedure similar to that described by Meyer et al.

[23]. A portion of the mRNA/DNA mixture was first injected into a

pronucleus to locate the vector DNA with the nuclear DNA. Then,

on removing the injection needle, a second dose was injected into

the cytoplasm to enable translation of ZFN mRNA. Microinjected

oocytes were cultured to blastocyst stage and a total of 242

blastocysts were analyzed by PCR for targeted gene replacement

events. Correct gene editing was detected in three blastocysts, as

judged by the presence of a diagnostic 1.758 kb PCR product

spanning the 59 junction of the target site, see Figure 4. Data

summarized in Table 3 show that concentrations of ZFN mRNA

slightly higher than those used for mutagenesis were most effective

in driving targeted sequence replacement. Combined data for all

mRNA and targeting vector DNA concentrations indicated an

overall rate of 1.2% targeted sequence replacement, but efficiency at

the most effective mRNA/DNA concentrations was higher (17% at

9 ng/ml ZFN mRNA plus 10–15 ng/ml IgME1 DNA). Positive

blastocysts were also screened for the presence of an intact IgM

exon 1 by PCR. All gave a positive result, indicating that targeting

had occurred at just one IgM allele.

Oocytes were then injected with 9 ng/ml ZFN 18255/18257

mRNA plus 10 ng/ml IgME1 DNA, and transferred to recipients.

Seventeen fetuses were removed at day 15 of gestation and

analyzed. All showed normal development, and examination of the

uterine horns showed no evidence of degenerate or absorbed

conceptuses. DNA was prepared from each fetus and screened by

PCR. Three fetuses (2, 7 and 9) showed amplification of a 1.758 kb

product across the 59 junction and a 1.683 kb fragment across the 39

junction of the target site, consistent with replacement of IgM exon

1 with the PGK neo cassette by homologous recombination, see

Figure 4. The identity of the 59 PCR product was confirmed by

restriction digestion, see Figure 4. In addition, the DNA sequence of

the 59 PCR product from fetus 7 was determined and found to be

identical to that predicted for the targeted locus, see Figure S2.

Southern hybridization analysis was carried out using genomic

Table 1. Injection of ZFN-encoding mRNA into fertilized rabbit oocytes.

Target/
ZFN Pair Experiment

mRNA
conc.
(ng/ml)

Oocytes injected/
transferred

Oocytes per
recipient

Offspring
live/stillborn

F0 mutated
(% of live
offspring)

Mutations
in F0

Founder
(line) ID/
gender

Mutated/
total offs-
pring in F1 (%)

IgM exon
118255/18257

1 3 40/22 11 2/1 1 (50) D1; D25 22821/f 0/17u (0)

11 1/0 1 (100) D10 22822/f#

2 3 133/120 30 5/0 1 (20) +11 (D7+18) 22823/m 1/80 (1.3)

30 0/9 4* (0) D5; D10; +1;
+5 (D5+10)

30 7/2 3 (43) D10; D1 22826/m 21**/83 (25)

D10 22828/f1

D7 (D8+1) 22830/f 7/14 (50)

3 5 94/66 22 1/1 0 (0)

22 1/2 1* (0) D8; D13

22 0

IgM exon
218276/18277

4 3 96/75 20 1/0 1 (100) D16 24656/f 2/5 (40)

28 2/0 1 (50) D19 24657/m 5/16 (31)

27 0/2 1* (0) D15

5 3 27/25 25 0/1 0 (0)

6 3 136/112 28 0/0 0 (0)

28 6/0 0 (0)

28 6/0 1 (17) D15 25035/f 1/6 (17)

28 2/0 1 (50) +1 25039/m 2/13 (15)

*Stillborn.
uNo further breeding.
#Exitus at 14 weeks of age.
1Exitus at 19 weeks of age.
**10 offspring with 1 bp deletion; 11 offspring with 10 bp deletion.
doi:10.1371/journal.pone.0021045.t001
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DNA from the three PCR positive and five PCR negative fetuses.

The Southern blotting scheme is outlined in Figure 3 and results

shown in Figure S3. Each of the PCR positive fetuses showed

a diagnostic restriction fragment spanning the 39 junction of the

target site, consistent with targeted replacement at the first exon,

and also a fragment corresponding to a wild type IgM allele.

The five negative fetuses showed only the wild type allele.

In summary, our data show efficient ZFN-induced gene

disruption and homology-directed sequence replacement through

microinjection in rabbit oocytes. We have obtained the first

rabbits genetically engineered at a specific endogenous locus, the

immunoglobulin M locus.

Discussion

Gene targeting in ES cells has propelled the mouse to the

forefront of biomedical research. This is despite the fact that its

small size limits the scope for many physiological investigations

and the low blood volume precludes its use as a source of serum

factors. Metabolic and physiological differences also limit the

relevance of mice to some human diseases, e.g. cardiomyopathy

[27] or cystic fibrosis [12]. Other mammals, notably rabbit and

pig, are increasingly seen as valuable alternatives but there is a

significant need for efficient methods of precise genetic engineer-

ing in these species. Here we describe a generally applicable

protocol for targeted genome editing in the rabbit. ZFNs

introduced into fertilized oocytes can mediate gene inactivation

by DNA repair mutagenesis and also homology-directed targeted

sequence replacement. The technique is a simple, efficient and

practical means of establishing lines of precisely genetically

engineered rabbits.

Like mice, rabbits have a short generation time, produce large

numbers of offspring and can be raised under specific pathogen free

conditions. They have long been an important research animal, and

are an indispensible source of polyclonal and monoclonal antibodies

[28], [29]. Spontaneous mutant rabbit strains such as WHHL are

widely used in the study of lipid metabolism and atherosclerosis

[30]. Pronuclear microinjection of DNA is as facile in rabbits as in

mice, and transgenic rabbits have been generated as models for

retinal degeneration [31], cardiomyopathy [32], inflammation [33],

hyperlipidemia [34] and for the evaluation of human vaccines [35].

Rabbits have also been used for the production of pharmaceutical

proteins in milk. However, until now the scope of genetic

manipulations has been limited to gain-of-function changes by

classical random transgenesis.

Human polyclonal antisera produced by hyperimmunisation

of animals with a humanized immune system are potentially an

extremely useful new class of therapeutic agents. The inactiva-

tion of the IgM locus and loss of endogenous IgM and IgG

expression on B cells and in serum that we describe is an

essential step in the modification of rabbits to produce human

immunoglobulins. The expression of immunoglobulin trans-

genes has been described for pigs, chicken, and rabbits [36]–

[38], and recently the inactivation of immunoglobulin genes in

pigs was reported [10], [11]. However, the inactivation of

endogenous immunoglobulin genes in combination with addi-

tion of human immunoglobulin genes has so far only been

achieved in mice and cattle [9], [39]–[44]. Experiments are now

underway to achieve this in rabbits.

ZFN-mediated mutagenesis of the IgM locus in rabbit oocytes

was efficient, yielding up to 30% mutant animals in the founder

generation. Seven of eight founders passed on mutant alleles to

their progeny. We also assessed whether ZFN-mediated targeted

sequence replacement could be carried out directly in the oocyte

without subsequent selection for the desired event, as recently

described in mice [23]. Our results show targeted sequence

replacement in rabbit at a rate of up to 18% in fetuses. The

frequency of ZFN mediated homologous recombination events we

observed was therefore at least equal to that described in mouse

(1.7–4.5%, Meyer et al. [23]) and clearly higher than the rate of

approximately 1 in 500 reported in mouse zygotes without ZFN

[45]. These results suggest that the technique should be generally

applicable, opening the way for the full repertoire of sophisticated

gene replacement and modification techniques developed in

mouse ES cells. ZFN-mediated genome editing does not require

expression at the targeted locus and our data show that regions of

homology as short as 1 kb or less, easily obtained by PCR

amplification, are sufficient for efficient targeted sequence

replacement. With less than 2 kb of total homology, our IgM

gene targeting vector was considerably shorter than those

described by Meyer et al. [23], but similar to those used for

ZFN-mediated gene targeting in human transformed [16], ES and

iPS cells [46].

Rodents, rabbits and other mammals all have particular

limitations and strengths for biomedical research and are best

regarded as complementary. Parallel and comparative studies

performed in more than one species will speed progress in disease

research and provide more reliable evaluation of novel diagnostic

and therapeutic strategies. Gene targeting in ES cells is established

in mouse and now in rat [3], but has so far been elusive in rab

bit. Our approach circumvents the need for ES cells or SCNT to

carry out precise alterations in any gene, because ZFNs can be

designed against any native locus of interest [13], [47]. This

achievement removes a major block to the development of

Table 2. IgM and IgG serum levels at 10 weeks of age.

Parental lines Genotype of offspring Serum IgM (mg/ml) Serum IgG (mg/ml)

22830622826 D7, D1 bdl* bdl*

22830622826 D7, wt 2.7 1.4

22830622826 D1, wt 1.1 1.3

25035622826 D15, D1 1.5 0.9

22830622830 D7, D7 bdl* bdl*

Wild type (3 animals) wt, wt 2.2 1.8

1.7 5.7

2.2 0.9

*Below detection limit: ,500 ng/ml for rbIgM ELISA and ,20 ng/ml for rbIgG ELISA.
doi:10.1371/journal.pone.0021045.t002

ZFN IgM Knock Out and Homologous Recombination
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Figure 2. Characterization of the peripheral B-cell compartment of mutant offspring from ZFN-treated rabbits by FACS analysis.
A. The top panels show representative dot plot profiles of peripheral blood mononuclear cells (PBMCs) of a wild type rabbit stained with antibodies
specific for surface IgM (left) and surface IgG (right). Lower panels show D1/D7 PBMCs stained with the same antibodies. B. The upper dot plot shows
wild type PBMCs immunostained with RACT30A, an antibody that recognizes a rabbit B-cell specific surface protein [25]. The lower panel shows
D1/D7 PBMCs stained the same way. A and B: Only live PBMCs were included in these analyses. C. Dot plot profiles showing wild type (left) and D7/D7
(right) PBMCs, stained intracellularly for the B cell receptor component CD79a. The percentage of gated B cells (IgM+, IgG+, rabbit B cell marker+, or
CD79a+) of all PBMCs is indicated in the upper right of each dot plot.
doi:10.1371/journal.pone.0021045.g002

ZFN IgM Knock Out and Homologous Recombination
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genetically altered research models in those species where ES and

SCNT technologies are not available. Furthermore, unlike ES cell-

based methods, the desired genetic change can be introduced

directly into the animal strain of choice, and heterozygous

individuals obtained in the first generation. We are confident that

this can be applied to other rabbit genes and other mammals,

including important livestock species such as pigs. The possible

applications are manifold.

Figure 3. Targeted sequence replacement at the IgM locus. The structure of the IgME1 gene targeting vector, regions of homology with the
IgM locus, and the predicted structure of the targeted locus are shown. Exons are marked and numbered as open boxes. The ZFN 18255/18257
cleavage site within exon 1 is indicated by a vertical arrow. The 59 and 39 junction PCR products are indicated; with positions of primers marked by
arrows, and restriction sites for MscI and ApaI marked by (M) and (A), respectively. The hybridization probe and the diagnostic fragments used for
Southern analysis are indicated in the lower part of the diagram. HinDIII (H) and BspHI (B) restriction sites are marked.
doi:10.1371/journal.pone.0021045.g003

Figure 4. PCR analysis of gene targeted blastocysts and fetuses. Upper panel, representative 59 junction PCR products amplified from
blastocysts. Upper panel left, 59 junction PCR from fetuses. Predicted 59 PCR fragment size: 1.758 kb. Upper panel right, restriction digests of 59 PCR
fragment amplified from fetus 7. Predicted restriction fragment sizes: ApaI - 1242, 516 bp; MscI - 853, 687, 219 bp. Middle and bottom panels, 59 and
39 junction PCR products amplified from fetuses 1–12. Predicted 39 PCR fragment size: 1.683 kb. M - size markers.
doi:10.1371/journal.pone.0021045.g004

ZFN IgM Knock Out and Homologous Recombination
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Materials and Methods

All animal experiments were approved by the Government of

Upper Bavaria (permit numbers 55.2-1-54-2531-26-04 and 55.2-

1-54-2531-9-09) and performed according to the European Union

Normative for Care and Use of Experimental Animals. Chemical

reagents were obtained from Sigma unless otherwise indicated.

Gene targeting vector
The vector IgME1, used for ZFN-mediated targeted replace-

ment, comprised a 0.758 kb homologous arm extending upstream

of IgM exon 1 on the 59 side, and a 1.035 kb arm extending

downstream of IgM exon 1 to the end of exon 3 on the 39 side,

separated by a PGK neo polyA cassette (see Figure 3 and Figure

S2). Homologous sequences were obtained by PCR from genomic

DNA from a ZIKA rabbit.

In-vitro mRNA transcription
Synthetic capped and poly A-tailed mRNAs were transcribed in

vitro and purified using mMESSAGE mMACHINE T7 Ultra and

MEGAclear Kits (Ambion). The quality and concentration of

mRNAs were verified by denaturing gel analysis and spectropho-

tometry.

Microinjection of ZFN mRNA and targeting vector DNA
Animals used as oocyte donors for the gene inactivation experiments

were homozogous Alicia/homozogous Basilea back-crossed for several

generations onto the ZIKA background. Alicia (Ali) rabbits carry a

natural deletion within the IgH locus [48] and homozygous Basilea

(Bas) animals do not express Igk, due to a non-functional splice

acceptor [49]. ZIKA rabbits were used as oocyte donors for the gene

replacement experiments. Pronuclear stage fertilized oocytes were

obtained by flushing oviducts 21 to 24 hrs from female rabbits

superovulated by PMSG (Intergonan; Intervet) and hCG (Ovogest;

Intervet) injection, inseminated artificially or by natural cover.

Microinjected oocytes were either cultured to blastocyst stage,

or allowed to rest for 1 hr then transferred laparoscopically [50] to

foster mothers primed by intramuscular injection of 0.2 ml

Receptal (Intervet) 3 to 7 hrs previously. Pregnancies were either

terminated at day 15 to examine fetuses, or allowed to proceed to

term. Offspring were delivered normally and their genotype was

determined at approximately 3 weeks of age.

Detection of ZFN-induced gene inactivation and
homologous recombination at the IgM locus

DNA was prepared from blastocysts by lysis in 50 mM

KCl, 1.5 mM MgCl2, 10 mM Tris, pH 8.0, 0.5% NP40, 0.5%

Tween20 and 100 mg proteinase K; or by lysis in 8 ml 50 mM

NaOH (10 min 95uC; 2 ml 1 M Tris, pH 7.5 then added for

neutralization); and from fetal tissue or ear biopsies of offspring by

standard methods. Rabbit Cm was amplified by PCR using primer

pairs E1.1f (TGG CAG GGA CAC AGG AAA ACA) and E1.1r

(GGC TCA CCG GGA AAG GAC); or E1.2f (GGC TGC CTG

GCG CGG GAC TTT CT) and E1.2r (CTG TTG CTG TTG

CTG TGC TGG ACT TTG) for exon1 and E2.1f (GGC TGC

CTG GCG CGG GAC TTT C) and E2.1r (CCT GGC CTG

GGG ACT GGA CAC TCA CT) or E2.2f (TGC CAG GCC

ACA GGT TTC) and E2.2r (CTC GGA GGA CAT GGA CAC

GTT CTT ATC) for exon 2. Nested PCRs from blastocysts were

performed using the two primer pairs specific for exon 1 or 2

consecutively. PCR products containing mutated sequences

detected by DNA sequence chromatography were cloned into

the TOPO TA cloning kit (Invitrogen) for DNA sequencing of

ZFN-induced mutations.

Targeted insertion of the PGK neo gene was detected by PCR

across the 59 junction using primers targF4 (GCT GTA CAG

AGG TGA ACT GGG CTG GTC TTA) and targR4 (CCG

CTG TAA GTC TGC AGA AAT TGA TGA TCT) and across

the 39 junction using primers targF2 (CGG AGA ACC TGC

GTG CAA TCC ATC T) and targR2 (TGG GCA GAG AGA

AGG TGG TGA GCC T). Southern hybridization of 10 mg

samples of genomic DNA was performed with a digoxigenin

dUTP labeled probe and detected by chemiluminescence using

standard methods.

Detection of rabbit IgM and IgG in serum
Serum antibody concentrations from animals between 7 and 15

weeks of age were determined by ELISA on streptavidin pre-

coated 96 well microtiter plates (Micro Coat Biotechnologie,

Germany). Capture was by anti-rabbit-IgM (m-chain) or anti-

rabbit-IgG (Fc) biotin (624085 and 550326, BD Pharmingen);

detection used mouse anti-rabbit IgM or IgG horseradish

peroxidase (BD Pharmingen).

FACS analysis of peripheral blood mononuclear cells
(PBMCs) of wild type and knockout rabbits

PBMCs were isolated from whole blood samples using

separation media (Lympholyte-Mammal; Cedarlane) according

to the manufacturer’s instruction and stained and analysed

immediately. For single colour flow cytometry, 56105 PBMCs

were distributed as 50 ml aliquots in 1.5 ml tubes and kept on ice.

Anti-rabbit IgG FITC was obtained from AbD Serotec (Düssel-

dorf, Germany). Anti-rabbit IgM biotin was from BD Pharmingen

(San Diego, USA). FITC labelled streptavidin and anti-mouse IgM

Table 3. Screening of rabbit blastocysts for targeted gene replacement.

Concentration of
ZFN mRNA (ng/ml)

Concentration of
vector DNA (ng/ml)

Oocytes
injected

Blastocysts
screened

Blastocysts positive
for targeting

3 5 102 45 0

3 10 39 26 0

6 5 76 43 0

6 10 118 76 1

6 15 28 18 0

9 10 17 6 1

9 15 60 28 1

doi:10.1371/journal.pone.0021045.t003
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phycoerythrin (PE) conjugate were from Invitrogen (Germany).

The monoclonal antibody RACT30A, which detects an uniden-

tified rabbit B-cell surface marker [25], was obtained from VMRD

(Pullman, USA). The PE-labelled antibody (clone HM47, BD

Pharmingen), which binds the highly conserved intracellular

domain of human CD79a (component of the B cell receptor)

cross-reacts with rabbit CD79a [26]. For intracellular staining,

PBMCs were fixed with Cytofix and permeabilised with Perm/

Wash (BD Pharmingen) as mentioned in the instructions from the

manufacturer. PBMC aliquots were incubated with 50 ml

fluorochrome labelled mAbs or streptavidin in PBS for 30 min

under rotation at 4uC in the dark. PBMCs were washed twice with

ice cold PBS, resuspended in ice cold PBS and subjected to FACS

analysis. For all surface staining, propidium iodide at a

concentration of 5 mg/ml (BD Pharmingen, USA) was added

prior to FACS analysis to discriminate between live and dead cells.

10,000 live PBMCs were analysed per sample. A FACSAria flow

cytometer equipped with a computer and FACSDiva software

(Becton Dickinson) was used to collect and analyse the data, FACS

gates used are shown in each panel of Figure 2.

Supporting Information

Figure S1 IgM sequence polymorphisms in different
rabbit strains. The DNA sequence of the genomic IgM locus in

14 rabbits was determined; 6 rabbits of the ZIKA strain, 2 of the

Alicia strain [48], which carry a mutation in the immunoglobulin

heavy chain locus, and 6 of mixed breed (NZW/ZIKA/Alicia)

carrying the Basilea [49] loss-of-function mutation at the

immunoglobulin kappa light chain locus, which is on a different

chromosome. Exon sequences are underlined (Exons: E1–E4).

Polymorphisms are shaded in grey (R: A or G; Y: C or T). Five

sequence polymorphisms were found in E1, two in E2, four in E3

and one in E4. The binding sites of the ZFNs used for

microinjection are highlighted in red.

(TIF)

Figure S2 DNA sequence of IgME-1 targeted locus. The

sequence of the IgME1 gene targeting vector is indicated by

highlights; the 59 and 39 homologous arms in yellow and the PGK

neo cassette in blue. The positions of primers used to amplify PCR

fragments across the 59 junction (targF4 and targR4) and across

the 39 junction (targF2 and targR2) are indicated. ApaI and MscI

restriction sites used to confirm the identity of the 59 PCR product

(shown in Figure 3) and the BspHI site used for Southern analysis

(Figure S3) are indicated.

(TIF)

Figure S3 Southern analysis of fetuses. Samples of

genomic DNA from 9 of the 17 fetuses recovered (numbers

indicated) were digested with BspHI and HinDIII and hybridized to

a probe comprising IgM exon 3, intron 3 and exon 4. Arrows

indicate positions of the diagnostic 5.911 kb HindIII-HindIII

fragment, derived from the wild type allele, and the 3.943 kb

HindIII-BspHI fragment, derived from the targeted allele.

(TIF)

Table S1 Microinjection of mRNA coding for EGFP.
1 Experiment.

(DOC)

Table S2 Microinjection of mRNAs coding for ZFN SBS
18257/18255. 4 Experiments (separated by double lines).

(DOC)
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