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Abstract

Recent studies in motor control have shown that visuomotor rotations for reaching have narrow generalization functions:
what we learn during movements in one direction only affects subsequent movements into close directions. Here we
wanted to measure the generalization functions for wrist movement. To do so we had 7 subjects performing an experiment
holding a mobile phone in their dominant hand. The mobile phone’s built in acceleration sensor provided a convenient way
to measure wrist movements and to run the behavioral protocol. Subjects moved a cursor on the screen by tilting the
phone. Movements on the screen toward the training target were rotated and we then measured how learning of the
rotation in the training direction affected subsequent movements in other directions. We find that generalization is local
and similar to generalization patterns of visuomotor rotation for reaching.
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Introduction

In our lives we essentially never encounter the same situation

twice. Due to changes in the environment, our own body and in

our knowledge, the problems that we are solving are always

different. Therefore, generalization is central to any behavior. We

need to generalize what we learned in one situation and apply it to

other similar situations. The topic of generalization is thus central

to a large number of fields including cognitive science [1,2],

development [3,4], and motor control [5,6,7,8,9,10]. In fact, the

issue of generalization is also the basis of most current techniques

of machine learning and the basis of many algorithms for robot

control [11,12] and computer vision [13,14]. Understanding

generalization is important for many fields.

As generalization is such an important topic for neuroscience,

many experiments and theories in the field of motor control have

aimed at understanding generalization in a motor context. A good

number of recent experimental studies have used the strategy of

letting subjects learn about a perturbation for one kind of

movement and subsequently testing how the learned behavior

generalizes to other movements (e.g. [7,8,15,16,17]). These studies

have found that certain aspects of perturbations generalize only to

movements that are very similar to the training movements (local

generalization) while other aspects generalize to a broad set of

movements (global generalization).

To explain the results of these experiments a wide range of

theories have been put forward. Some theories propose that the

nervous system switches between a set of specialized controllers

and that generalization happens when the same controller is used

[18]. Other theories propose that the nervous system simply tunes

the parameters in a general purpose neural network [19].

Additional theories propose that the nervous system maintains

Bayesian estimates of the properties of the body and the world and

constantly adapts these parameters [5]. What all these theories

have in common is that they have been built based on reaching

experiments and their predictions are being tested on such data.

One exception to this general trend is a recent study that showed

Bayesian algorithms can help understand how subjects generalize

from the arm to the wrist and vice versa [7]. How similar reaching

generalization is to other kinds of generalization is clearly a

question demanding a more thorough investigation.

The vast majority of experiments in motor control in general

and reaching in particular are done using virtual reality setups.

Developing smaller and portable devices that allow performing

movement psychophysics experiments promises to facilitate the

recruitment of more subjects, the use of these devices in clinical

settings and to lower the burden of running behavioral movement

experiments.

Here we use a mobile phone to track wrist movements. Subjects

can control the position of a cursor displayed on the screen of the

phone and guide the cursor towards several targets by tilting the

phone in the target’s direction. We introduce a rotation to the

cursor position during movements toward one target and measure

how these perturbations affect movements into other directions.

We find that tilt movements generalize locally and in a similar way

to reaching movements.
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Methods

Ethics Statement
The experimental protocol was approved by the Northwestern

University Institutional Review Board and is in accordance with the

Northwestern University Institutional Review Board’s policy state-

ment on the use of human subjects in experiments. Written informed

consent was obtained from all participants. The Institutional Review

Board of Northwestern University approved the study.

Subjects
Seven healthy subjects (4 right-handed and 3 left-handed; 2

male, 5 female; aged 36.4614.2 years) participated in the

experiment. All were naive to the purpose of the experiment,

and were paid according to their performance (13.060.8 USD).

Task and protocol
Subjects held an android mobile phone with their dominant

hand. They were seated and instructed to tilt the phone using their

wrists. Their shoulder and elbow angles were not constrained. To

start each trial subjects had to place a white cursor (2.1 mm

diameter) in the center of the mobile phone screen (marked by a

white cross) by holding the phone flat (perpendicular to gravity).

After centering the cursor over the cross for 500 ms, a blue target

(2.1 mm diameter) would appear at a distance of 1.83 cm in the

mobile phone screen and subjects had to reach it by tilting the

phone in that direction. Each reach had to be completed in a

minimum time of 400 ms and a maximum time of 1200 ms,

otherwise the trial would be repeated. Successful and unsuccessful

reaches were indicated by a change of target’s color to green and

red, respectively. Different sounds were used at the end of each

trial to distinguish between hitting the target, missing the target

and not completing the movement within the required time

interval. For each subject a learning target direction was randomly

selected and the flanking generalization targets were displaced at

angular distances of 622.56, 6456, 6906 and 1806.

The experiment was divided into four blocks of trials:

Familiarization (5 trials per target, 40 total), Baseline (10 trials per

target, 80 total), Learning (160 trials only toward the learning

direction) and Testing (10 trials per generalizing direction and 40

trials in the learning direction, 120 total). During the testing block

the order of the target directions was pseudorandomized, with the

training direction inserted every 3rd trial. Subjects received

endpoint feedback about the position of the cursor only in

movements toward the learning direction. Except for trials in the

familiarization block where the cursor was visible throughout the

reaching movement, the cursor was only visible within 4 mm of

the center and disappeared when the target appeared. A rotation

of 306 was applied to the cursor position during movements

toward the learning direction in the learning and testing blocks.

This rotation was clockwise for right-handed subjects and

counterclockwise for left-handed subjects. Subjects were paid a

baseline of $5 plus $0.025 for each successful trial. This

performance based reward included correct movements in the

learning direction (with endpoint feedback condition) and

movements in the generalization direction (without endpoint

feedback). The compensation per trial was only shown during

movements in the learning direction, and the total reward was

only given at the end of each block.

Apparatus
Phones. The experiments were performed on a series of T-

mobile G1 phones, which use the AKM AK8976A accelerometer.

The experiment was written in Java and developed for the android

mobile phone operating system. The screens were 5.067.0 cm. The

cursor position was centered on the screen when flat. Offset from

the center was determined by a linear scaling of the accelerometer

values in the horizontal and vertical axes of the screen. This is to a

good approximation linearly related to the angles of tilt as the

relevant angles were in the 20 degree range (see below). As the

phone tilts, components of gravitational acceleration are measured

along these axes. The cursor was moved from the center position

0.61 cm for every 1 m/s2 along that axis depending upon the

amount of tilt. Reaching the targets required moving the cursor

1.83 cm from the center of the mobile phone screen - a tilt of

approximately 18 degrees off the gravitational axis.

Optotrak. Mobile phone accelerometer readings were

validated using the 3D Investigator Position Sensor (Northern

Digital Inc.; 4Waterloo, Ontario, Canada). Technical specifications

include an accuracy of 0.4 mm and a resolution of 0.01 mm.

Data analysis
Data from left-handed subjects was rotated by 1806 and angular

direction was inverted so that the 06, 906, 1806, 2706 absolute

angles would correspond to the lateral, proximal, medial and distal

directions, respectively, for all subjects.

The directional hand/cursor errors for each movement

correspond to the tilt/cursor bias relative to the target direction

at the endpoint. Timescales of learning were obtained by fitting

exponential learning curves to individual subjects.

Results

To ask how knowledge of visuomotor perturbations generalizes

from one direction of movement to other directions we conducted

an experiment using an android mobile phone (see methods for

detail). A cursor was presented on the screen (Fig. 1A) that

indicated the tilt angle of the phone. After a block of trials to

accustom subjects to the task and apparatus we introduced a

perturbation during movements into the training direction. In

movements toward the training direction, subjects obtained

feedback at the end of every trial, which allowed them to learn

about the perturbation. After learning, we interspersed trials where

subjects moved into other directions without feedback to assess the

amount of generalization.

We first need to verify that the tilt angles we can measure with the

phones are an accurate measure of the actual tilt used by our

subjects. For this, we repeatedly tilted the phone approximately 306
from horizontal. We measured the actual orientation of the phone

in space using a 3D optical motion tracking system (see methods for

details) and simultaneously recorded the tilt of the phone relative to

gravity as measured by the built in accelerometers (Fig. 1B). We find

that the accelerometers allow for a precise measurement of the tilt

angle of the device with a standard error of approximately 2

degrees. Phones can thus be used as a precise way of running

behavioral movement experiments involving tilt relative to gravity.

Subjects were incentivized to move the cursor from a starting

position toward a given target position that varied across trials.

Most of the trials were toward one direction, the learning

direction, which was drawn randomly for each subject. The

experiment started with a familiarization block, which was

followed by a baseline block and a range of learning trials

(Fig. 2A). During the baseline block, subjects showed rather small

variation of movement across trials toward the same direction

(std = 8.06±2.96). Subjects can thus successfully perform target

directed movements using wrist movements.

We find that subjects readily learn the visuomotor perturbation

from endpoint feedback (Fig. 2B). Learning happens with a time

Generalization of Perturbations in Wrist Movements
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constant of 7.966.8 trials (timescales from exponential fits). The

timescale we observed is in line with those found in previous

related papers [15,16,17,20]. Visuomotor rotations of the wrist

appear to be learned in a similar fashion to visuomotor rotations

that affect reaching.

We found that the precision of movements during baseline

(Fig. 2C) shows anisotropy across directions. Movements to targets

close to the medial and lateral directions were biased toward the

distal direction by approximately 106. This bias might reflect

biomechanical effects or biases in perception. The bias that affects

subjects appears to be relatively large in comparison to the typical

standard deviation of movements.

The main question we are asking in this study is how subjects

generalize the learned behavior. We find that learned visuomotor

perturbations generalize locally (Fig. 3A,B). There was no

influence of learning on movements into directions 906 away

from the training direction (p.0.48, one sided t-test). Comparing

to the results from an analogous study that used reaching [16]

(Fig. 3C) there appears to be differences at 456 and 906 but they

are not statistically significant (p = 0.11 for 456 and p = 0.06 for

Figure 1. Experimental setup and validation. A) Subjects hold an android mobile phone with their dominant hand. They control the position of
a cursor on the screen of the mobile phone by tilting it. During perturbed trials the cursor position is rotated 30u degrees relative to the true direction
of tilt. B) Comparing the measured angle of tilt around the proximal-distal and medial-lateral axis using the optotrack versus using the mobile phone.
Red line is the y = x axis.
doi:10.1371/journal.pone.0020290.g001

Figure 2. Protocol, learning and movement baseline. A) The four blocks of the experiment and corresponding number of trials. Lines are
cursor position and hand orientation from an individual subject. B) Blue and red lines are average directional error of cursor (6SD) across subjects
during the baseline and learning blocks. Black line is the fit of an exponential learning curve. C) Anisotropy of baseline movements. Average
directional bias (6SEM) across subjects using 45u bins. Dots are individual trials.
doi:10.1371/journal.pone.0020290.g002
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906, t-test with Bonferroni correction). Moreover, there is a weak

non-zero generalization at 1806 (p,0.05, one sided t-test) both in

our data and in previous reaching data. Generalization of

visuomotor rotations for wrist movements appears to be local

and qualitatively similar to generalization of reaching movements.

Discussion

Here we measured the generalization curves for visuomotor

rotations applied to wrist movements. We found that subjects

readily learn such perturbations and generalize locally, in a similar

way to previously measured generalization in reach adaptation

studies. Furthermore, we have also established the use of mobile

phones to run movement experiments in motor control.

We have found generalization to be local for wrist movements

during tilt adaptation, and it is interesting to speculate why it is so.

One way of interpreting these results is in terms of tuning properties

in the nervous system. It may be that both for reaches and for wrist

movements, neurons have narrow tuning to direction of movement,

and as learning happens in these populations it generalizes locally

[8,15,16]. An alternative and complementary interpretation may be

that generalization is local because relevant changing properties of

the body and the environment differ if movements are dissimilar [5].

Independently of the interpretation, we observe local adaptation

which matches results from previous studies.

The adaptation at 180 degrees can also be observed in reaching

experiments using visuomotor rotation [16] or force field

adaptation [21]. When subjects are returning to the start position

they inevitably move in a 180 degree direction relative to the

learning direction. Subjects may be adapting to the perturbation

during these movements. Alternatively, one might hypothesize

that this adaptation can be understood from the tuning properties

of neurons in the nervous system. There is a small number of

corticomotor (16% in [22]) and cerebellar (,15% in [23]) neurons

which exhibit bimodal tuning properties. If adaptation relies on

both unimodal, traditionally cosine-tuned cells, and these bimodal

cells then we might expect a small visible bimodal adaptation.

Behaviorally, the reason for this non-local adaptation may be the

strong association between opposing directions of movement. This

non-local 180 degree adaptation is indicated by our task and

previous reaching studies, and can be interpreted in terms of both

known neurophysiology and behavioral context.

We found clear anisotropy during movement with biases

generally being into the distal direction. The existence of biases

should not be overly surprising; there is a clear anisotropy in the

biomechanics of wrist movement. There is also the potential for

biases coming from the cardinal axes of the phone and related

perception. During everyday life people often move the phone from

their ears into a horizontal position and these natural statistics

[24,25] might affect targeted movements. While the origin of these

effects is interesting we focused here on the generalization curves.

While generalization is usually probed using reaching experi-

ments our results show that local generalization is also a feature of

the motor system outside of reaching. Local generalization affects

wrist movements and we would predict that it would equally affect

posture and movements of the feet and head.

Our application adds to the growing literature of using mobile

phones in medical contexts. For example, phones have been used

to measure the type of physical activity [26], monitor people with

chronic medical conditions [27], and detect falls [28]. Cheaper

and more versatile ways of collecting data like in this study can

make the recording and application of movement data much more

ubiquitous. From clinical populations to populations in hard to

reach areas of the world, mobile phones provide a useful tool for

studying and using movement data.
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