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Abstract

Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the
evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological,
syntactic) features or characters for many different languages: a set of parallel corpora whose compilation represents a
paramount achievement in linguistics.

From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete
and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse
problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial
models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation:
when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible
way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a
thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in
particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases.

In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of
distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms
considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the
reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands
and about the leading directions to improve it.
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Introduction

The last few years have seen a wave of computational

approaches devoted to historical linguistics [1–3], mainly centred

around phylogenetic methods. While the first aim of phylogeny

reconstruction is that of classifying a set of species (viruses,

biological species, languages, texts), the information embodied in

the inferred trees goes beyond a simple classification knowledge.

Statistical tools [4–9], for instance, permit to assign time weights to

the edges of a phylogenetic tree, giving the opportunity to gather

information about the past history of the whole evolutionary

process. These techniques have been successfully employed to

investigate features of human prehistory [10–15].

The application of computational tools in historical linguistics is

not a novel one, since it dates back to the 50’s, when Swadesh

[16,17] first proposed an approach to comparative linguistics that

involved the quantitative comparison of lexical cognates, an

approach named lexicostatistics. The most important element here

is the compilation, for each language being considered, of lists of

universally used meanings (hand, mouth, sky, I, ..). The initial set of

meanings included 200 items which were then reduced down to

100, including some new terms which were not in his original list.

These famous 100-item Swadesh lists still represent the cornerstone

of any attempts to reconstruct phylogenies in historical linguistics.

Each language is represented by its specific list and different

languages can be compared exploiting the similarity of their lists.

The similarity is assessed by estimating the level of cognacy between

pairs of words. The higher the proportion of cognacy the closer the

languages are related. Though originally cognacy decisions was

solely based on the work of trained and experienced linguists,

automated methods have been progressively introduced (see [18]

and for a recent overview [19]) that exploit the notion of Edit Distance

(or Levenshtein Distance) [20] between words, considered as strings of

characters. The computation of the Edit Distance between all the

pairs of homologous words in pairs of languages leads to the

computation of a ‘‘distance’’ between pairs of languages. This value

is entered into a N|N table of distances, where N is the number of

languages being compared. This distance matrix can then be

submitted to distance-based algorithms for the purpose of generating

trees showing relationships among languages.

The construction of the distance matrix is of course a crucial step

since the reliability of the reconstruction of the evolutionary history,

i.e., the outcome of a phylogenetic reconstruction method, strongly

depends on the properties of the distance matrix. In particular if the

matrix features the property of being additive, there are algorithms

that guarantee the reconstruction of the unique true tree (see [21]

for a recent overview). A distance matrix is said to be additive if it

can be constructed as the sum of a tree’s branches lengths. When
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considering experimental data, additivity is almost always violated.

Violations of additivity can arise both from experimental noise and

from properties of the evolutionary process the data come from.

One of the possible sources of violation of additivity is the so-called

back-mutation: in particularly long phylogenies a single character

can experience multiple mutations. In this case the distances

between taxa are no longer proportional to their evolutionary

distances. In historical linguistics this would happen if one was

considering meanings that change very rapidly. For this reason

linguists are typically interested in removing from the lists all the

fast-evolving meanings. Of course this is not an easy task, bringing

inextricably with itself a fair amount of arbitrariness in the choice.

Along the same lines another crucial difficulty in lexicostatistics

concerns the rate of change of the individual meanings. Different

meanings, represented in each language by different words, evolve

with different rates of change. In a biological parallel one would say

that the mutation rate, i.e., the rate over which specific words

undergo morphological, phonetic or semantic changes, are meaning

dependent. This effect again is not easily cured and again different

choices of the list composition could lead to different reconstruc-

tions. Finally another source of deviations from additivity is the so-

called horizontal-transfer. The reconstruction of a phylogeny from

data underlies the assumption that information flows vertically from

ancestors to offspring. However, in many processes information also

flows horizontally. In historical linguistics borrowings represent a

well-known confounding factor for a correct phylogenetic inference.

All the fore-mentioned difficulties in the reconstruction of

phylogenetic trees strongly call for reliable methods to evaluate the

reconstructed phylogenies. Along with this it comes the need of valid

benchmarks for determining the reliability of the different methods

used to reconstruct phylogenetic trees. The standard way of testing the

proposed algorithms is the construction of models to generate artificial

phylogenies [21–23], so that the algorithmic results can be directly

compared with the true, known, observables of interest. However, in

doing that, one makes inevitable assumptions on the evolutionary

processes of interest, which can in turn influence the reconstruction

performance. To overcome this problem, we consider here an applica-

tion of phylogenetic tools to historical linguistics. This field offers a good

reference point, since classifications made with phylogenetic tools can

be compared with catalogues of languages made by experts. We focus

in particular on the Ethnologue classification. The Ethnologue can be

described as a comprehensive catalogue of the known languages

spoken in the world [24], organized by continent and country, being

thus a valid reference point to evaluate trees inferred using phylogenetic

algorithms (see section Data for details).

Here we evaluate trees reconstructed using distance-based phylo-

genetic methods against the Ethnologue trees. To this end it is

important to set the tools to compare expert Ethnologue trees and

phylogenetically inferred trees. There are several standard ways of

measuring the distance between two phylogenetic trees. Here we

take in account two of them, the Robinson-Foulds (RF) distance

[25], which counts the number of bipartitions on which the two

trees differ, and the Quartet Distance (QD) [26], which counts the

number of subset of four taxa on which the two trees differ.

A technical problem when comparing Ethnologue classifications

and inferred trees is that typically Ethnologue trees are not binary

while all the inferred trees are. In order to overcome this difficulty

we introduce two incompatibilities scores, which are two general-

izations of both the Robinson-Foulds [25] and the Quartet Distance

measures [26]. We present results obtained on a wide range of

language families. This allows to compare different definitions of

distances as well as different reconstruction algorithms.

The outline of the paper is as follows. We first introduce the

Ethnologue [24] project and both the Automated Similarity Judgement

Program (ASJP) [27] and the Austronesian Basic Vocabulary Database

(ABVD) [28] database we used in our analysis, pointing out some

structural and statistical features that will be relevant in our

discussion. Next we introduce some mathematical tools. We define

both the Levenshtein Normalized Distance ( LDN) and the Levenshtein

Divided Normalized Distance(LDND) [19] to compute a ‘‘distance’’

between lists of word. The quantification of the accuracy of the

inference of language trees we present is achieved with the

Robinson-Foulds distance (RF) [25] and the Quartet Distance

(QD) [26]. These are two standard definitions of distances between

trees. We introduce and characterize such mathematical tools and

we also present generalizations of these two scores, in order to adapt

them for the comparison of binary (inferred) and non-binary

(classifications) trees. We then present the results of the comparisons

between the Ethnologue classifications and the language trees

inferred based on the ASJP database. We first consider the ASJP

database in order to perform a worldwide, i.e., large-scale, analysis.

Finally we point out how some of the properties of word-lists, such as

the completeness and the coverage, affect the accuracy of the

reconstruction. To this end we present a comparative analysis on

the inference of the Austronesian family, making use of both the

ASJP and the ABVD database. File S1 provides an extensive

account of the whole set of results we obtained.

Materials and Methods

Data
The Ethnologue can be described as a comprehensive

catalogue of the known languages spoken in the world [24]. The

Ethnologue was founded by R.S. Pittman in 1951 as a way to

communicate with colleagues about language development

projects. Its first edition was a ten-page informal list of 46
language and language group names. As of its sixteenth edition,

Ethnologue has grown in a comprehensive database that is

constantly being updated as new information arrives. As of now it

contains close to 7000 language descriptions, organized by

continent and country, which can be represented as a tree. As

already mentioned, this tree is not always fully specified since it

contains a lot of non-binary structures, in which the details of the

phylogeny are not given due to a lack of certain information.

Figure 1 illustrates geographically how the Ethnologue classifica-

tions deviate from being purely binary.

The Automated Similarity Judgement Program (ASJP)

[27] includes 100-items word lists of about 50 families of languages

throughout the world. These lists are written in a standardized

orthography (ASJP code) which employs only symbols of the

standard QWERTY keyboard, defining vowels, consonants and

phonological features. The full database is available at http://

email.eva.mpg.de/,wichmann/ASJPHomePage.htm. Figure 2

(top) reports two statistical measures on the database to quantify

its completeness. In particular we report the ranked fraction of

languages containing a word for a specific meaning vs. the rank

(left panel) and the ranked fraction of pairs of languages sharing a

word (not necessarily a cognate) for a specific meaning vs. the rank

(right panel). The second measure helps in understanding how

accurate is, from a statistical point of view, computing the distance

between two languages averaging the Levenshtein distances of all

the words for homologous meanings. It is evident the extreme

completeness of the database for lists up to 40 meanings.

The Austronesian Basic Vocabulary Database (ABVD)

[28] contains lexical items from 737 languages (as of January 2011)

spoken throughout the Pacific region. Most of these languages

belong to the Austronesian language family, which is the largest

family in the world. Due to the extended and phonetic characters

On the Accuracy of Language Trees
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Figure 1. Ethnologue resolution power. This map represents the Ethnologue resolution power in the different world locations. Red areas
corresponds to regions where the Ethnologue classification is completely binary, i.e., correspond to a tree in which each internal node has exactly two
child nodes. Yellow areas corresponds to fully unspecified trees, featuring only a star structure. Grey areas are those for which no data are present in
the databases we consider to reconstruct language trees. Asterisks are for regions which include more than one language family (we report in File S1
the list of such families).
doi:10.1371/journal.pone.0020109.g001

Figure 2. Top: Statistics of the ASJP database. (left panel) Fraction-rank plot: for each word in the lists of words of the Automated Similarity
Judgement Project (ASJP), we measured the fraction of languages containing it. The plot reports this fraction vs. its rank. In the 100-items lists in the
ASJP database, only 40 meanings are shared by almost 100% of the languages for each family. (right panel) Ranked fraction of pairs of languages
sharing each specific word vs. rank. Again only 40 meanings are shared by almost 100% of the pairs of languages. Bottom: Statistical measures on
the ABVD database. (left panel) Fraction-rank plot: for each word in the lists of words of the Austronesian Basic Vocabulary Database (ABVD), we
measured the fraction of languages containing it. The plot reports this fraction vs. its rank. (right panel) Ranked fraction of pairs of languages
sharing each specific word vs. rank. For sake of a rough comparison we also reported the same quantities measured on the Austronesian family of the
ASJP database. The ASJP includes 40 words up to a maximum of almost 100% of the languages, whereas in the ABVD the percentage of coverage is
at least of 50% for almost all the words in the list. Limited to the 40 most shared words the ASJP database features a slightly larger coverage than the
ABVD database.
doi:10.1371/journal.pone.0020109.g002
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used for the lexical orthography, all the information is encoded in

the Unicode format UTF-8. The web site of the database is

http://language.psy.auckland.ac.nz/austronesian/ and we down-

loaded it on October, the 4th 2010. We focused in particular on a

subset of all the available languages composed by 305 languages

that are present both in the ASJP database and in the Ethnologue

classification. Figure 2 (bottom) reports the same quantities of

Figure 2 (top) for the ABVD database. It is evident how, limited to

the Austronesian family, the ABVD database features an overall

larger (with respect to the ASJP database) number of meanings

across all the languages considered. The level of coverage

decreases progressively as one increases the number of meanings.

A word of caution is in order. It is of course not possible to

compare the completeness of the ASJP and the ABVD databases

since they refer to two completely different projects with different

aims: ASJP aiming at a full coverage of the Swadesh lists on all the

world languages and ABVD being focused only on the

Austronesian languages. It is nevertheless interesting to compare

them only as for the Austronesian family is concerned. We shall

come back on this point when we shall compare the accuracy of

the reconstructed trees using different databases.

Distance between languages
In our studies we represent a language by its list of words for the

different meanings. The distance between two languages is based

on the distance between pairs of words corresponding to

homologous meanings in the two lists. The distance between two

words is computed by means of the Levenshtein distance (LD).

The LD is a metric to quantify the difference between two

sequences and it is defined as the minimum number of edit

operations needed to transform one string into the other, the

allowable edit operations being insertion of a character, deletion of

a character and substitution of a single character.

Once specified the distance between pairs of words, two

different definitions of distances between languages have been

introduced [19,29–31]: the Levenshtein Distance Normalized (LDN)

and a revised interpretation of it named Levenshtein Distance

Normalized Divided (LDND). Both these definitions have been

introduced to correctly define distances between languages,

instead of simply considering an average of the LD distance

between words corresponding to homologous meanings in the lists.

According to LDN definition [29,30], given two words ai and

bj , their distance is given by:

LDN(ai,bj)~
LD(ai,bj)

l(ai,bj)
ð1Þ

where LD(ai,bj) is the LD between the two words and l(ai,bj) is

the number of characters of the longest of the two words ai and bj .

This normalization has been introduced in order to avoid biases

due to long words, giving in this way the same weight to all the

words in the lists. Starting from this definition, let us now assume

that the number of languages is N and the list of meanings for

each language contains M items. Each language in the group is

labelled by a Greek letter (say a) and each word of that language

by ai, with 1ƒiƒM. Then, two words ai and bj in the languages

a and b have the same meaning (they correspond to the same

meaning) if i~j. The LDN between the two languages is thus:

LDN(a,b)~
1

M

X
i

LDN(ai,bi) ð2Þ

Another definition of distance between pair of languages has

been introduced in [31] in order to avoid biases due to accidental

orthographical similarities in two languages. To this end a new

normalization factor has been proposed [31] as follows:

C(a,b)~
1

M(M{1)

X
i=j

LDN(ai,bi) ð3Þ

The LDND distance between two languages is then defined as:

LDND(a,b)~
LDN(a,b)

C(a,b)
ð4Þ

A comparison of the two definition of distances has been presented

in [19]. In the following we consider both these definitions of

distances between languages; the dissimilarity-matrices computed

according to them will be the starting point for the inference of the

family trees, which will be compared with the corresponding

Ethnologue classifications.

Robinson-Foulds, Quartet Distance and generalizations
All the conclusions drawn in this work will be based on a

quantitative comparison between inferred trees and the Ethnolo-

gue classifications. To this end it is important to recall how to

measure the distance between two tree topologies. Here we recall

in particular the mathematical definitions of two metrics between

trees: the Robinson-Foulds distance (RF) [25] and the Quartet

Distance (QD) [26].

The Robinson-Foulds (RF) distance between two trees counts

the number of bipartitions on which the two trees differ. If we

delete an internal edge in a tree, the leaves will be divided in two

subsets; we call this division a bipartition. Here we consider a

normalized version of the RF distance, which counts the

percentage of unshared bipartitions between two trees. More

formally, let T1 and T2 be two trees with the same set of leaves,

then:

RF (T1,T2)~
i(T1)zi(T2){2e(T1,T2)

i(T1)zi(T2)
ð5Þ

where i(T) denotes the set of internal edge of T and e(T1,T2)
denotes the number of pairs of identical bipartitions in T1 and T2.

The RF distance is a metric in the space of trees, whose value

ranges from 0 (if and only if T1~T2 ) to 1.

Another possible distance between two trees is the Quartet

Distance (QD). In a tree of N leaves, we can look at the subtrees

defined by sets of four taxa (quartets). In the general case of non

fully resolved trees, a butterfly names a quartet in which the two

pairs of leaves are divided by an internal edge and a star a quartet

in which the leaves are all linked to the same node. The QD

between two trees counts the number of non compatible quartets

in the two trees. It is defined as:

QD(T1,T2)~
q(T1)zq(T2){2s(T1,T2){d(T1,T2)

norm(N)
ð6Þ

where q(T) is the total number of butterflies in T , s(T1,T2) is the

number of identical butterflies in T1 and T2 and d(T1,T2) is the

number of different butterflies in the two trees. The normalization

factor is the number, norm(N)~
N

4

� �
, of quartets in a tree of N
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taxa. The QD, as well as the RF distance, is a metric in the space

of trees, whose value ranges from 0 (if and only if T1~T2 ) to 1.

In [32,33] a deep analysis of both RF and QD is reported,

pointing out the different information the two measures convey. In

limiting cases, pairs of trees that have the same RF distance but

very different QD, and vice-versa, are also shown. In Fig. 3,

quoting an enlightening example in [32,33], we show how the RF

and the QD measures weigh a swapping event of two subtrees in a

tree. In this case the RF distance is equal to the number of edges in

the path between the swapped subtrees, while the QD is sensitive

to the size of the subtrees. The RF is then a good measure if we are

interested in measuring how far apart subtrees are moved in one

tree with respect to another. When we are interested instead in the

size of the displaced subtrees, the quartet distance is a more

adequate measure.

The Ethnologue classification provides a coarse grained

grouping of subsets of languages, often leading to trees that are

not fully resolved, i.e., that are not binary. For that reason, it is

important to correct the biases suffered by the RF and QD

distances while comparing binary with non binary trees.

Figure 4 illustrates a situation when a binary tree (Ti) is

compared with a non-binary one (Te). Both the RF and the QD

give a non zero distance between the two trees: some partitions of

Ti are in fact not present in Te. It is important to consider,

however, that in the case we are considering (algorithmic inference

versus Ethnologue classification) non-binary classification is simply

due to a lack of information or details that would lead to a finer

classification. We would like to be able to distinguish intrinsic

contradictions between reconstructed binary trees and the

Ethnologue classifications from errors due to the low level of

resolution of the Ethnologue trees. It is with this aim in mind that

we introduce a generalization of both the RF distance and the

QD.

Let Te be the Ethnologue (non necessarily binary) tree and Ti

the inferred tree, then we define the Generalized Robinson-Foulds

(GRF) score as:

GRF (Ti,Te)~
i(Ti){emod(Ti,Te)

i(Ti)
ð7Þ

where i(Ti) denotes the number of internal edge of Ti and

emod(Ti,Te) the number of bipartitions in Ti compatible with those

in Te. Intuitively, a bipartition in Ti is said to be compatible with a

bipartition in Te if it does not contradict any of the bipartitions

Figure 3. Robinson-Foulds and Quartet Distance: errors due to
a displacement of a couple of subtrees. The trees T1 and T2 are
different because of the swap of the subtrees A and B. While
computing the distance between T1 and T2, the Robinson-Foulds
distance detects all the M edges in the path as errors, regardless of the
size of the subtrees attached to them. The number of wrong butterflies
quartets counted as errors with the Quartet Distance is expressed by
N1NA(NpathNBzNpathN2zNBN2)zN2NB(N1NpathzNpath)NA: the QD
thus depends on the size of the subtrees.
doi:10.1371/journal.pone.0020109.g003

Figure 4. Non-binary nodes: biases of errors. The standard
Robinson-Foulds distance and the Quartet Distance have a bias when
comparing binary trees with non-binary classifications. The difference
between tree Te and Ti is that Ti shows a more fine grained
classification. The two trees, however, are not conflicting, since Ti is
simply a refinement of the classification Te . The RF distance will count
every internal edge (blue ones in Ti) of this refinement as errors, since
they are not in Te. The QD will count every quartet including the blue
edges as errors, since all these quartets are stars in Te . The generalized
measures we introduce correctly give a null score between Te and Ti in
the example.
doi:10.1371/journal.pone.0020109.g004
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induced by cutting an edge in Te. More rigorously, the

compatibility of a bipartition b of Ti with the tree Te is defined

as follows: let us call b1 and b2 the two sets defining b, and ai
1,ai

2

the two sets defining the i-th bipartition of Te. The partition b is

compatible with the tree Te if for each bipartition i of Te, the

following is true: b1(ai
1, or b1(ai

2, or b2(ai
1, or b2(ai

2. Let us

note that the GRF is not symmetric in the two trees: this

guarantees that a refinement edge is not counted as an error and

the incomplete resolution of Te does not affect the measure of the

reliability of the reconstructed tree. We can verify that the GRF

distance between Ti and Te in figure 4 is zero.

The QD is more straightforwardly generalized. We introduce

the Generalized Quartet Distance (GQD) as:

GQD(Ti,Te)~
d(Ti,Te)

norm(Te)
ð8Þ

where d(Ti,Te), as already introduced, denotes the number of

different butterflies in Ti and Te. Again, this definition guarantees

that all the star quartets in the Ethnologue trees will not be

counted as errors. The normalization factor is equal to the number

of butterfly quartets in Te: norm(Te)~q(Te), recalling the

definition of q(T) given in eq. 6.

Let us stress again that both these generalized scores are neither

symmetric or metric, since we are simply interested in quantifying

the degree of accuracy of a binary tree with respect to an already

known classification. With this definition, both the GQD and the

GRF score give null scores if a classification tree is compared with

one of its possible refinements, while one would get a score of 1 for

inferred trees in total disagreement with the classification. In File

S1 we report a measure of the correlation of the accuracy of the

trees reconstruction with the Ethnologue resolution, as measured

both with the standard measures and with the generalized ones,

showing how the last ones correctly remove the biases due to the

incomplete Ethnologue classification.

Results

Inferred trees vs. Ethnologue
In this section we present the results of the comparison between

the Ethnologue classification and the language trees inferred by

state-of-the-art distance based algorithms. We first consider the

ASJP database in order to perform a worldwide, i.e., large-scale,

analysis.

Starting from the word lists of the ASJP project, we first

estimated the distance matrices among all the languages in each

family. We used both the LDN (2) and the LDND (4) distances, so

we had two classes of distance matrices as an input for distance-

based algorithms. We use three distance-based algorithms:

Neighbour-Joining (NJ) [34], FastME [35] (belonging to the class of

Balanced Minimum Evolution (BME) algorithms) and FastSBiX

[22,23], a recently introduced Stochastic Local Search algorithm.

Each distance matrix was submitted as input to the three

algorithms, which gives, for each language family, a total of six

possible inferred trees.

To quantify the accuracy of the inferred trees, for each language

family we computed the Generalized Robinson-Foulds score

(GRF) and the Generalized Quartet Distance (GQD) of the

inferred trees with the corresponding Ethnologue classifications.

Tables 1 and 2 illustrate in an aggregate way the results obtained

using the ASJP database. In particular we report, for each

continent, the mean and the variance, across all the language

families in that continent, of the values of the GRF and of the

GQD between the inferred trees and the corresponding

Ethnologue classifications, using both the LDN and the LDND

distances. For each continent we considered all the language

families present in the ASJP database.

As already mentioned, the GRF and the GQD are two

complementary measures of the disagreement between the

inferred tree and the expert classification. The GRF quantifies

the percentage of wrong edges in the inferred trees, while the

GQD counts how many quartets in the Ethnologue tree are

different butterflies than in the reconstructed tree. In both cases

the performance of the different algorithms always look very

similar, though in almost all cases the noise reduction made by

FastSBiX corresponds to a slightly better ability in reconstructing

the correct phylogenies. FastSBiX features indeed the lowest

average scores and, in many cases, the lowest variances. As for the

distance matrix, our results show how better performances are

obtained, on average, by using the LDND distance (4). The last

column of the tables, named ‘‘RANDOM’’, shows the error one

would have for a randomly reconstructed tree. This information is

useful to correctly appreciate the algorithmic ability of inferring

the correct phylogenetic relationships. While in fact we correct the

distance measures in order to avoid biases due to non binary

classification, it is evident that it is easier to be consistent with a

very coarse grained classification than with a finer one. In order to

take into account this observation, we can compare the errors

made by the reconstruction algorithms with the errors a

completely randomly constructed tree (with the same leaves)

would feature. The RANDOM columns of tables 1 and 2 report

averages over 10 realizations of the GRF and the GQD between a

randomly reconstructed tree and the Ethnologue classification.

Figures 5 and 6 report the histograms of the accuracies obtained

using the FastSBiX algorithm for each continent and worldwide:

large fluctuations exist both within each continent and worldwide

(The complete set of results for each language family and for all

the accuracy scores is presented in File S1 in Tables S4, S5, S6 and

S7).

We finally give a pictorial view of the accuracy of the

reconstruction algorithm across the planet. Figure 7 illustrates

the Generalized Quartet Distance for the different language

families on the world map, normalized with the corresponding

random value. More specifically, the color codes, for each family

f , the following quantity:

Xf ~2
GQD(f )

GQDrandom(f )
ð9Þ

where GQDrandom(f ) represents the mean value of the GQD

obtained averaging over 10 randomly reconstructed trees with the

same leaves (languages) of the family f . Xf quantifies the level of

accuracy of the reconstruction with respect to a null model. The

multiplicative factor 2 is included for the sake of better

visualization: Xf ~1 indicates a GQD(f ) equal or higher to half

of the random tree distance GQDrandom(f ).

Effect of the database completeness and coverage
In this section we consider how the length and the completeness

of the lists of words affect the accuracy of the reconstruction. To

this end, we restrict our analysis to the Austronesian family for

which two different databases are available: the Automated

Systematic Judgement Program (ASJP) and the Austronesian

Basic Vocabulary Database (ABVD). The two databases mainly

differ in two features: ASJP’s lists includes at most 100 items for

each language, while ABVD’s lists includes up to 210 words. In

both cases, not all the languages in the family express all the

meanings. As we have already pointed out in fig. 2, while in the
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ASJP there are 40 words shared by all the languages and 60 words

contained only in a small subset, in the ABVD database each word

is shared at least by 50% of the languages in the family.

In order to get a fair comparison, we isolate a subset of 305 lists

of words corresponding to languages shared by the two databases.

The full list of languages is available in File S1. These two classes

of lists are used to infer phylogenetic trees of the corresponding

languages to be compared with the Ethnologue classifications.

Since the results of the previous section did not show a significant

difference between the two definitions of distance matrix, here we

only use the LDN distance which allows for faster computations.

Further, we only consider the FastSBiX algorithm to reconstruct

phylogenies, being the one that features slightly better perfor-

mances, as shown in the previous section.

We start by investigating the effect of the length of the word-lists

on the accuracy of the inference of evolutionary relationships

among languages. To this end, for each of the two databases, we

proceed as follows: for each meaning i we compute the fraction fi

of languages which contains a word for i. We sort these values in a

decreasing order, obtaining a ranked list of words. We then

Table 1. Accuracy of the reconstructions as measured with the Generalized Robinson-Foulds (GRF).

GENERALIZED ROBINSON-FOULDS SCORE

LDN LDND

Neighbour-Joining FastME FastSBiX Neighbour-Joining FastME FastSBiX RANDOM

AFRICA

Mean 0.2872 0.2845 0.2749 0.2859 0.2743 0.2729 0.7888

Variance 0.0327 0.0322 0.0329 0.0324 0.0323 0.0332 0.1945

EURASIA

Mean 0.3152 0.3116 0.2999 0.3056 0.2930 0.2998 0.9063

Variance 0.0244 0.0238 0.0138 0.0200 0.0200 0.0108 0.0313

PACIFIC

Mean 0.1228 0.1271 0.1092 0.1200 0.1178 0.1083 0.7282

Variance 0.0173 0.0182 0.0181 0.0174 0.0177 0.0177 0.1422

AMERICA

Mean 0.3084 0.2885 0.2797 0.2972 0.3080 0.3023 0.8949

Variance 0.0673 0.0600 0.0522 0.0673 0.0726 0.0654 0.0525

For each continent we report the average and the variance of the GRF over all the languages spread on the continent. The different columns correspond to the two
different ways of constructing the distance matrix (LDN and LDND) and to the three distance-based algorithms considered. The last column labelled RANDOM reports
the results for the null model considered. See the main text for details.
doi:10.1371/journal.pone.0020109.t001

Table 2. Accuracy of the reconstructions as measured with the Generalized Quartet Distance (GQD).

GENERALIZED QUARTET DISTANCE

LDN LDND

Neighbour-Joining FastME FastSBiX Neighbour-Joining FastME FastSBiX RANDOM

AFRICA

Mean 0.1379 0.1872 0.1379 0.1094 0.1048 0.0855 0.4781

Variance 0.0072 0.0164 0.0069 0.0047 0.0045 0.0044 0.0601

EURASIA

Mean 0.1911 0.1787 0.1721 0.1716 0.1676 0.1661 0.6437

Variance 0.0378 0.0387 0.0399 0.0386 0.0385 0.0355 0.0011

PACIFIC

Mean 0.0864 0.0901 0.0662 0.0829 0.0858 0.0706 0.4893

Variance 0.0096 0.0091 0.0085 0.0079 0.0109 0.0070 0.0691

AMERICA

Mean 0.1595 0.1536 0.1569 0.1618 0.1646 0.1600 0.6057

Variance 0.0252 0.0245 0.0235 0.0244 0.0281 0.0269 0.0339

For each continent we report the average and the variance of the GQD over all the languages spread on the continent. The different columns correspond to the two
different ways of constructing the distance matrix (LDN and LDND) and to the three distance-based algorithms considered. The last column labelled RANDOM reports
the results for the null model considered. See the main text for details.
doi:10.1371/journal.pone.0020109.t002
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Figure 5. Accuracy histograms as measured with the Generalized Robinson-Foulds score (GRF). For each continent and for the whole
world we report the histograms of the GRF as measured over all the families spread on each specific region. We considered here only the FastSBiX
algorithm that features slightly better performances with respect to the competing algorithms, and both the the LDN (2) (right panel) and the LDND
(4) (left panel) definition of distance. The histograms are always peaked near zero, meaning that the rate of errors are always very low, but the
variances are quite large. These distributions do not discriminate the performances of the inference using LDN (2) or LDND (4) definition of distances.
doi:10.1371/journal.pone.0020109.g005

Figure 6. Accuracy histograms as measured with the Generalized Quartet Distance (GQD). For each continent and for the whole world
we report the histograms of the GQD as measured over all the families spread on each specific region. We considered here only the FastSBiX
algorithm that features slightly better performances with respect to the competing algorithms, both with the LDN (2) (right panel) and the LDND (4)
(left panel) definition of distance. The histograms are always peaked near zero, meaning that the rate of errors are always very low. The distributions
of the LDN-inferred trees, moreover, display larger variances than the LDND ones, this means that the latter definition allows for better performances
in inferring languages trees with a distance-based approach. The overall variances are smaller with respect to the ones in fig. 5.
doi:10.1371/journal.pone.0020109.g006
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consider different word-lists, obtained in the following way: we

start with the 10 most frequent words and we progressively add a

constant number of words following the ranked list.

We compute the dissimilarity matrices by making use of only

the reduced lists constructed as above, and we use those matrices

as starting point for the reconstruction algorithm (we use the

FastSBiX algorithm for all the results discussed below). Fig. 8

reports the Generalized Robinson-Foulds score (left) and the

Generalized Quartet Distance (right) between the inferred trees

and the corresponding Ethnologue classifications, as a function of

the number M of chosen words, for both the AJSP and the ABVD

databases. As a general trend, the number of errors decreases

when the size of the word-lists considered increases. Though the

large improvement of the accuracy occurs by adding the first 40 or

50 words, a slow improvement of the accuracy is always there if

one keeps increasing the word-lists size. This already points in the

direction that, in order to improve the accuracy of the

phylogenetic reconstruction, one has to increase the size of the

word-lists. The accuracy obtained with the ABVD and ASJP

databases are very similar when considering the first M~40 most

shared words. Upon increasing M, ASJP does not feature any

improvement while ABVD keeps improving its accuracy, although

very slowly, when Mw40. A possible explanation for this could be

related to the presence, in the ASJP database, of meanings with a

very low level of sharing (see inset of the left panel of Fig. 8 as well

as Fig. 2).

The value of Meff (see inset of the left panel of Fig. 8) takes into

account in how many languages a given meaning is expressed

through a word. The missing information concerns whether pairs

of languages have words for the same meaning. Suppose two

languages have words for the same number of meanings. This does

not mean that the meaning expressed by words in each language

are the same. If paradoxically the sets of meanings covered by the

two languages had a null overlap, we wouldn’t have data to

construct distance matrices. It is thus interesting to measure the

degree of overlap between the list of words of pairs of languages.

To this end, we define each language i as a binary vector~lli whose

generic entry la
i is 1 if a word exists in that language for the

meaning a and 0 otherwise. The overlap of two languages li and lj
is thus given by

P
a la

i la
j . We define as level of coverage for a

database the average overlap between all pairs of languages:

Coverage~
2

N(N{1)

X
i=j

X
a

la
i la

j , ð10Þ

where N is the total number of languages considered, the index a

runs over all the meanings while the indices i and j run over the

different languages. In this way the maximal value of the coverage

is given by the total number of meanings M we are considering.

The inset of the right panel of Figure 8 reports the curves for the

Coverage as a function of M. It is evident a strong correlation

between M and the Coverage both in the ASJP and ABVD

databases. Notice that the maximal observed values of the

coverage are well below the theoretical maximum (100) in the

ASJP database and below the maximum (210) in the ABVD

database.

The above results can be summarized by saying that the

accuracy of the reconstructions strongly depends on the com-

pleteness (quantified by Meff ) as well as on the level of Coverage of

Figure 7. Worldwide accuracy of the inferred language trees. This map represents the level of accuracy of the FastSBiX algorithm on several
language families throughout the world. The colors code the values of the Generalized Quartet Distance (GQD) between the trees inferred with the
FastSBiX algorithm and the LDND definition of distance for each language family included in the ASJP database and the corresponding Ethnologue
classifications. The GQD is normalized with the corresponding random value (see text for details). On the one hand blue regions corresponds to
language families for which the inferred trees strongly agree with the Ethnologue classification. On the other hand red regions corresponds to poorly
reconstructed language families. Yellow is for the families in which a random reconstruction would get a GQD score of zero, meaning that the
Ethnologue classification has a null resolution (the corresponding tree is a star). Grey areas are those for which no data are present in the databases
adopted for the reconstruction. Asterisks are for regions which include more than one family of languages. See File S1 for the analogous maps
obtained with different algorithms and different definitions of the distance between languages.
doi:10.1371/journal.pone.0020109.g007
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the database considered. In the ASJP and ABVD databases M,

Meff and the Coverage are strongly correlated and one observes a

first substantial improvement of the accuracy for Mv40 and a

continuous, though slower, improvement for Mw40 in the ABVD

database, where Meff and the Coverage keeps increasing with M.

Discussion

In this work we presented a quantitative investigation of the

accuracy of distance-based methods in recovering evolutionary

relations between languages. The quantification of the accuracy

rests upon the computation of suitable distances between the

inferred trees and the classifications made by experts (in our case

the Ethnologue).

We introduced two generalized scores, the Generalized

Robinson-Foulds score (GRF) and the Generalized Quartet

Distance (GQD), which successfully allow for the comparison of

binary trees and expert classifications. The generalizations were

made necessary in order to take into account the biases due to the

presence of non-binary nodes in the Ethnologue classifications,

which came from a non fine-grained groupings of the languages.

Our scores do not count every refinement as an error, while

properly take in account every displacement of a language or

wrong groupings with respect to the classifications. These scores

are generalizations of standard measures; on the one hand the RF,

which is a good measure if we are interested in measuring how far

displaced pairs of subtrees have been moved around in one tree

compared to another; on the other hand the QD is a more

adequate measure whenever it is important to quantify the size of

displaced subtrees. Our generalized scores inherit all these

properties. Moreover, while in the GRF the stress is on the

inferred trees, counting the percentage of wrong bipartitions in the

reconstructed tree, in the GQD the stress is on the classification,

since we are computing the percentage of correctly inferred

quartets in the reconstructed tree.

Once properly defined the tools for the comparison, we

conducted a thorough evalution of the accuracy of distance based

methods on all the language families listed in the ASJP database.

The analysis was carried out by adopting state-of-the art distance-

based algorithms as well as two different definitions of distance

between lists of words, the LDN (2) and the LDND (4). In all the

cases we obtained very robust results, which enabled us to draw

some general conclusions. The two different definitions of

distances between word-lists, LDN and LDND, almost guarantee

the same accuracy for the inference of the trees of languages, with

the LDND definition allowing for a slightly better accuracy

(detailed results are reported in File S1). The LDN, on the other

hand, because of its lower computational complexity, allows for

faster computations without a considerable loss of accuracy. The

length of the lists used to compute the distances between the

languages strongly affects the accuracy of the reconstruction. The

comparison between the two databases for the Austronesian

family, the ASJP [27] and the ABVD [28] provides very important

hints. The accuracy of the reconstruction always worsens if words

with a low level of sharing are included; from this perspective it is

always better to restrict the analysis to the meanings with an high

Coverage instead of using all of them.

Figure 8. Role of the word-list completeness and coverage. (left) the Generalized Robinson-Foulds (GRF) score between the inferred trees
and the corresponding Ethnologue classification for the Austronesian family, vs. the number M of most shared words, both for the ASJP and the
ABVD databases. The inset reports the behaviour of Meff , the effective number of most shared words, defines as follows. For each list Meff is the sum
of all the value of fi for all the meanings in the list. In this way Meff quantifies the effective number of most shared meanings. There is a strong
correlation between M and Meff for Mv40. For Mw40 Meff does not increase anymore in the ASJP database. This explains why the GRF does not
decrease for Mw40 for the ASJP database. (right) the Generalized Quartet Distance (GQD) between the inferred trees and the corresponding
Ethnologue classification for the Austronesian family, vs. the number M of most shared words, both for the ASJP and the ABVD databases. The inset
reports the behaviour of the Coverage, which measures the degree of alignment of the word-lists for the different languages considered, vs. M (see
text for details about the definition of Coverage). Again there is a strong correlation between the Coverage and M . The distance-based algorithm
used is FastSBiX with the LDN definition of distance.
doi:10.1371/journal.pone.0020109.g008
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Fig. 7 summarizes the accuracy of distance-based reconstruction

algorithms for the different language families on the world map. It

is evident how at present the accuracy is satisfactory though highly

heterogeneous across the different language families. Once

removed the obvious bias due to the finite Ethnologue resolution

power, this heterogeneity has to be presumably ascribed to a non

homogeneous level of completeness and coverage of the word-lists

for specific language families.

In conclusion we provided the first extensive account of the

accuracy of distance-based phylogenetic algorithms applied to the

recontruction of worldwide language trees. The overall analysis

shows as the effort devoted so far to the compilation of large-scale

linguistic databases [27,28] already allows for very good

reconstructions. We hope our survey could be an important

starting point for further progress in the field, especially for

language families for which the available databases are still

incomplete or the corresponding Ethnologue classification still

poorly resolved.
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