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Abstract

Background: Accurate estimations of life expectancy are important in the management of patients with metastatic cancer
affecting the extremities, and help set patient, family, and physician expectations. Clinically, the decision whether to operate
on patients with skeletal metastases, as well as the choice of surgical procedure, are predicated on an individual patient’s
estimated survival. Currently, there are no reliable methods for estimating survival in this patient population. Bayesian
classification, which includes Bayesian belief network (BBN) modeling, is a statistical method that explores conditional,
probabilistic relationships between variables to estimate the likelihood of an outcome using observed data. Thus, BBN
models are being used with increasing frequency in a variety of diagnoses to codify complex clinical data into prognostic
models. The purpose of this study was to determine the feasibility of developing Bayesian classifiers to estimate survival in
patients undergoing surgery for metastases of the axial and appendicular skeleton.

Methods: We searched an institution-owned patient management database for all patients who underwent surgery for
skeletal metastases between 1999 and 2003. We then developed and trained a machine-learned BBN model to estimate
survival in months using candidate features based on historical data. Ten-fold cross-validation and receiver operating
characteristic (ROC) curve analysis were performed to evaluate the BNN model’s accuracy and robustness.

Results: A total of 189 consecutive patients were included. First-degree predictors of survival differed between the 3-month
and 12-month models. Following cross validation, the area under the ROC curve was 0.85 (95% CI: 0.80–0.93) for 3-month
probability of survival and 0.83 (95% CI: 0.77–0.90) for 12-month probability of survival.

Conclusions: A robust, accurate, probabilistic naı̈ve BBN model was successfully developed using observed clinical data to
estimate individualized survival in patients with operable skeletal metastases. This method warrants further development
and must be externally validated in other patient populations.
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Introduction

‘‘Doc, how long have I got?’’ For the physician, such questions

related to life expectancy are among the most difficult to answer.

An accurate estimation of survival is important, however, and can

help set patient, family, and physician expectations. Clinically, the

decision to operate on patients with skeletal metastases of the

extremities, as well as the choice of surgical procedure, is

predicated on a patient’s estimated survival [1]. The goal of

surgery in this setting is not to cure the disease, but to relieve pain

and optimize functional mobility for the maximum amount of

time. Thus, a considerable amount of effort has been spent

identifying useful prognosticators for use in the metastatic setting.

Several independent predictors of survival have been identified

for patients with metastatic bone disease of the extremities [2–8].

These include the primary oncologic diagnosis, Eastern Cooper-

ative Oncology Group (ECOG) performance status score [9];

number of bone metastases, presence of visceral metastases, serum

hemoglobin level, senior surgeon’s estimate of survival [6];

appendicular, as opposed to axial, bone metastases [10]; and type

of reconstructive procedure performed [5]. Although many

prognostic factors are known, the predictability of survival in

patients with metastatic bone disease remains alarmingly low—

only 5–15% in the best-reported series [6]. Relationships between

prognostic variables are difficult to interpret, and better means of

prognostication are needed since there are currently no reliable

methods for estimating survival in this patient population.

Bayesian classification, which includes Bayesian belief network

(BBN) modeling, is a statistical method that represents conditional,

probabilistic relationships between variables, or ‘‘features.’’ Once

described, these relationships enable the development of a

graphical n-dimensional structure, or model, which codifies all
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features, including the outcome(s), into a single hierarchical

network. Bayesian classification also accounts effectively for data

multi-dimensionality and uncertainty—a quality that enables BBN

models to maintain their robustness in the context of incomplete or

discordant clinical data. As such, BBNs have been successfully

used to both model complex relationships, as well as to classify

outcomes, in a variety of oncologic diagnoses [11–20]. The

purpose of this study was to determine the feasibility of developing

and training Bayesian classifiers designed to estimate survival in

patients undergoing surgery for skeletal metastases involving the

axial and appendicular skeleton.

Methods

After obtaining approval from the institutional review board of

Memorial Sloan-Kettering Cancer Center, who issued a waiver of

informed consent, we searched the institution-owned patient

management database (Disease Management System, v.5.2, 1996;

MSKCC) for all patients who underwent surgery for metastatic

bone disease between 1999 and 2003. For each patient, we

reviewed his or her medical records and imaging studies. These

data, along with several other features, were used to construct the

BBN model.

Fifteen candidate features were chosen based on their current

clinical or historical association with survival in patients with

operatively treated skeletal metastases. These included the follow-

ing: age at the time of surgery, race, sex, estimated glomerular

filtration rate (mL/min/1.73 m2), serum calcium concentration

(mg/dL), serum albumin concentration (g/dL), indication for

surgery (impending or completed pathologic fracture), number of

bone metastases (solitary or multiple), surgeon’s estimate of survival

(postoperatively, in months), presence or absence of visceral

metastases, presence or absence of lymph node metastases, prior

chemotherapy (yes or no), preoperative hemoglobin (mg/dL, on

admission, prior to transfusion, if applicable), absolute lymphocyte

count (K/mL), and the primary oncologic diagnosis. The oncologic

diagnosis was classified into three groups according to the method

described by Katagiri et al. [21], but with some modifications.

Briefly, breast, prostate, renal cell, and thyroid carcinoma, multiple

myeloma, and malignant lymphoma were included in Group 3;

sarcomas and other carcinomas were included in Group 2; and

lung, gastric, and hepatocellular carcinoma and melanoma were

included in Group 1.

The following definitions were used in this study. An impending

pathologic fracture was one in which the degree of bone and/or

cortical disruption warranted, in the opinion of the treating surgeon

(PJB or JHH), prophylactic surgical stabilization to prevent fracture.

A completed pathologic fracture was one in which a cortical lesion

had caused a change in bone length, alignment, rotation, or loss of

height as determined by imaging. The surgeon’s estimate of survival

was made preoperatively by the treating surgeon (PJB or JHH) after

reviewing the patients’ medical records and imaging studies,

obtained a complete medical history, and performed a thorough

physical examination. Biopsy-proven or clinically obvious metasta-

ses to organs within the chest or abdomen were considered visceral

metastases. Only biopsy-proven metastases to the lymph nodes were

considered indicative of lymph node involvement. Finally, a patient

was considered as having undergone prior chemotherapy, if he or

she had received any chemotherapy at any time for the current,

active oncologic diagnosis.

Conventional Statistical Analysis
Conventional statistical analysis was performed using SAS

software (v.9.2, SAS Institute Inc., Cary, NC, USA). Since we

modified a previously described diagnosis grouping method,

overall survival of patients in each diagnosis group was compared

using the Kaplan-Meier method with log-rank assessment.

Bayesian Statistical Analysis and Model Development
The BBN models were developed using commercially available

machine-learning algorithms (FasterAnalytics, DecisionQ, Wash-

ington, DC, USA) that automatically learn network structures and

joint probabilities from the training data.

The training data set included all cases identified from the

patient management database during the study period. All 15

candidate features were considered. Features containing continu-

ous variables were converted into categorical variables by equal-

area binning based on prior distributions. The machine-learning

algorithm uses a scoring formula that balances goodness-of-fit

against robustness using a parsimony metric to reduce the risk of

overfitting the final model to the training data set. To refine the

model, we used a step-wise training process. Quantitative and

qualitative assessments were used to optimize variable preparation

and selection. Unrelated and confounding features were then

pruned from the preliminary models to produce the final models.

We trained the BBN to specify network structure and prior

probability distributions to develop classifiers of estimated survival

at 3 and 12 months, which we consider to be useful discriminators

for surgical decision-making. We trained a separate classifier for

each outcome measure (survival .3 months and survival .12

months) because, as a parametric modeling methodology, BBNs

are not well suited to provide discrete estimates in time. Also,

training two separate models eliminates the possibility of outcome

measures acting as confounding features within the same BBN.

Because BBN models are directed graphs of conditional

dependence, the network structure can be portrayed graphically

to illustrate the conditional interdependence of the features. First-

degree predictors are defined as those nodes that share edges with

the outcome of interest, while second-degree predictors are those

nodes that share edges with the first-degree predictors. Inference

tables were calculated for both models depicting posterior

estimates of probability for each possible permutation and the

expected outcome, survival greater than 3 months and 12 months,

respectively.

Internal Validation
Ten-fold cross-validation was performed to assess the robustness

of the final 3-month and 12-month models. Data were randomized

and divided into 10 matching train-and-test sets. Each train-and-

test set consisted of a training set composed of 90% of patient

records and a test set composed of the remaining 10% of records.

Each matching set was unique, and there was no overlap between

the independent test sets. A BBN model was trained, using each

training set, by applying the same parameters as the final models,

then tested on the corresponding test set. A receiver operating

characteristic (ROC) curve was plotted for each test to evaluate the

classifier’s accuracy and the model’s robustness. The ROC curve is

a graphical plot of sensitivity vs. 1-specificity at all discrimination

threshold levels. The area under the ROC curve (AUC) was then

calculated for each BBN model to assess its overall accuracy and

robustness.

Results

A total of 189 consecutive patients were identified and, thus,

used for this analysis. Median follow-up was 8 months (inter-

quartile range [IQR] 2, 22), which was adequate for determining

overall survival up to and including either the 3-month or 12-
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month postoperative time points. Median patient age was 62 years

(54, 72). Most patients were women (55.1%), and most were white,

non-Hispanic (85.2%). Most patients also had visceral metastases

(60.3%), multiple bone metastases (71.0%), and prior systemic

therapy (56.1%). A few patients had lymph node involvement

(18.8%). When classified according to diagnosis group, most

patients were in Group 3 (54.5%), followed by Group 1 (27.2%),

and then Group 2 (18.2%). Regarding overall survival (Fig. 1), 58

patients (30.7%) survived less than 3 months, 53 (28.0%) survived

3–12 months, and 78 (41.3%) survived more than 12 months.

Baseline (posterior) distributions represented as proportions are

depicted in Fig. 2.

The features comprising the final models are described in

Table 1. First-degree predictors differed between the two models.

In the 3-month model (Fig. 2), the surgeon’s estimate of survival,

hemoglobin concentration, absolute lymphocyte count, completed

pathologic fracture, and ECOG performance status were first-

degree predictors of survival. In the 12-month model (Fig. 3), only

Figure 1. Kaplan-Meier curves showing overall survival for patients by diagnosis group. The overall survival of patients in Group 1 was
significantly lower than that of patients in Groups 2 and 3 at the 3-month time point‘ (p,0.0001, log-rank test). Overall survival was significantly
different between all groups at the 12-month time point* (p,0.0001, log-rank test).
doi:10.1371/journal.pone.0019956.g001

Figure 2. Three-month BBN model with posterior distributions depicted as proportions (%) of the training population. As shown,
there are five first-degree predictors of 3-month survival: the surgeon’s estimate of survival (‘‘surgeon_estimate_of_survival’’), preoperative
hemoglobin concentration (‘‘hemoglobin’’), preoperative absolute lymphocyte count (‘‘absolute_lymphocyte_count’’), ECOG performance status
(‘‘ECOG’’), and the presence of a completed pathologic fracture (‘‘completed_path_fx’’). The network structure indicates that the primary oncologic
diagnosis (‘‘dx_grouping’’) and the presence of visceral metastases (‘‘visceral_mets’’) are both first-degree associates of the surgeon’s estimate node.
doi:10.1371/journal.pone.0019956.g002
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the surgeon’s estimate of survival, hemoglobin concentration,

number of bone metastases, and the diagnosis group were first-

degree predictors of survival. In the 3-month model, the diagnosis

group and the presence of visceral metastases were first-degree

associates of the surgeon’s estimate node. In contrast, in the

12-month model, ECOG performance status and presence of

visceral metastases were first-degree associates of the surgeon’s

estimate node.

Cross-validation ROC curve analysis showed that both the 3-

month and 12-month models were robust. Mean AUC for 3-

Figure 3. Twelve-month BBN model. As shown, there are four first-degree predictors of 12-month survival: the surgeon’s estimate of survival
(‘‘surgeon_estimate_of_survival’’), preoperative hemoglobin concentration (‘‘hemoglobin’’), the number of bone metastases (‘‘bone_mets’’), and the
primary oncologic diagnosis (‘‘dx_grouping’’). In contrast to the 3-month model, the network structure of the 12-month model indicates that the
ECOG performance status (‘‘ECOG’’) and the presence of visceral metastases (visceral_mets) are both first-degree associates of the surgeon’s estimate
node.
doi:10.1371/journal.pone.0019956.g003

Table 1. Network features used in the final BBN models.

Feature Model Label Description Node States

Survival .12 months survival_greater_than_1year Overall survival exceeding 12 months yes, no

Survival .3 months survival_greater_than_3mos Overall survival exceeding 3 months yes, no

Surgeon’s estimate of survival surgeon_estimate_of_survival The senior surgeon’s estimate of survival
(in months) after obtaining
the patient’s history, reviewing his or
her laboratory and imaging results,
and performing a thorough physical
examination

,4, 4–9, 9–18, .18

Oncologic diagnosis grouping dx_grouping Primary oncologic diagnosis, grouped
as follows:
1: lung, hepatocellular, and gastric
carcinoma; melanoma
2: sarcoma and other carcinoma, not
in Groups 1 or 3
3: breast, prostate, thyroid, and renal
cell carcinoma; myeloma; lymphoma

1, 2, 3

ECOG performance status ECOG Eastern Cooperative Oncology Group
performance status, assessed
preoperatively by treating physician

#2, $3

Pathologic fracture status completed_path_fx Indicates whether surgery was
performed for an impending or
completed pathologic fracture

yes, no

Skeletal metastases bone_mets Indicates whether the patient had
solitary or multiple skeletal metastases

solitary, multiple

Organ metastases visceral_mets Presence of metastases to visceral
organs, lungs, or brain

yes, no

Lymph node metastases nodal_involvement Presence of lymph node metastases yes, no

Sex sex Patient sex male, female

Hemoglobin concentration hemoglobin Preoperative hemoglobin concentration
(in mg/dL), prior to blood transfusion,
if applicable

,10.1, 10.1–11.4
11.4–12.9, .12.9

Absolute lymphocyte count absolute_lymphocyte_count Preoperative absolute lymphocyte
count (in mg/dL), prior to transfusion,
if applicable

,0.6, 0.6–1.1, 1.1–1.6,
.1.6

Features included in the final BBN models. Each feature, its label, description, and possible node states are shown. Continuous variables are represented as categorical
variables.
doi:10.1371/journal.pone.0019956.t001
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month probability of survival was 0.85 (95% CI: 0.80–0.93), and

mean AUC for 12-month probability of survival was 0.83 (95%

CI: 0.77–0.90). Inference tables were calculated for 3-month

survival (Table 2) and 12-month survival (Table 3). Posterior

estimates of probability of 3-month survival ranged from 0.8–

96.7%, while posterior estimates of probability of 12-month

survival ranged from 0.9–99.2%. In each case, we used the

estimated case frequency to select the ten most likely inferential

cases, since there were 256 and 128 potential permutations for the

3- and 12-month models respectively.

Discussion

Because predictive models permitting individualized estimation

of survival are lacking, we trained two full machine-learned BBN

models, using observed clinical data, to estimate survival in

patients with operable skeletal metastases. These models were

shown to be robust on ten-fold cross-validation. We also

characterized the importance of the surgeon’s estimate of survival,

and we believe that it should be included in future iterations of this

model, whenever possible. However, if the surgeon’s estimate is

not included, ECOG performance status, the oncologic diagnosis

group, and the presence of visceral metastases may be used to

estimate this important subjective feature.

In the present analysis, we used the 3-month and 12-month time

points, since we consider them to be useful discriminators for

surgical decision-making. We believe that survival less than 3

months is a relative contraindication to surgical management of

certain impending pathologic fractures, particularly those in the

upper extremity. If surgical stabilization is deemed to be necessary,

shorter life expectancies (3–12 months) are thought to warrant less-

invasive stabilization procedures that do not require prolonged

rehabilitation periods. On the other hand, longer life expectancies

($12 months) warrant more-durable reconstruction procedures,

which are associated with significant operative morbidity and

longer rehabilitation times. Thus, less-invasive stabilization

techniques may be appropriate for patients with an estimated

survival of less than 12 months, while more-durable reconstruction

options may be considered for those with an estimated survival

longer than 12 months. These concepts and the surgical

techniques are described elsewhere [22].

Unfortunately, although modeling and, thus, estimating survival

in patients with metastatic disease is important in the surgical

management of these patients, it has proven to be challenging

[2,5,6,8]. For instance, there is no consensus regarding which

variables should be included in survival estimation models. In an

attempt to codify several known independent predictors of

survival, Nathan et al. developed a conventional, regression-

derived nomogram based on 191 patients with operable skeletal

metastases [6]. Variables, collected prospectively, included ECOG

performance status, number of bone metastases, presence of

visceral metastases, and serum hemoglobin concentration. Eval-

uation in a five-patient test set yielded an accurate survival

estimate in two patients, but this method has not yet been

internally or externally validated.

A closer look at Nathan et al.’s results gives us some insight into

the challenges inherent to predicting survival in these patients [6].

Linear regression analysis revealed that, in terms of accuracy, the

‘‘attending surgeon’s [subjective] prediction’’ of survival was

superior to any other covariate included in their analysis. The

authors attributed this finding to the attending surgeon’s extensive

experience in the field, but no further conclusions were drawn.

Other studies, including a systematic review of physicians’ survival

predictions, also emphasize subjective assessments and cite the

importance of the physician’s role in estimating patient survival

[23–25].

In the context of the current study, what makes the surgeon’s

estimate of survival so important? Clearly, an estimate of survival

is made after reviewing the patient’s medical records and imaging

studies and performing a thorough physical examination on the

patient. Some variables considered by the surgeon are objective

and thus quantifiable, such as ECOG performance scores,

laboratory results, and radiographic findings. However, others

are subjective and thus not quantifiable, such as the patient’s

appearance of sickness, the patient’s demeanor, and the surgeon’s

‘‘gut feeling’’ following the consultation. These subjective

observations are unlikely to be useful as individual covariates in

the traditional sense, but we believe that they are contained within

Table 2. Posterior estimates of survival at 3 months (10 most frequent cases).

Drivers Target

Expected
frequency ECOG

Absolute
lymphocyte
count (K/mL)

Completed
Pathologic
Fracture

Hemoglobin
concentration
(mg/dL)

Surgeon’s estimate
of survival (months)

Probability of
survival .3 months

No Yes

2.02% $3 ,0.6 Yes ,10.1 ,4 96.7 3.3

1.33% $3 ,0.6 No ,10.1 ,4 91.1 8.9

1.73% $3 ,0.6 Yes 10.1–11.4 ,4 95.3 4.7

1.17% $3 ,0.6 No 10.1–11.4 ,4 87.6 12.4

1.09% $3 0.6–1.1 Yes ,10.1 ,4 94.8 5.2

0.95% $3 0.6–1.1 Yes 10.1–11.4 ,4 92.7 7.3

0.90% #2 ,0.6 Yes ,10.1 ,4 89.5 10.5

0.87% $3 ,0.6 Yes 11.4–12.9 ,4 86.5 13.5

0.81% #2 1.1–1.6 No .12.9 4–9 0.8 99.2

0.80% #2 ,0.6 Yes 10.1–11.4 ,4 85.6 14.4

The 3-month posterior estimates of survival characterizing the data set by most- to least-frequent cases. The ten most likely cases were selected from 256 possible
permutations.
doi:10.1371/journal.pone.0019956.t002
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the surgeon’s estimate, which was found to be an important first-

degree predictor in both survival models (Figs. 2 and 3).

Historically, the physician’s assessment appears to be important

when estimating survival [6,23–25], and if the subjective

observations listed above are indeed represented by the surgeon’s

estimate, the results of the present study support this claim.

Fortunately, the BBN method may help us to better understand

the complex relationships that exist between objective and

subjective features. The hierarchy of conditional dependence,

identified by the BBN, defines how individual features known to be

associated with survival relate to one another. When graphically

displayed, the network structure depicts these relationships. For

example, we found that the surgeon’s estimate is a first-degree

predictor of overall survival at both 3 months and 12 months.

However, the nodes associated with the surgeon’s estimate differed

between the models. In the 3-month model, the oncologic

diagnosis group and the presence of visceral metastases were

first-degree associates of the surgeon’s estimate node. In contrast,

in the 12-month model, ECOG performance status and the

presence of visceral metastases were first-degree associates. This

suggests that in short-term survivors, represented by the 3-month

model, specific oncologic diagnosis and the presence of visceral

metastases are most influential in the development of a survival

estimate by the senior surgeon, while in longer-term survivors,

represented by the 12-month model, ECOG performance status

and the presence of visceral metastases are most important in the

development of the surgeon’s estimate of survival. Other features,

such as the number of bone metastases, hemoglobin concentra-

tion, absolute lymphocyte count, and completed pathologic

fracture, may also inform the surgeon’s estimate, but they have

significant prognostic value of their own, as shown in both model

structures (Figs. 2 and 3). This is further supported by the

observation that a BBN model that included the surgeon’s estimate

and these independent factors (the number of bone metastases,

hemoglobin concentration, absolute lymphocyte count, and

completed pathologic fracture) outperformed a BBN model

containing the surgeon’s estimate alone (data not shown).

Nevertheless, in order to capture the subjective, yet important,

elements of the clinical evaluation, we believe that future

predictive models designed to estimate survival in patients with

operatively treated skeletal metastases should include a surgeon’s

estimate of survival.

This cohort of surgically treated patients with metastatic disease

involving the axial and appendicular skeleton is among the largest

reported in the literature [1,5,6,10,21]. As such, it is well suited for

prognostic model development. Nevertheless, the limitations of

this study are those inherent to a feasibility study. No comparisons

were made to existing models or nomograms, and no external

validation was performed. Validation of these models in an

independent data set followed by an appropriate comparison to

existing models is the next logical step in the evaluation of this

method. The ultimate goal being to provide an accurate,

personalized answer to the difficult question, ‘‘Doc, how long

have I got?’’
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