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Abstract

Cisplatin along with other platinum based drugs are some of the most widely used chemotherapeutic agents. However
drug resistance is a major problem for the successful chemotherapeutic treatment of cancer. Current evidence suggests that
drug resistance is a multifactorial problem due to changes in the expression levels and activity of a wide number of proteins.
A majority of the studies to date have quantified mRNA levels between drug resistant and drug sensitive cell lines.
Unfortunately mRNA levels do not always correlate with protein expression levels due to post-transcriptional changes in
protein abundance. Therefore global quantitative proteomics screens are needed to identify the protein targets that are
differentially expressed in drug resistant cell lines. Here we employ a quantitative proteomics technique using stable isotope
labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to quantify changes in protein levels
between cisplatin resistant (HeLa/CDDP) and sensitive HeLa cells in an unbiased fashion. A total of 856 proteins were
identified and quantified, with 374 displaying significantly altered expression levels between the cell lines. Expression level
data was then integrated with a network of protein-protein interactions, and biological pathways to obtain a systems level
view of proteome changes which occur with cisplatin resistance. Several of these proteins have been previously implicated
in resistance towards platinum-based and other drugs, while many represent new potential markers or therapeutic targets.
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Introduction

Many current cancer chemotherapy strategies involve disrup-

tion of tumor cell growth by interfering with mitosis or by causing

cancer cells to commit to apoptotic pathways. Cisplatin is a

powerful chemotherapeutic cytotoxin primarily targeting DNA to

form DNA cross-links that can halt cell replication and can

activate a series of signal transduction pathways ultimately leading

to cell death. Acquired and intrinsic resistance to cisplatin

continues to be a major problem for successful clinical treatment

[1]. Generally, acquired resistance is the most common reason for

cancer chemotherapy failure. Possible mechanisms for resistance

to cisplatin include reduced intracellular concentration of cisplatin

by increased drug efflux and/or decreased drug influx, increased

inactivation by reaction with glutathione and other intracellular

nucleophiles, increased repair of DNA damage, and altered

apoptotic signaling pathways [1,2]. Cisplatin along with other

platinum based drugs such as carboplatin and oxiplatin, are seeing

a resurgence of clinical use in combination with other cytotoxic

compounds to treat various carcinomas including ovarian,

colorectal, prostate, lung and breast cancer [3].

Tissue culture studies on drug resistant cell lines generated by

continuous exposure of parental cells to chemotherapeutic

agents have generated much of the current knowledge on the

mechanisms of drug resistance. Genomic microarray experi-

ments are the most commonly applied to study drug resistance

and have successfully identified many genes with altered

expression levels in drug resistant cell lines [4,5]. However the

interpretation of purely transcriptomic data is limited in its ability

to provide a systems level understanding of changes to the

proteome. The proteome is a much more dynamic environment

than the transcriptome due to the kinetics of protein turnover,

post-translational modifications and protein-protein interaction

networks Several studies suggest that quantitative mRNA mea-

surements do not always reflect protein expression levels, likely

due to post-transcriptional changes in protein abundances

[6,7,8,9]. Comparative proteomics studies have also been applied

to the problem of drug resistance in cancer [10]. The majority of

these studies have relied on traditional proteomics techniques

based on quantitative densitometry analysis using two dimen-

sional gel electrophoresis, or Western blotting along with protein

identification by peptide mass fingerprinting. While these

methods generally provide a robust means of profiling changes

in protein expression patterns, identification is labor intensive

requiring that each protein spot of interest be excised and

processed separately. Quantification in gel-based methods is also

challenging due to many factors including overlapping spots,

weak signal intensity, spot positional differences, and mismatched

protein spots.

Proteins function as the mediators of nearly all cellular

processes, either directly or through interactions with other

biomolecules comprising what has been termed the interactome

[11]. Quantitative proteomic expression level data will serve as an

important part of understanding the complex molecular networks
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which underlie the emergence of drug resistance. Knowledge of

altered protein expression levels and perturbations to the

interactome will assist in the development of targeted-network

combination therapies with the potential to overcome drug

resistance [12]. However quantitative proteomics data will need

to be integrated with functional biochemical information to reveal

the actual mechanism of drug resistance.

In the present study we have applied an analytical quantitative

proteomics approach employing stable isotope labeling with

amino acids in cell culture (SILAC), to study changes to the

proteome with acquired drug resistance to cisplatin in the HeLa

cervical carcinoma cell line. The cisplatin resistant cell line

HeLa/CDDP was generated previously under exposure to a

clinically relevant concentration of cisplatin (1 mM) and was

found to display a 2.6 fold increase in resistance, compared to

non-resistant HeLa cells, to cisplatin and similar increase in

resistance towards other platinum based drugs [13]. Here we

identify and quantify a total of 856 proteins with 374 proteins

displaying significantly altered abundance levels between the

cisplatin resistant and sensitive cells.

Results

Identification of proteins differentially expressed
between cisplatin resistant and sensitive HeLa cells

Proteomics analysis using SILAC technology was employed to

quantify protein expression level differences between cisplatin

resistant and cisplatin sensitive HeLa cells. A schematic illustrating

the experimental outline is shown in Figure 1. In total we were

able to identify and quantify 1232 proteins, of which 856 were

observed in at least 50% (3/6) of the mixed SILAC samples

(HeLa/CDDP:HeLa mixed at a 1:1 ratio) samples and 50% (3/6)

of the control samples (HeLa/CDDP or HeLa mixed at a 1:1 ratio

with themselves). The average false discovery rate (FDR) for

peptide identification was 0.87%, determined by searching a

randomized decoy database with Mascot. Table S1 displays the

full list of the 856 proteins along with their SILAC ratios.

Histograms illustrating the distribution of relative isotope

abundance (RIA, area of light isotopic distribution divided by

the sum of the areas for the light and heavy isotopic distributions)

values for the control samples and the mixed samples are shown in

Figure 1. Overview of experimental design. HeLa and HeLa/CDDP cells were grown on isotopically light or heavy media. Light and heavy cell
lysates from HeLa and HeLa/CDDP were combined to generate forward and reverse mixed SILAC samples. Light and heavy cell lysates of the same
cell type were combined to generate control samples. Protein samples were reduced, alkylated and digested with trypsin into peptide samples that
were then analyzed by LC-MS/MS. Quantification of SILAC peptide pairs was performed with the software tool, SILACtor. A heat map was used to
visualize proteins displaying increased and decreased expression between HeLa and Hela/CDDP. Finally biological network analysis was combined
with protein expression level data to identify biological pathways relevant to cisplatin resistance.
doi:10.1371/journal.pone.0019892.g001
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Figure 2A. The protein ratios from the mixed samples show a

broad distribution compared to those from the control samples

indicating that several proteins are differentially expressed in

HeLa/CDDP versus the drug sensitive cells. To determine which

proteins showed altered expression in HeLa/CDDP compared to

HeLa, an analysis of variance (ANOVA) was performed to

compare the mean SILAC ratio for each protein from the mixed

sample type to the control sample type. The resulting F-statistic

and corresponding p-values from the ANOVA are included in

Table S1. In total 387 proteins were found to have significantly

shifted expression levels (p,0.01), of which 184 proteins were

observed with increased expression levels and 203 proteins were

observed with decreased expression levels in HeLa/CDDP. The

184 proteins with increased expression levels had measured RIA

ratios between 0.516 and 0.819 with an average of 0.595,

corresponding to a range from 1.07 to 4.54 fold increase with an

average of 1.54 fold increase in expression levels. The 203 proteins

with decreased expression levels had measured RIA ratios between

0.490 and 0.228 with an average of 0.422, corresponding to a

range from 1.04 to 3.38 fold change with an average of 1.39 fold

decrease in expression levels. Table 1 lists the ten proteins with

the largest increase in expression levels and the ten proteins with

the largest decrease in expression levels. Figure 2B displays the

distributions of RIA values for the proteins identified by ANOVA

with significantly altered expression levels. To further examine the

magnitude of change in protein expression levels that could be

expected to result from normal biological variation, cumulative

distribution analysis was performed on the control samples,

resulting in that a 1.25 fold change or greater (RIA less than

0.444 or RIA greater than 0.556) is not due to biological noise at

the 99% confidence level. A total of 142 proteins from the 184

proteins with increased expression and with ANOVA p-values

,0.01 also exceed the 1.25 fold change cutoff, while a total of 152

proteins from the 203 proteins with decreased expression and p-

Figure 2. Distribution and heat map analysis of quantified proteins. A Histograms illustrating of the distribution of RIA’s observed for the
control samples (blue) and the mixed samples (yellow). B Histogram of the distribution of averaged RIA’s with overlaid distributions of the proteins
identified by ANOVA with significantly decreased ratios (green) and significantly increased ratios (red). Bars are included indicating a61.25 fold
change cutoff which was determined from cumulative distribution analysis of the control sample at the 99% confidence level. C Heat map generated
from SILAC data comparing cisplatin resistant HeLa cells to normal HeLa cells. Lane 1 is light cisplatin resistant and heavy normal cells. Lane 2 is heavy
cisplatin resistant and light normal cells. Lane 3 is a one to one mixture of light and heavy cisplatin resistant cells. Lane 4 is a one to one mixture of
light and heavy normal cells.
doi:10.1371/journal.pone.0019892.g002
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values ,0.01 exceed the 21.25 fold change cutoff. The magnitude

of the observed protein expression level changes is on the same

order as the increased relative resistance of HeLa/CDDP vs.

HeLa to cisplatin (2.6 fold) [13]. Hierarchical clustering of the 856

proteins based on their SILAC ratios was performed to generate a

dendrogram and colored heat map shown in Figure 2C. The

heat map contains four columns corresponding to the two mixed

SILAC samples and two control SILAC samples (column 1-light

HeLa/CDDP:heavy HeLa, column 2-heavy HeLa/CDDP:light

HeLa, column 3- light HeLa/CDDP:heavy HeLa/CDDP,

column 4- light HeLa:heavy HeLa). The heat map image reveals

three general clustered regions which include proteins with

increased expression in HeLa/CDDP, proteins with decreased

expression in HeLa/CDDP, and proteins with unchanged

expression levels. Each lane in the map is an average of three

biological replicates each consisting of technical duplicates. In

general excellent agreement is observed between the inverse mixed

SILAC samples (Figure 2C, columns 1 & 2). A heat map

displaying the signals from each of the biological replicates is

included as Figure S1.

Western Blot
To confirm the differential expression of a few key target

proteins including CD44, DDB-1, DJ-1 and XRCC5, Western

blotting was performed. Levels of b-actin were monitored as a

quantitative control. A cropped version of the Western blot results

with a comparison of the protein ratio calculated from the Western

blot and the SILAC results can be seen in Figure 3. In general

there is good agreement between the two techniques as each of

these proteins was identified with increased expression levels in

HeLa/CDDP compared with normal HeLa. Images of the full

Western blots for each of the selected proteins are included in

Figure S2.

Biological Pathway Analysis of Differentially Expressed
Proteins

The protein interaction network shown in Figure 4 contains

803 proteins and 1174 protein-protein interactions. An interactive

version of this Cytoscape network is provided in Dataset S1.

Several clusters of related functional classes of proteins are visible

in this network including ribosomal proteins, ribonucleoproteins,

Table 1. Proteins with largest increased and decreased expression levels in HeLa/CDDP.

Ten Proteins With Largest Increase in Expression Levels in HeLa/CDDP

UniProt ID Protein Name Change* p-value{ GO Biological Pathway{

ALDR_HUMAN Aldose reductase 4.5460.20 1.73E-03 carbohydrate metabolic process

CATD_HUMAN Cathepsin D 4.4060.03 2.64E-05 autophagic vacuole assembly

G6PD_HUMAN Glucose-6-phosphate 1-dehydrogenase 3.9360.03 1.26E-08 NADPH regeneration

S10A4_HUMAN Protein S100-A4 3.7860.03 1.01E-05 positive regulation of I-kappaB
kinase/NF-kappaB cascade

1C05_HUMAN HLA class I histocompatibility antigen, Cw-5
alpha chain

3.1660.06 1.93E-03 immune response

NQO1_HUMAN NAD(P)H dehydrogenase [quinone] 1 2.8960.04 6.50E-07 response to oxidative stress

IDHP_HUMAN Isocitrate dehydrogenase [NADP], mitochondrial 2.8660.03 8.19E-04 2-oxoglutarate metabolic process

CHSP1_HUMAN Calcium-regulated heat stable protein 1 2.8360.02 2.89E-08 intracellular signaling pathway

VAT1_HUMAN Synaptic vesicle membrane protein VAT-1 homolog 2.6960.02 2.74E-04 oxidation reduction

APT_HUMAN Adenine phosphoribosyltransferase 2.6660.03 7.43E-08 adenine metabolic process

Ten Proteins With Largest Decrease in Expression Levels in HeLa/CDDP

UniProt ID Protein Name Change* p-value{ GO Biological Pathway{

H12_HUMAN Histone H1.2 21.8560.05 1.01E-05 nucleosome assembly

NC2A_HUMAN Dr1-associated corepressor 21.9160.05 7.98E-03 negative regulation of
transcription
from RNA polymerase II promoter

PGM1_HUMAN Phosphoglucomutase-1 21.9260.03 6.91E-08 glucose metabolic process

RL1D1_HUMAN Ribosomal L1 domain-containing protein 1 21.9260.14 2.49E-02 RNA processing

BRX1_HUMAN Ribosome biogenesis protein BRX1 homolog 21.9360.02 2.10E-06 ribosome biogenesis

GNAI3_HUMAN Guanine nucleotide-binding protein G(k)
subunit alpha

22.1160.04 1.43E-04 negative regulation of adenylate
cyclase activity

EBP2_HUMAN Probable rRNA-processing protein EBP2 22.2260.06 2.06E-03 ribosome biogenesis

PAIRB_HUMAN Plasminogen activator inhibitor 1 RNA-binding protein 22.2960.05 9.36E-07 regulation of anti-apoptosis

GBG12_HUMAN Guanine nucleotide-binding protein
G(I)/G(S)/G(O) subunit gamma-12

22.5060.05 5.72E-05 cerebral cortex development

HSB11_HUMAN Heat shock protein beta-11 23.3860.07 1.05E-04 cell adhesion

List of 20 proteins including the ten proteins with largest increased expression levels and ten proteins with the largest decreased expression levels between the cisplatin
resistant and sensitive cells. A complete list with the measured expression levels of the 856 proteins can be seen in Table S1.
*Fold change of protein level measured by SILAC (-) denotes a fold decrease 6 standard deviation.
{p-value determined from ANOVA (p,0.01) considered significant.
{First biological pathway Gene Ontology term associated with protein.
doi:10.1371/journal.pone.0019892.t001
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metabolic and energy producing proteins, and proteins involved in

redox homeostasis and protein folding. To identify the relevant

biological pathways that were altered due to cisplatin resistance,

BiNGO [14] was used to find GO biological pathway and

molecular function terms that were enriched among the

differentially expressed proteins in the network. In total 208

biological pathway terms and 109 molecular function terms were

associated with proteins identified with increased expression, while

101 biological pathway terms and 18 molecular function terms

were associated with proteins identified with decreased expression.

Enriched biological pathways for proteins identified with increased

expression include the metabolism of carbohydrates, metabolism

of NADH and NADPH, regulation of apoptosis, protein folding,

and maintenance of cellular homeostasis. Enriched biological

pathways for proteins identified with decreased expression include

ribosomal assembly and RNA processing, gene expression, and

translation. A complete list of the enriched GO biological pathway

and molecular function terms for the proteins with altered

expression levels can be viewed in Table S2.

Discussion

The combination of quantitative mass spectrometry and

biological network analytical tools allow for a systems-level view

of changes to the proteome that are associated with chemoresis-

tance. Relative expression levels of proteins that carry out key

molecular functions in biological pathways associated with

cisplatin resistance were mapped.

Increased glycolysis and energy producing metabolic
pathways

Several enriched biological pathways from the subset of proteins

identified with increased expression in HeLa/CDDP are related to

glycolysis and carbohydrate metabolism (Figure 5). Thirty

proteins involved in carbohydrate metabolism, including ten

glycolytic and four pentose phosphate pathway enzymes were

measured with increased expression in HeLa/CDDP (Table S2).

Increased glycolytic activity under normal aerobic conditions,

referred to as ‘‘the Warburg effect’’, is a common feature observed

in many malignant cancers and is associated with conditions

including hypoxia, acidosis, and mitochondrial dysfunction [15].

These conditions can lead to enhanced chemoresistance and

malignancy through activation of the hypoxia-induced factor

(HIF) system [15,16]. It was recently shown that HIF-1a confers

chemoresistance by modulating p53 and nuclear factor-kB (NF-kB)

activity [17]. Due to these observations inhibition of glycolysis is

emerging as a potential therapeutic approach for overcoming drug

resistance in cancer [15,18]. Additional enriched metabolic

pathways with enzymes displaying increased expression levels in

HeLa/CDDP include the TCA cycle, lipid metabolism and NAD+/

NADP+ metabolic processes (Figure 5, Table S2). Elevated

production of NADH and NADPH by HeLa/CDDP would help

compensate for the cellular stress and generation of reactive oxygen

species (ROS) due to DNA and protein damage caused by cisplatin

treatment. Aldose reductase (ALDR) had the highest increased

expression levels (4.54 fold) in HeLa/CDDP of any of the proteins

identified in this study (Table 1). Several direct protein interaction

partners of ALDR also had significantly increased levels including

glucose-6-phosphate 1-dehydrogenase (3.93 fold), alpha-aminoadi-

pic semialdehyde dehydrogenase (2.15 fold), transaldolase (1.82

fold), transketolase (1.40 fold), and carbonyl reductase (1.39 fold)

suggesting the related functions and pathways of these enzymes play

an important role in cisplatin resistance. ALDR catalyzes NADPH-

dependent reduction of a wide range of aldehyde containing

compounds to their corresponding alcohols, participating in the

polyol pathway and oxidative stress response. Inhibition of ALDR

activity was shown to enhance chemotherapy sensitivity in HeLa

cells through activation of the extracellular signal-related kinases

(ERK) pathway [19]. Additionally, clinical studies have shown both

overexpression and increased activity of ALDR exist in a number of

human cancer tissues [20].

Redox homeostasis and stress response related proteins
In vivo cisplatin becomes aquated and acts as a potent

electrophile, covalently modifying nucleophilic sites on proteins,

DNA and RNA. The cellular damage caused by cisplatin results in

oxidative stress and formation of ROS, which are important in the

apoptotic mechanism of cisplatin, but have also been implicated in

its nephrotoxic side effects [21,22]. We observed several enriched

pathways and molecular functions related to redox homeostasis

and stress response to be associated with proteins displaying

increased expression in HeLa/CDDP (Figure 5, Table S2).

Increased levels of glutathione (GSH) and proteins in the GSH

system are frequently associated with cisplatin resistance [2,9,13].

Glutathione related enzymes including glutathione transferases

(GSTs) kappa 1 (GSTK1) and omega 1 (GSTO1) were detected

with 1.82 and 1.48 fold increased expression levels respectively in

HeLa/CDDP. Elevated levels of GSTs are generally associated

Figure 3. Western blot analysis. Cropped image of Western blot results comparing levels of four proteins (DDB1, Ku80, CD44, DJ-1) between HeLa
and HeLa/CDDP. ACTB was also monitored as a quantitative control. * The normalized ratio for each protein was calculated by averaging the signal
intensity from three biological replicates from HeLa/CDDP and dividing it by the average signal intensity from 3 biological replicates from HeLa. This
ratio was then normalized using the average ratio of signal intensity of ACTB to the respective protein of interest band. In general there is good
agreement between the ratios obtained from Western blotting and from SILAC. Full Western blot images are available in Figure S2.
doi:10.1371/journal.pone.0019892.g003
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with anticancer drug resistance, and have emerged as promising

therapeutic targets [23]. In addition to catalyzing the conjugation

of GSH to electrophilic compounds, GSTs also increase resistance

to apoptosis by inhibiting the mitogen activated protein kinase

(MAPK) pathway. Results from a recent study demonstrated that

the overexpression of GSTO1 in HeLa cells confers resistance to

cisplatin primarily through the activation of the phosphatidylino-

sitol-3 kinase/serine/threonine kinase (PI3-K/AKT) pathway and

inhibition of the c-Jun N-terminal kinases (JNK) apoptotic

pathway [24]. We also observed elevated levels of peroxiredoxins,

which are involved in pathways of stress response and regulation of

apoptosis, associated with increased levels in HeLa/CDDP

(Figure 5, Table S2). Peroxiredoxins are antioxidant enzymes

that decompose peroxides and are functionally recycled by

glutathione and GST enzymes. We identified peroxiredoxins 2,

4, 5 and 6 with increased expression levels (1.30, 1.51, 1.60, and

1.29 fold increases respectively) in cisplatin resistant cells.

Overexpression of peroxiredoxins 2 and 6 have been shown to

confer resistance to cisplatin by lowering ROS levels and

inhibiting caspase signaling pathways [25,26].

We also observed several chaperone proteins with significantly

increased expression levels in the cisplatin resistant cells including,

protein disulfide isomerases (PDIA1, PDIA3, PDIA4, PDIA6),

10 kDa heat shock protein, calnexin, peptidyl-prolyl cis-trans

isomerase A, calreticulin, hypoxia up regulated protein 1,

endoplasmin, prefoldin subunit 3, and protein DJ-1. In contrast,

heat shock protein beta-11 was identified with the most decreased

expression levels (23.38 fold) in HeLa/CDDP (Table 1).

Signaling proteins
Protein DJ-1, is an oncogene transcription factor which also

functions in cellular transformation and oxidative stress response.

DJ-1 was identified with increased expression (1.36 fold by SILAC,

3.28 fold by Western blot) in HeLa/CDDP Figure 3. Overex-

pression of protein DJ-1 has been shown to increase cellular

survival by inhibition of JNK pathway and by acting as a negative

regulator of the tumor suppressor phosphatase and tensin homolog

leading to activation of the PI3-K/AKT pathway [27]. Another

study demonstrated DJ-1 exerts cytoprotective action by inhibiting

Bcl-2–associated X protein (Bax) transcription by p53 [28].

Figure 4. Expression level and protein interaction network analysis. Protein interaction network generated with STRING 8.3 [56] and
visualized with Cytoscape [57] consisting of 803 proteins connected by 1174 protein-protein interactions. The 134 proteins with significantly
increased expression levels (p,0.01) of at least 1.25 fold in cisplatin resistant HeLa cells are shown in red. Major clusters of interacting proteins
include those involved in metabolic energy production, protein folding, and cellular signaling. The 147 proteins with significantly decreased
expression levels (p,0.01) of at least 1.25 fold in cisplatin resistant HeLa cells are shown in green. Major clusters of interacting proteins include the
40S and 60S ribosomal proteins and ribonucleoproteins. Interactive Cytoscape networks are included as Dataset S1.
doi:10.1371/journal.pone.0019892.g004
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CD44 is an outer membrane protein which acts as a receptor

for the glycosaminoglycan hyaluronan and was identified with

significantly increased levels (1.85 fold by SILAC, 2.21 fold by

Western blot,) in the cisplatin resistant cells (Figure 3). Hyalur-

onan and CD44 have been shown to influence drug resistance

through several mechanisms including cell survival signaling

pathways, drug transporter expression and activity, glycolytic

phenotype, and cancer stem-like cell characteristics [29]. Hyalur-

onan was found to promote CD44 dependent cisplatin resistance

in head and neck cancer [30]. The interaction between

hyaluronan and CD44 has been shown to regulate PI3-K/AKT

signaling and downstream anti-apoptotic events [31]. CD44 is also

one of the most common markers for isolating cancer stem-like

cells, which are a highly malignant subpopulation of cells that

display drug and radiation resistance and have been characterized

in many cancers [29]. Because of these properties it has emerged

as a promising therapeutic target for mitigating the effects of drug

resistance and malignancy in cancer and is currently a prime

therapeutic target for glioblastoma [32]. As Xu et al. show,

upregulation of CD44 may constitute a key event in development

of cancer cell resistance to cellular stresses of a variety of different

origins. CD44 is also a known binding partner of ezrin/radixin/

moesin (ERM) proteins which function to crosslink actin filaments

with plasma membranes [33]. Moesin was identified with 1.41 fold

increased levels in HeLa/CDDP, suggesting that CD44 and its

interacting partner moesin both play an important role in cisplatin

resistance.

The S100 family of proteins consists of small Ca2+-binding EF-

hand proteins that are known to play a diverse set of roles in many

cancers [34]. In our study S100-P, S100-A4, S100-A6, S100-A11

and S100-A13 were all identified with increased levels (2.48, 3.78,

1.71, 1.86, 1.74 fold increases respectively) associated with

cisplatin resistance. Enriched S100a and S100b binding were

identified in the increased expression GO molecular function

network in Figure 5. S100-A4 and S100-A6 have attracted

significant attention because of their established significance in the

progression of metastatic tumors [35]. Evidence shows S100-A4

inhibits phosphorylation of p53, thereby interfering with its

transcriptional activity and reducing p53 induced apoptosis [36].

Increased gene expression levels of S100-A4 are known to promote

metastasis and have been linked with chemoresistance in

pancreatic and colon cancer cell lines [37,38]. The aspartic

protease, cathepsin D (CATD), was identified with the second

largest increase in expression levels (4.40 fold) Table 1. CATD

Figure 5. Biological pathway and molecular function networks. BiNGO [14] generated biological pathway and molecular function networks
for proteins with significantly altered expression levels associated with cisplatin resistance. Node size is related to the number of proteins associated
with a GO term, while the color relates to the p-value for the statistical significance of the enrichment of a GO term. Interactive Cytoscape networks
are included as Dataset S1.
doi:10.1371/journal.pone.0019892.g005
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has emerged as a potential therapeutic target in cancer as it is an

important regulator of apoptosis, and promotes invasive and

metastatic properties in tumors [39]. Interestingly CATD has

direct connections with S100-A4, GSTO1, and CD44 in our

protein interaction network (Figure 4), suggesting these interac-

tions could play an important role in apoptotic control in HeLa/

CDDP.

Annexins are another large family of Ca2+-binding proteins,

fulfilling a wide range of cellular functions including vesicle

trafficking, cell division, apoptosis, and calcium signaling. Several

annexins are also known to interact and form complexes with

S100 proteins (e.g. annexin 1 with S100A11, annexin 2 with

S100A10, and S100A4, and annexin 4 and annexin 11 with

S100A6) [40]. Annexins A2, A4, A5, A6, A7 and A11 were all

detected with increased expression levels in cisplatin resistant

HeLa cells. Increased levels of annexin A4 have been associated

with cisplatin resistance in ovarian cancer and paclitaxel resistance

in the lung cancer cell line H460 [9,41]. Clearly the annexin and

S100 protein families play important roles in cancer biology and

drug resistance making them interesting targets for future studies.

Enrichment of the heme catabolic pathway is observed in

Figure 5 and Table S2, due to increased expression of both

isozymes of biliverdin reductase (biliverdin reductase A, BIEA; and

B, BLVRB) (1.67 and 1.46 fold increase respectively) in HeLa/

CDDP. Overexpression of biliverdin reductase enhances resis-

tance to multiple drugs including cisplatin and doxorubicin,

possibly by mediating protein kinase C activity; however the exact

mechanism of enhanced resistance is unclear [42]. The enzymatic

product, bilirubin is a potent antioxidant and has been shown to

induce expression of multi-drug resistance associated protein and

resistance to cisplatin when added to cultured cells in a conjugated

form [43].

DNA binding and damage repair proteins
While the exact molecular mode of action of cisplatin is not

completely understood, it is clear that DNA is its primary target.

Therefore increased activity of DNA repair mechanisms are

implicated in the resistance to cisplatin [2]. We identified DNA

damage-binding protein 1 (DDB1) and X-ray repair cross-

complementing protein 5 (XRCC5) with significantly increased

expression levels (1.26 and 1.25 fold increases respectively) in the

cisplatin resistant cells. The expression levels of DDB1 and

XRCC5 were also measured by Western blot to be 1.46 fold and

1.11 higher in HeLa/CDDP respectively (Figure 3). However, no

enriched DNA repair pathways were identified indicating that

peripheral functions of these proteins could be important in the

mechanism of cisplatin resistance. In addition to participating in

nucleotide excision repair, DDB1 has been shown to regulate the

cell cycle under conditions of genotoxic stress by targeting the

protein kinase Chk1 to the Cul4 E3-ubiquitin ligase [44].

Similarly, XRCC5 participates in non-homologous end joining

but also suppresses p53-dependent DNA damage response [45].

Interestingly, we identified the DNA-dependent protein kinase

catalytic subunit (PRKDC) with 1.27 fold decreased expression

levels in HeLa/CDDP. PRKDC along with XRCC5 and XRCC6

form the DNA-dependent protein kinase complex (DNA-PK)

which is activated in response to DNA damage and participates in

non-homologous end joining and V(D)J recombination. Tradi-

tionally it has been thought that Ku (a heterodimer of XRCC5

and XRCC6) first binds to the site of DNA damage and recruits

PRKDC to the damaged site to initiate repair. However it has

been shown that PRKDC can be activated in the absence of Ku

[46]. In response to DNA damage, PRKDC has been shown to be

an upstream regulator of p53 induced apoptosis [47]. These results

indicate that lower levels of PRKDC may result in decreased p53

induced apoptosis through the PRKDC regulated pathway in

HeLa/CDDP.

Ribosomal proteins
In our study we detected several ribosomal proteins including 32

proteins of the 60 s ribosomal subunit and 20 proteins of the 40 s

ribosomal subunit, all of which had significantly decreased levels in

the cisplatin resistant cells. Similar results were observed in a

genome microarray study of cisplatin resistant esophageal cancer

cells that found a relatively large number of underexpressed

ribosomal genes to be associated with cisplatin resistance [5]. A

large cluster of ribosomal proteins can be seen in the protein

interaction network in Figure 4B. The consistent under

expression of the ribosomal proteins is interesting in light of

evidence that cisplatin inhibits ribosomal RNA synthesis and

assembly of the ribosomal complex [48,49]. It’s also important to

consider many ribosomal proteins have peripheral functions

related to apoptosis, DNA repair and oncogenesis [5,50].

Therefore decreased levels of these proteins are likely important

factors in the mechanism of cisplatin resistance. Additionally

deregulation of ribosomal transcription could exacerbate the

disparity between mRNA and protein expression levels, which has

been observed with cisplatin resistant cells [9].

Concluding comments
In summary, it is clear that the molecular mechanisms

contributing to cisplatin resistance comprise a complex multifac-

torial network. This study demonstrates that quantitative proteo-

mics analysis using SILAC is a useful technique to identify key

molecular changes which occur with acquired resistance to

cisplatin. Using SILAC we were able to monitor expression levels

for 856 proteins and identify 374 proteins with statistically

significant altered expression levels. Importantly, in contrast to

many drug resistant cell line based studies, these differences were

measured on a drug resistant cell line developed under clinically

relevant levels of cisplatin. These results corroborate known

mechanisms associated with cisplatin resistance and provide new

details on the molecular players involved.

Drug resistance remains a major hurdle for the successful

treatment of cancer. Quantitative proteomic studies such the one

here, are able to identify potential protein targets and cellular

pathways that are altered in the drug resistant phenotype.

However, this type of data really only provides a single snapshot

view of the complete cellular processes involved. It is also

important to consider that in shotgun proteomics experiments

such as the one here, peptides are identified in a data dependent

fashion which results in a bias towards more abundant proteins

and therefore not all proteins in the cell will be measured.

However, as our results show, there are significant differences in

protein expression levels between the cisplatin sensitive and

resistant cells even among the proteins we were able to measure.

In future studies, selected reaction monitoring (SRM) methods can

be used to extend quantitative proteomics studies on drug-resistant

cell lines to proteins with lower expression levels. Ultimately,

integration of protein expression profiling information with studies

probing changes to the dynamics of the proteome and protein-

protein interactions are needed to obtain a more complete view of

perturbations to the interactome. Incorporating interactome data

into the broader context of cellular functional pathways will help

lead to a mechanistic understanding of drug resistance. New

therapeutic strategies based upon such knowledge hold the

promise of individualized treatment with a higher probability of

success.
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Materials and Methods

Chemicals
L-arginine-13C6 and L-lysine-13C6

15N2 were obtained from

Cambridge Isotope Laboratories (Andover, MA). Dialyzed fetal

bovine serum (FBS) was purchased from PAA Laboratories

(Etobicoke, Ontario). HycloneH penicillin-streptomycin 100x

solution and Pierce Coomassie Plus reagent were purchased from

Thermo Fisher Scientific (Waltham, MA). Antibodies for CD44,

DDB-1, DJ-1 and Ku80 (XRCC5) were purchased from Cell

Signaling Technology (Danvers, MA). Anti-b-actin antibody was

purchased from Sigma (St. Louis, MO). Goat anti-rabbit IRDye

680 and goat anti-mouse IRDye 800 antibodies were supplied by

LI-COR Biosciences (Lincoln, NE). Modified trypsin was

purchased from Promega (Madison, WI). Dulbecco’s Modified

Eagles Medium (DMEM) was custom prepared according to the

formulation by Invitrogen (http://www.invitrogen.com/site/us/

en/home/support/Product-Technical-Resources/media_formulation.

45.html). All other chemicals were reagent or molecular biology grade

and were purchased from Sigma (St. Louis, MO).

Cell Culture
HeLa cells [13] were cultured in DMEM supplemented with

10% FBS and 100 units/mL penicillin-streptomycin, in a

humidified atmosphere containing 5% CO2 at 37uC with media

renewal every 2–3 days. The cisplatin resistant derivative line,

HeLa/CDDP [13], was maintained in identical conditions and

media with the addition of 1 mM cisplatin. For SILAC

experiments, cells were cultured in heavy DMEM containing L-

arginine-13C6 and L-lysine-13C6
15N2 for at least five cell doublings.

Cells were harvested when they reached 80% confluency by

aspirating off the media, washing with ice cold 100 mM

NH4HCO3, then scraped off the dishes and stored at 280uC.

Sample Preparation
Cells were ruptured by repeated rapid freeze/thaw cycles using

liquid N2 and an ultrasonic water bath. The total protein

concentration was determined with the Bradford protein assay.

SILAC samples were prepared by mixing equal amounts of light

or heavy protein from normal HeLa cells with corresponding

heavy or light protein from HeLa/CDDP cells. Control samples

were prepared by mixing equal amounts of light and heavy protein

from the same cell type. Disulfide bonds were reduced with 5 mM

TCEP for 30 minutes, followed by alkylation with 10 mM IAA for

30 min in the dark at room temperature. Protein samples were

digested with a 1:200 ratio of trypsin at 37uC for four hours.

Biological triplicates were prepared for each sample type: light

HeLa/CDDP to heavy HeLa, heavy HeLa/CDDP to light HeLa,

light HeLa/CDDP to heavy HeLa/CDDP, and light HeLa to

heavy HeLa. Samples were stored at 280uC until analyzed by LC-

MS.

Mass Spectrometric Analysis
Peptide samples were loaded onto a trap column (3 cm675 mm

i.d. packed with Michrom Magic C18AQ 200 Å pore size, 5 mm)

and washed for 10 minutes at a flow rate of 2 mL/min with 98%

solvent A (H2O, 0.1% formic acid) and 2% solvent B (acetonitrile,

0.1% formic acid) using a nanoAcquity UPLC (Waters, Milford

MA). Peptides were then fractionated over the analytical column

(30 cm675 mm i.d. packed with Michrom Magic C18AQ 100 Å

pore size, 5 mm particles) using a 120 minute linear gradient from

95% solvent A, 5% solvent B to 60% solvent A, 40% solvent B at a

flow rate of 300 nL/min. Peptides were ionized by electrospray

ionization (ESI) using a spray voltage of 2.0 kV. Data dependent

mass spectrometric analysis of SILAC samples was performed

using a LTQ-Orbitrap mass spectrometer (Thermo). Full MS

scans from 400–1400 m/z were performed in the Orbitrap mass

analyzer with the resolution set to 60,000. Tandem mass

spectrometry was performed in the ion trap mass analyzer on

the five most abundant precursors detected in the Orbitrap full

MS scan. Collision induced dissociation was performed using a

normalized collision energy of 35 with a 30 ms activation time and

an activation Q of 0.25. Ions selected for MS/MS sequencing

were then dynamically excluded from repeated MS/MS events for

60 seconds, using an asymmetric mass window of 0.1 m/z on the

low side and 1.1 m/z on the high side. All samples were analyzed

in technical duplicate.

Data Analysis
MS/MS spectra were converted into MGF peak list files using

tools in the Trans-Proteome Pipeline [51] and analyzed using

Mascot v. 2.3 (Matrix Sciences) database searching software [52].

The spectra were searched against the UniProt database (07/07/

10) limited to human taxonomy (20,321 sequences; 11,273,645

residues) with the following search parameters: enzyme set to

trypsin, 25 ppm precursor ion tolerance, 0.8 Da fragment ion

tolerance, carbamidomethylation of cysteine as a fixed modifica-

tion, 13C6-lysine and 13C6
15N2-arginine as variable modifications,

and allowing for a single missed cleavage site. The false discovery

rate (FDR) was determined by searching the MS/MS spectra

against a randomized database. Protein identifications were made

for the highest scoring protein matches to the identified peptides

from Mascot.

Peptide sequences identified with Mascot were exported as

comma separated value (.csv) files using significance and expect

value thresholds of 0.05. This significance level was chosen to give

a FDR of less than 1%. Precursor mass spectra were processed

using Hardklör [53] to identify peptide isotope distributions and

chromatographic elution profiles. The Hardklör results and the

.csv files were then analyzed with an in-house developed program,

SILACtor, to label the precursor ions with peptide sequences and

determine the integrated peak areas for each SILAC pair of

isotope distributions. SILACtor provides several useful features not

currently available in other SILAC data analysis software

including; the generation of accurate mass and time target lists

for targeted MS/MS analysis of peptides not identified by the

initial analysis, and the ability to trace and compare SILAC

labeled peptides across multiple time points. The details of

SILACtor will be described in a forthcoming publication, however

in our experience SILACtor demonstrates similar quantitative

performance as MaxQuant [54] as shown in figure S3. SILAC

isotope pairs with mass differences of 6.0201324, 8.0142036,

12.0402648, 14.034336, and 16.0284072 Da were considered,

allowing for the possibility of a single missed tryptic cleavage site

within a peptide sequence which results in the presence of two

isotopically labeled Lys or Arg residues. An accurate mass and

retention time database was constructed consisting of the Mascot

identified peptide sequences with their respective SILAC ratios.

Peptides which were not present in at least 25% of the samples,

had retention times which varied for more than 10 minutes, or

were identified in the wash or equilibration phases of the

chromatography were excluded from the database. Results from

technical replicates for each sample were combined by matching

SILAC pairs with accurate mass (5 ppm) and retention time (5

minutes) and averaging the SILAC ratios across the replicate

analyses. Protein SILAC ratios were obtained by averaging their

constituent peptide SILAC ratios. Average protein SILAC ratios

were obtained by averaging the protein SILAC ratios from
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biological triplicates. Peptides found with SILAC ratios that

exceeded twice the standard deviation derived from measurements

on other peptides from the same protein were removed from the

protein analysis and the average protein RIA was re-calculated.

The SILAC RIA values were normalized so that the mean value

for a given sample was 0.5 under the assumption that the majority

of proteins on average will have a 1:1 ratio between the samples.

To determine which proteins had significantly shifted SILAC

ratios between the samples consisting of mixed HeLa/CDDP and

HeLa proteins versus the same cell type mixed with itself a one

way ANOVA was performed using the statistical computing

package R. ANOVA was limited to proteins which were observed

in at least half of the HeLa/CDDP samples and half of the one to

one mixtures of the same cell type samples. Ratios were considered

significantly different if they had a p-value of less than 0.01. To

generate an expression level heat map, SILAC ratios were

analyzed by hierarchical clustering using Gene Cluster 3.0 and

visualized using TreeView [55]. A protein interaction network for

the 856 proteins identified was constructed with STRING 8 [56].

The protein interaction network generated from the STRING

database was visualized with Cytoscape [57]. To obtain enriched

GO biological pathway and molecular function terms related to

cisplatin resistance, BiNGO [14] was used to analyze the proteins

with SILAC ratios that were determined to be significantly

increased or decreased (ANOVA, p,0.01) by at least 1.25 fold in

HeLa/CDDP compared with HeLa. Settings for BiNGO included

using a hypergeometric test with a significance threshold of 0.05.

The Benjamini & Hochberg false discovery rate correction was

applied to the resulting p-values. Proteins were compared against

the full human annotation GO database.

Western Blotting
Cell lysate samples from HeLa and HeLa/CDDP containing

20 mg of total protein were separated by one dimensional SDS-

PAGE using a constant voltage of 100 V. Proteins were

transferred to nitrocellulose membranes using 150 mA constant

current for 2 hrs. Membranes were blocked by incubation for one

hour in PBST (PBS containing 0.1% tween 20) and 5% w/v milk.

Membranes were washed with PBST then incubated for two hours

at room temperature with a 1:1000 dilution of primary antibody

(CD44, DDB-1, DJ-1, or Ku80) and a 1:5000 dilution of anti-b-

actin antibody in PBST containing 5% w/v BSA. Following

extensive washing the membranes were incubated with a 1:20,000

dilution of goat anti-rabbit IRDye 680 and goat anti-mouse IRDye

800 antibodies. Western blots were imaged with a LI-COR

Odyssey infrared imaging system.

Supporting Information

Figure S1 Full heat map image with dendrogram generated

from SILAC ratios for 856 proteins. In total there are 12 lanes

representing 3 biological replicates from 4 sample types. Lanes 1–3

are light HeLa/CDDP, heavy HeLa. Lanes 4–6 are heavy HeLa/

CDDP, light HeLa. Lanes 7–9 are a light and heavy mixture of

HeLa/CDDP. Lanes 10–12 are a light and heavy mixture of

HeLa. The averaged version of this heat map is shown as Figure 3
in the main text for clarity, however the full version allows for the

visualization of the biological replicates.

(PDF)

Figure S2 Western Blot images for four proteins that were

identified by SILAC to have increased levels in cisplatin resistant

HeLa cells. Lanes 1–3 are samples from normal HeLa while lanes

4–6 are from HeLa/CDDP. In each blot b-actin was monitored as

a quantitative control and is visible as a green band at 40 kDa. A
CD44 Western blot with CD44 visible as a green band at 80 kDa.

The averaged ratio of the signal intensity from HeLa/CDDP to

HeLa was 1.31 prior to normalization and 2.21 after normaliza-

tion to the signal intensity from b-actin. B DDB1 Western blot

with DBB1 visible as a red band at 120 kDa. The averaged ratio of

the signal intensity from HeLa/CDDP to HeLa was 1.46 prior to

normalization and 1.13 after normalization to the signal intensity

from b-actin. C DJ-1 Western blot with DJ-1 visible as a red band

at 22 kDa. The averaged ratio of the signal intensity from HeLa/

CDDP to HeLa was 2.75 prior to normalization and 3.28 after

normalization to the signal intensity from b-actin. D XRCC5

(Ku80) Western blot with Ku80 visible as a red band at 85 kDa.

The averaged ratio of the signal intensity from HeLa/CDDP to

HeLa was 1.21 prior to normalization and 1.11 after normaliza-

tion to the signal intensity from b-actin.

(PDF)

Figure S3 Distribution of RIA values for a set of quantified

SILAC peptide pairs from a single control sample, comparing the

quantification results from SILACtor with MaxQuant.

(PDF)

Table S1 Table of 856 proteins identified and quantified.

(XLS)

Table S2 Enriched Gene Ontology Biological Pathway and

Molecular Function Terms for Differentially Expressed Proteins.

(XLS)

Dataset S1 Interactive Cytoscape network.

(TAR)
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