
External Control of the GAL Network in S. cerevisiae: A
View from Control Theory
Ruoting Yang1, Scott C. Lenaghan1, John P. Wikswo2, Mingjun Zhang1*

1 Department of Mechanical, Aerospace and Biomedical Engineering, The University of Tennessee, Knoxville, Tennessee, United States of America, 2 Vanderbilt Institute

for Integrative Biosystems Research and Education, Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt

University, Nashville, Tennessee, United States of America

Abstract

While there is a vast literature on the control systems that cells utilize to regulate their own state, there is little published
work on the formal application of control theory to the external regulation of cellular functions. This paper chooses the GAL
network in S. cerevisiae as a well understood benchmark example to demonstrate how control theory can be employed to
regulate intracellular mRNA levels via extracellular galactose. Based on a mathematical model reduced from the GAL
network, we have demonstrated that a galactose dose necessary to drive and maintain the desired GAL genes’ mRNA levels
can be calculated in an analytic form. And thus, a proportional feedback control can be designed to precisely regulate the
level of mRNA. The benefits of the proposed feedback control are extensively investigated in terms of stability and
parameter sensitivity. This paper demonstrates that feedback control can both significantly accelerate the process to
precisely regulate mRNA levels and enhance the robustness of the overall cellular control system.
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Introduction

The complexity of nested feedback control loops associated with

complex biological systems creates many challenges to under-

standing biological systems. At the same time, the need for precise

control of gene expression is increasing in fields such as genetics,

cell and molecular engineering, and in disease treatment via gene

expression control. A straightforward application for control of

gene expression might be to generate a maximum output in

bioreactor-based systems. The outputs from this type of applica-

tion would typically by specific proteins of interest for biophar-

maceuticals. The approach can be further applied to create a

system in which the control of a gene network may be coupled

with the expression of a recombinant protein.

On the other hand, systems biologists have built numerous

mathematical models for gene and protein networks that cells

utilize to control themselves [1]. The applications of such models

have gone beyond simple qualitative understanding of network

dynamics. Some models have been used in synthetic biology to

affect metabolism and eventually control the biological processes

toward desired outputs [2]. The full advantages of control theory,

however, have not been realized, and there is little work on

external control of cellular functions such as gene expression.

From a control theory perspective, control techniques used for

complex engineering systems should in principle be applicable to

the regulation of cellular systems. There are in general two

potential challenges. First, it is not easy to find simple

mathematical models for cellular system control. Most existing

cellular mathematical models are not formulated in a standard

control system framework. Typically, they lack global feedback

loops from outputs to dynamically adjust the control dosage.

Second, model parameters are usually very sensitive due to large

uncertainties. The resulting control algorithm often becomes

fragile, and the control system can remain stable only under small

disturbances. Open-loop constant controls – for example, the gene

knockdown or overexpression technique for yeast performed

without adjusting dosages in real-time in response to the observed

changes – are vulnerable to disturbances and individual

heterogeneity.

It is desirable to have model-based, fine-tuned external control

approaches to precisely regulate a reverse-engineered target.

Unfortunately, achieving a reliable feedback control remains a

challenge for cellular systems. Recently, Cantone et al. developed

the first reverse-engineering benchmark system [3], which is based

on the GAL network using real-time image feedback. Control

engineers have begun to apply closed-loop control ideas based on

this benchmark [4,5].

In this paper we have employed model reduction techniques to

simplify the complex GAL network, and further demonstrate that

the simplified model is favorable for control system design. We also

present the benefit of closed-loop system design. Our goal is to

demonstrate the usefulness of control theory for precise external

regulation of cellular systems and to open discussions in the field

about possible future benefits of more advanced theoretical

control.

The GAL network in yeast, Saccharomyces cerevisiae, is one of the

most studied gene networks, and hence is well suited to serve as a

demonstration, benchmark system. Galactose utilization in the
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network can be broken up into four distinct stages based on proteins

present in the cytoplasm. In the first stage GAL2p, the galactose

transporter protein, allows galactose to enter into the cytoplasm [6].

Once internalized, GAL3p binds to the cytoplasmic galactose and is

activated. This causes the galactose to bind and inhibit the action of

GAL80p [7,8]. With GAL80p bound, GAL4p is able to activate the

transcription of GAL2, GAL3, and GAL80 genes. In the presence of

glucose, GAL4p is also inhibited, which leads to inhibition of GAL1

expression [9]. Without accounting for the glucose network, the

GAL system is composed of two positive feedback loops, GAL3p and

GAL2p, and two negative feedback loops, GAL80p and GAL1p. The

glucose network proteins bind upstream GAL1, GAL3, and GAL4,

and suppress transcription through the action of Mig1. The glucose

network also prevents the binding of GAL2p and external galactose

and shuts down the galactose transportation. A mathematical model

of the galactose network has previously been established by de

Atauri et al. [10] and Ramsey et al. [11]. Bennett et al. combined a

simplified glucose network with the galactose network model [12],

and identified the model parameters using experimental data. A

diagram of the simplified glucose and galactose networks used in this

study is shown in Figure 1.

The key factor in designing a control system for a complex

network that can be controlled externally is to design the system

with measurable input(s) and output(s). For our study of the GAL

network, the measurable inputs into the system are the

concentrations of galactose and glucose. The most common

mechanism currently available to monitor the output is a reporter

to a gene of interest, normally green fluorescent protein (GFP),

which allows researchers to measure the expression level of the

gene. In the theoretical control model designed in this study, a

GFP reporter coupled to GAL1 can be used to measure the output

from the system. In practice, a spectrofluorometer or a microscope

with appropriate excitation and emission filters, possibly coupled

to a microfluidic device, could be used for measuring the GFP

concentration [3]. It would then be possible to develop a control

algorithm for the expression of GAL1 by tuning the concentration

of galactose delivered externally to the cells. This model could be

expanded to the control of other genes of interest (GAL2, GAL3,

and GAL80) coupled to separate reporters.

Another challenge for control system design is the network scale

and model complexity [13]. A gene network model is often

constructed based on chemical kinetics with tens or hundreds of

states and many parameters [12,14]. The most successful model for

the yeast cell cycle alone has 61 coupled ordinary differential

equations and 141 parameters [15]. In such models, many

important system characteristics, such as steady states, cannot be

solved analytically and have to be estimated using numerical

simulation. Advanced control mechanisms directly applied to these

systems may waste considerable time on calculation of complicated,

yet inessential nonlinear reaction terms. This complexity may lead

to fragility of the controlled system, causing the system to collapse

due to noise and parameter perturbation. The reduction of model

complexity thus becomes extremely important for complex control

system design and implementation. One effective tool for model

reduction is parameter sensitivity analysis, which elucidates the

dependence of system dynamics on the parameters. A small

sensitivity measure for a parameter implies that the value of this

parameter can be substituted for a wide range of values without

altering the system dynamics. Some reaction terms can thus be

deemed negligible and result in a reduced model. The control

design based on the reduced model can be expected to have a

similar performance to that of the original model. This paper uses

the GAL1 mRNA level as a measureable output to be controlled

(with the assumption that mRNA level is highly correlated with

GAL1 translation) and investigates the sensitivity between the output

as well as model parameters. The resulting reduced model based on

sensitivity analysis successfully separates the galactose utilization

network and the glucose network, and reduces the GAL4p subsystem

and associated complexes. Furthermore, global sensitivity was also

conducted to show how the system changes due to the simultaneous

variation of all the parameters over a wide range of values. We have

concluded that the global sensitivity analysis is consistent with the

results of local sensitivity. In addition, the nonlinearity of the system

is largely reduced, while maintaining a small deviation in the system

dynamics. After system analysis, the original complex system was

simplified to allow for the control system design. The goal of the

control is to maintain one of the GAL mRNAs at a desired level.

In this paper, both a constant open-loop control and a proportional-

output feedback closed-loop control are designed based on the reduced

model. First, an analytic formula for the precise dosage of the external

Figure 1. The gene regulatory network for galactose utilization
(redrawn from Bennett et al. (2008) [12]). The extracellular inputs
are [gal]e and [glu]e. The natural output of the network is a group of
proteins. The GAL4 protein g4 binds to upstream activation sites and
activates the regulatory genes in the galactose network. The GAL80
gene inhibits the inducing effects of GAL4 and thereby provides
negative feedback in the system. GAL3 enhances expression of GAL4 by
binding with internal galactose (Gal), forming a GAL3-galactose
complex, g3

c, that inactivates g80 by binding to it and resulting in a
complex g80

c. In addition, the transporter GAL2 increases the amount of
internal galactose, which stimulates the galactose network. We use the
GAL1 mRNA level, m1, as the measureable output to control the system.
According to sensitivity analysis, the interaction loops involving GAL4p
dimerization (the dotted lines) can be eliminated from the original
model to create a reduced model.
doi:10.1371/journal.pone.0019353.g001
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galactose is given, instead of manually tuning galactose by trial and

error. Feedback control is introduced to improve the robustness of the

controlled system and enhance the convergence rates. The simulation

results show that both controls can achieve the control objective, i.e.,

maintaining GAL1 mRNA at a desired level. Similar analytic galactose

dosages can be achieved for all the other measurable outputs, such as

GAL2, GAL3, and GAL80. The difference between the open-loop

control of the system with constant control input, and feedback control

with time-dependent parameters, is that the feedback control

significantly shortens the time required to achieve the steady state.

The feedback loop indirectly increases the degradation rate of the

internal galactose so that the system more rapidly reaches balance. The

feedback control also significantly reduces parameter sensitivity.

Feedback control takes advantage of information about the system

state to regulate output, and in doing so significantly decreases the local

sensitivity of measurements to the system parameters. Hence feedback

control can resist much larger parameter perturbations/uncertainties

as compared to the constant open-loop control; that is, an open-loop

control with constant control input.

Methods

Mathematical Model for Yeast GAL Network
The GAL network is a good starting point to demonstrate

feedback and feed forward external controls for cellular systems.

Though simple, it is well understood and is easily manageable to

interpret experimental results. On the other hand, it is complex

enough to test sophisticated control algorithms. As illustrated in

Figure 1, a mathematical model for the GAL network has been

proposed based on the interactions between proteins and

internalized galactose. The figure shows a gene regulatory network

for galactose utilization (redrawn from Bennett et al. (2008) [12]).

The extracellular inputs are [gal]e and [glu]e. The natural output of

the network is a group of proteins. The GAL4 protein g4 binds to

upstream activation sites and activates the regulatory genes in the

galactose network. The GAL80 gene inhibits the inducing effects of

GAL4 and thereby provides negative feedback in the system. GAL3

enhances expression of GAL4 by binding with internal galactose

(Gal), forming a GAL3-galactose complex, g3
c, that inactivates g80

by binding to it and resulting in a complex g80
c. In addition, the

transporter GAL2 increases the amount of internal galactose,

which stimulates the galactose network. We use the GAL1 mRNA

level, m1, as the measureable output to control the system.

According to sensitivity analysis, the interaction loops involving

GAL4p dimerization (the dotted lines) can be eliminated from the

original model to create a reduced model. In the figure, gi is the

number of the galactose network protein monomers (i = 1, 2, 3, 4,

80), mi is amount of mRNA (i = 1, 2, 3, 80), gid is the number of

protein dimers (i = 4, 80), g�3 is the number of GAL3p proteins

bound to galactose, g�4d is the number of GAL4p dimers bound to

Gal80p dimers, and g�80 is the number of GAL80p proteins bound

to the Gal3p-galactose complex.

A complete mathematical model of the above gene network,

which we term the Original model, can be described with 22

mathematical equations [12]. The first five represent the mass-

action kinetics of galactose protein monomers, including dimer-

ization, and the interaction with the internal galactose:

_gg1~b1m1{d1g1 ð1Þ

_gg2~b2m2{d2g2 ð2Þ

_gg3~b3m3{d1g3{k3xgalg3zk{3gc
3 ð3Þ

_gg4~b4R xglu

� �
{d1g4{2k4dg2

4z2k{4dg4d ð4Þ

_gg80~b80R xglu

� �
{d1g80{k80gc

3g80z

k{80gc
80z2k{80dg80d{2k80dg2

80:
ð5Þ

Equations (6)–(9) describe mRNA kinetics accounting for the

transcription and translation of the galactose genes as well as the

degradation of mRNA

_mm1~a1R(xglu)F (g4d ,g80d ,4){c1m1{
vsd m1xglu

ksdzm1

ð6Þ

_mm2~a2F (g4d ,g80d ,2){c2m2 ð7Þ

_mm3~a3R(xglu)F (g4d ,g80d ,1){c3m3{
vsd m3xglu

ksdzm3

ð8Þ

_mm80~a80F (g4d ,g80d ,1){c80m80: ð9Þ

Equations (10) – (14) represent the kinetics of protein dimers and

the associated complexes:

_gg4d~k4dg2
4{k{4dg4d{krg80dg4dzk{rg

c
4d{d1g4d ð10Þ

_gg80d~k80dg2
80{k{80dg80d{krg80dg4dzk{rg

c
4d{d1g80d ð11Þ

_ggc
4d~krg80dg4d{k{rg

c
4d{d1gc

4d ð12Þ

_ggc
3~k3g3½gal�{k{3gc

3{k80g80gc
3zk{80gc

80{d1gc
3 ð13Þ

_ggc
80~k80g80gc

3{k{80gc
80{d1gc

80: ð14Þ

The metabolic reactions and transport of galactose are represented

by a single equation:

_½gal�½gal�~R xglu

� �
T1 ½gal�,½gal�e
� �

{
kcatg1 gal½ �
kmgkz gal½ �{

k3g3½gal�zk{3gc
3{d1½gal�:

ð15Þ

Equations (16) – (18) describe a simplified glucose network,

including the glucose-mediated enzymatic decay of GAL1 and

GAL3 mRNA:

External Control of Cellular Systems
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_mmglu~
agluzeglu glu½ �=cglu

� �b

1z glu½ �=cglu

� �b
{cglumglu ð16Þ

_xxglu~sglumglu{dgluxglu ð17Þ

_½glu�½glu�~ ½glu�,½glu�e
� �

{
mglu glu½ �xglu

kgluz glu½ � {dd ½glu�, ð18Þ

where mglu, xglu, and [glu] are the amount of glucose network

mRNA, associated protein, and cellular internal glucose, respec-

tively. They compose a simplified glucose network. The inhibitory

effect due to products of the glucose network that act on various

processes of the galactose network is represented as follows,

R(xglu)~
rq

rqzx
q
glu

, ð19Þ

where

T1 ½gal�,½gal�e
� �

~

ktrg2
gal½ �e{ gal½ �

kmtrz gal½ �ez gal½ �zatr gal½ �e gal½ �=kmtr

ð20Þ

and

T2 ½glu�,½glu�e
� �

~

ktr2xglu
glu½ �e{ glu½ �

kmtr2z glu½ �ez glu½ �zatr2 glu½ �e glu½ �=kmtr2

ð21Þ

are the transport rates of external galactose and external glucose

into the cell, respectively. The cooperative fractional saturation

function describing the number of upstream activation sites

occupied on a promoter, assuming that N sites exist [10], is given

by

F (g4d ,g80d ,N)~

PN
i~0

N

i

 !
(KqKpg4d g80d )i PN{i

h~1

N{i

h

 !
Chzi{1

P Ci{1
Q (Kpg4d )h

PN
i~0

N

i

 !
(KqKpg4d g80d )i PN{i

h~0

N{i

h

 !
Chzi{1

P Ci{1
Q (Kpg4d )h

:
ð22Þ

The above mathematical model is mainly based on the

biochemical reactions occurring throughout the network. This

approach of modeling the intermediates in a pathway has been

widely used in both chemistry and biology. The variables and

parameters used for the model are defined and summarized in

Tables 1 and 2.

Our goal for galactose network control is to regulate the GAL

family mRNA level by manipulating galactose and glucose

concentrations. In this paper, we select GAL1 as the gene of

interest. The mRNA level of this target gene can be measured

experimentally using a GFP conjugated to GAL1, which can be

measured for intact cells, or by means of a microarray or other

assay that requires lysing a small fraction of the cells under

observation. In practice, other reporter genes may be used to

monitor GAL1 expression, for example, the red fluorescent protein

from the gene dsRed [16]. In addition, it is notable that glucose

suppresses all GAL genes [17]. External glucose must be kept at a

very low level, i.e., ½glu�e&0, or the GAL network will be inhibited.

Once no external glucose is supplied, the glucose network will soon

reach its steady state, which means one can focus on the galactose

network.

From a control engineering perspective, one key step is to

identify inputs (control) and outputs (preferably measurable), so

that the system can be put into a control framework for discussion.

½gal�e and ½glu�e, external galactose and glucose levels, are the

control variables in this study, while the mRNA levels of GAL1,

GAL2, GAL3, and GAL80, m1, m2, m3, m80, are measurable

variables. The goal of this research was to design a time-course of

½gal�e such that one of the mRNAs m1, m2, m3, m80 is maintained at

a desired level.

While there are several methods that might be suitable for

culturing yeast under external control, microfluidic devices would

be ideal for experimental implementation of the cellular control

system [18]. Fluorescence microscopy could be used to quantify, in

real-time, the levels of GFP-labeled Gal1p from a small,

synchronized population of S. cerevisiae, with the output of a

camera or photomultiplier tube serving as the sensor measurement

to the control system. Ion mobility-mass spectrometry could also

be used to monitor the secreted metabolites and signaling

molecules in real-time and intracellular species after cell lysis

[19]. Microfluidic valves could control the concentrations of

various chemicals and serve as the control system outputs.

In the next section, we will conduct a sensitivity analysis to

simplify this subsystem. As shown in Figure 1, the interaction

loops involving GAL4p dimerization can be removed. The reduced

ð22Þ

Table 1. Model Variables.

Variable Description
Initial value
(molec.) [11]

g1 (molec./cell) Gal1p 132.3

g2 (molec./cell) Gal2p 1156.7

g3 (molec./cell) Gal3p 4341.2

g4 (molec./cell) Gal4p 0.1563

g80 (molec./cell) Gal80p 0.1138

m1 (molec./cell) GAL1 mRNA 0.2647

m2 (molec./cell) GAL2 mRNA 0.3305

m3 (molec./cell) GAL3 mRNA 0.9044

m80 (molec./cell) GAL80 mRNA 1.1871

g4d (molec./cell) Gal4p dimer 308.92

g80d (molec./cell) Gal80p dimer 157.229

gc
4d (molec./cell) Gal4p dimer - Gal80p dimer complex 0

gc
3 (molec./cell) Gal3p – gal. complex 0

gc
80 (molec./cell) Gal80p – Gal3p – Gal. complex 0

½gal� (molec./cell) Internal galactose 0

mglu (molec./cell) Glucose network mRNA 4000

xglu (molec./cell) Glucose network proteins 15000

½glu� (molec./cell) Internal glucose 150003

½gal�e (molec.) External galactose outside the cell 0–2:366|108

½glu�e (molec.) External glucose outside the cell 0–2:957|108

doi:10.1371/journal.pone.0019353.t001
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Table 2. Model Parameters.

Parameter Description Value [12]

b1 (min21) Translation rate of Gal1p g1 9.92

b2 (min21) Translation rate of Gal2p g2 6.94

b3 (min21) Translation rate of Gal3p g3 18.0

b4 ((molec./cell)/min) Max translation rate of Gal4p g4 0.86

b80 (min21) Translation rate of Gal80p g80 4.00

a1 ((molec./cell)/min) Max translation rate of GAL1 1.09

a2 ((molec./cell)/min) Max translation rate of GAL2 1.20

a3 ((molec./cell)/min) Max translation rate of GAL3 36.0

a80 ((molec./cell)/min) Max translation rate of GAL80 3.00

d1 (min21) Deg. rate of gal. proteins and complexes 0.0033

c1 (min21) Deg. rate of GAL1 mRNA 0.036

c2 (min21) Deg. rate of GAL2 mRNA 0.026

c3 (min21) Deg. rate of GAL3 mRNA 0.036

c80 (min21) Deg. rate of GAL80 mRNA 0.036

k3 ((molec./cell)/min) Binding rate of g3 to xgal 5:0|10{8

k{3 (min21) Dissociation rate of gc
3 890

k4d ((molec./cell)/min) Binding rate of g4 to g4 0.1

k{4d (min21) Dissociation rate of g4d 1.0

k80d ((molec./cell)/min) Binding rate of g80 to g80 0.10

k{80d (min21) Dissociation rate of g80d 170

k80 ((molec./cell)/min) Binding rate of gc
3 to g80 0.10

k{80 (min21) Dissociation rate of gc
80 0.03

kr ((molec./cell)/min) Binding rate of g4d to g80d 0.10

k{r (min21) Dissociation rate of gc
4d 1.80

kcat (min21) Galactose metabolism rate 3350

kmgk (molec./cell) Galactose metabolism constant 1:29|107

ktr (min21) Galactose transport rate 4350

kmtr (molec./cell) Galactose transport constant 2:15|108

atr (unitless) Galactose interactive constant 10.0

Kp (cell/molec.) Equilibrium constant of g4d binding to UAS 0.091

Kq (cell/molec.) Equilibrium constant of g80d binding to g4d 0.0556

CP (unitless) Cooperative binding constant of g4d to UAS 1

CQ (unitless) Cooperative binding constant of g80d to g4d -UAS complexes 30

aglu ((molec./cell)/min) Basal transcription rate of glucose DNA 215

eglu ((molec./cell)/min) Activated transcription rate of glucose DNA 6:452|105

sglu (min21) Translation rate of glucose proteins 0.4

dglu (min21) Degradation rate of glucose proteins 0.1

cglu (min21) Degradation rate of glucose mRNA 0.0633

dd (min21) Dilution rate of glucose 0.0033

cglu (molec./cell) Hill constant for glucose induction 1:075|107

b (unitless) Hill coefficient for glucose induction 1.8

ktr2 (min21) Glucose transport rate 4350

kmtr2 (molec./cell) Glucose transport constant 6:022|108

atr2 (unitless) Glucose interactive constant 1.0

mglu (min21) Glucose transport rate 5350

Kglu (molec./cell) Glucose transport constant 1:29|107

r (molec./cell) Hill constant for gal. repression 1:29|107

q (unitless) Hill coefficient for gal. repression 0.8

External Control of Cellular Systems
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model lowers the complexity to design the associated controller,

allowing analytical implementation of a feasible design. We will

show later that the reduced model may cause bounded deviation

from the original model in transient response; however, it results in

insignificant deviation from the steady states.

Model Reduction
Given the steady states of the glucose utilization network, the

original model still has 35 parameters. The large number of

parameters and significant nonlinearities make it difficult to

design an effective controller. As with any biological system, the

number of parameters involved in the induction of a specific

pathway could be large, with physical, chemical, and biological

parameters all affecting the system. In terms of a modeling-based

representation of biological systems, the goal of our effort is to

determine the parameters that most affect the induction of the

system.

A simple example of this concept can be observed in glycolysis.

Through the complex intermediates and interactions within this

pathway, three regulatory steps are often considered, biologically,

the most important rate-limiting steps in the pathway. These

irreversible steps, phosphorylation of glucose, phosphorylation of

fructose-6-phosphate, and transfer of phosphate to phosphoenol-

pyruvate and then to ADP, would be the most important control

points. The proteins involved in these steps, as well as the mRNA

that generates these proteins, are crucial to the overall process.

Investigating the influence of the parameters on the control target

is an effective tool to reduce the model complexity and assist

control system design. In order to reduce the model, we should

know whether the output significantly changes under a small

change of the parameters, as some parameters may not be as

effective as others. By understanding how small changes in

parameters affect the overall system, we can determine the most

important parameters involved in generating the desired output.

In the case of GAL1 mRNA, a small change in the value of the

GAL4p parameter will have a large effect on GAL1 mRNA

expression, indicating that this parameter significantly influences

the uncertainties of GAL1 mRNA expression. Thus, this

parameter is crucial to control the system. Small changes in a

parameter that was not as closely linked to GAL1 mRNA

expression specifically may not have a large effect on the

expression. In fact, most biological systems may be sensitive to

certain parameters over a large range. If the sensitivity of a

parameter is small compared to other parameters, the parameter

could be arbitrarily chosen from a wide range of values without

altering the dynamic performance of the system. This practice

has been used successfully in control systems engineering,

including chemical process control, robotics control, aerospace

control, etc.

For the above model, we will first conduct local sensitivity

analysis that will quantify the change of the system states due to

constant perturbation of a parameter at time zero. Consider a

general form of nonlinear ordinary differential equations:

dX

dt
~f (X ,w,t), X (t0)~X0, ð23Þ

where X is the state vector with n components, and w is the

parameter vector with m components. The initial condition of the

above equations is set to x0. Define the sensitivity coefficients of the

state xi with respect to parameter wj , j = 1, …, m, by

s(xi; wj ,t)~
Lxi

Lwj

, ð24Þ

and then the state’s sensitivity trajectory can be described by the

following:

ds X ; wj ,t
� �

dt
~

d LX=Lwj

� �
dt

~
Lf

LX

LX

Lwj

z
Lf

Lwj

~
Lf

LX
s(X ; wj ,t)z

Lf

Lwj

,

ð25Þ

where the state vector is denoted by X~ x1 � � � xn½ �T . The

initial values of the sensitivity equations can be obtained by

s(xi; wj ,t0)~
Lxi t0ð Þ

Lwj

~
0, xi=wj

1, xi~wj

(
: ð26Þ

In order to avoid scale differences in the parameters, the

sensitivity coefficients are normalized as follows,

ns(xi; wj ,t)~
Lxi=xi

Lwj

�
wj

: ð27Þ

The normalized sensitivity coefficient ns(xi; wj ,t) means that a 1

percent change of state xi results in a 1 percent change of the

parameter wj over the time course t. The sensitivity trajectory

s(x; wj ,t) can be calculated numerically by equations (25–26). The

importance of the parameters can thus be distinguished by the

magnitude of the normalized sensitivity coefficients in the time-course

of the system following the constant perturbation at time zero.

The normalized sensitivity coefficients for the original model

are shown in Figure 2, where each small block describes a

normalized sensitivity for a certain parameter at a certain time.

In Figure 2A, the galactose input is kept at a constant,

Parameter Description Value [12]

vsd (min21) Glucose induced mRNA degradation rate 9:30|10{6

ksd (molec./cell) Glucose induced mRNA degradation constant 30

doi:10.1371/journal.pone.0019353.t002

Table 2. Cont.

External Control of Cellular Systems

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e19353



½gal�e~4|107 (molec.) with the measured system output

represented by m1. It is easy to observe that the external galactose

input is positively correlated to the output of m1. The glucose

network remains in the steady state when the internal glucose is

emptied and there is no external glucose supply. The steady state

of ½glu� = 13586 (molec./cell) and mglu = 3397 (molec./cell) can be

determined by solving _mmglu~ _ggglu~½g_llu�~0. The function R(½glu�)
in equation (19) was found to equal 0.9959. Thus, the glucose

network can be separated from the galactose network. This is in

agreement with experimental data, where a lack of glucose as a

carbon source and the presence of galactose will induce the GAL

network. Based on the sensitivity analysis of m1 with respect to all

the parameters (Table 2), it becomes clear which parameters can

be omitted from the system. The heat map in Figure 2 shows the

normalized sensitivity of GAL1 mRNA concentration (m1) after

changes in all 35 parameters. The Figure 2A shows the

sensitivities when ½gal�e~4|107 molec: The Figure 2B repre-

sents the sensitivities when ½gal�e~4|102 molec: The sensitivities

of the parameters d1, atr, vsd , c1, b4, k4d , k{4d , k{r, kr, Kp, Cp

and ksd are much smaller than those of the other parameters (near

zero, green color). In general, when the external galactose ½gal�e is

higher, the parameters are more sensitive, with the exception of a1

and c1.

However, it would be careless to omit these parameters without

further investigation. For example, the degradation rate d1 is

important for achieving the steady states of the original model, so

it must be retained. Kp and Cp come from the cooperative

fractional saturation function F (g4d ,g80d ,N). Both g4d and g80d in

the function contribute to the activation of mRNAs m1, m2, m3, and

m80. However, the contributions may not be equal. If we define

P~CPKpg4d ; Q~CQKqg80d , then we have

F (g4d ,g80d ,1)~
P

1zPzPQ
~

1

1=Pz1zQ
ð28Þ

When 1 + Q ..1/P, the above equation (28) can be

approximated by

F (g4d ,g80d ,1)&
1

1zQ
~1{

Q

1zQ

� �
ð29Þ

From (29), we observed that the output m1 is positively

correlated to the external galactose input. The sensitivity analysis

has told us that Kp and Cp can be set to be large enough to satisfy

1 + Q ..1/P. Thus, only g80d contributes to the cooperative

Figure 2. Normalized parameter sensitivity trajectory with respect to time. The heat map shows the normalized sensitivity of GAL1 mRNA
concentration (m1) towards change in all 35 parameters. Panel (A): Sensitivities when ½gal�e~4|107 molec: Panel (B): Sensitivities when
½gal�e~4|102 molec: The sensitivities of the parameters d1 , atr, vsd , c1 , b4 , k4d , k{4d , k{r, kr, Kp , Cp and ksd are much smaller than those of the other
parameters (approximately zero, green color). In general, when the external galactose ½gal�e is higher, the parameters are more sensitive, besides a1

and c1.
doi:10.1371/journal.pone.0019353.g002

External Control of Cellular Systems

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e19353



fractional saturation function. Similarly, the other two cooperative

functions can be simplified as follows,

F(g4d ,g80d ,2)~
2PzP2z2P2Q

1z2PzP2z2P2Qz2PQzP2Q2

&1{
Q

1zQ

� �2

, if 1zQww

1

P
,

ð30Þ

and

F(g4d ,g80d ,4)&1{
Q

1zQ

� �4

, if 1zQww

1

P
: ð31Þ

Therefore, the cooperative fractional saturation effect of g4d and

g80d can be approximated by the contribution from g80d alone.

This can also be explained by the sensitivity analysis in Figures 1,

3, and 4, which shows that k4d , k{4d , k{r as well as kr are less

‘‘essential’’ to the system output. Thus, we can set k4d , k{4d , kr,

and k{r to be zero, since they are small numbers and have small

sensitivity coefficients. This results in a removal of the loops

involving the GAL4p dimer, g4d , and the GAL4p/GAL80p dimer

complex, gc
4d . As shown in Figure 1, the subsystem (g4, g4d , gc

4d

and g80d ) can be simplified as g80d only, because the rest of the

subsystems will not affect the steady state of the output. The goal

of the proposed control is to maintain a level of mRNA expression

at some predetermined level. The model reduction will thus have

little influence on the control performance in terms of output

deviation after a long enough time. The contributions from the

glucose network to m1, and m3, are small when no glucose exists,

which is necessary to induce the GAL gene network, as explained

earlier. This is consistent with the small sensitivity coefficients with

respect to vsd and ksd . We thus set vsd equal to zero and ksd equal

to a large number. Also, small sensitivity of the coefficient with

respect to atr leads to a slight model reduction on T1(½gal�,½gal�e)
by setting atr = 0.

Figure 3. Local sensitivity analysis at the steady states of four GAL mRNAs with respect to all model parameters. The heat map
denotes the average absolute value of the normalized sensitivity coefficients of four GAL mRNA across 1000 minutes. The parameters d1 , atr, vsd , ksd ,
b4 , k4d , k{4d , k{r , kr, Kp, and Cp are smaller than 0.25, while the others are larger than 1. This implies the reaction terms associated with insensitive
parameters can be omitted no matter which mRNA is chosen as the control target. One can conclude not only that the control model targeting GAL1
mRNA need not include the terms associated with the above parameters, but also that control strategies targeting all four GAL mRNAs can suppress
the same terms. The reduced model can thus be used for the control design targeting any of the four GAL mRNAs.
doi:10.1371/journal.pone.0019353.g003
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Thus, a Reduced Order Model can be achieved based on the

analysis above. The Reduced Order Model in a state space form

can thus be described as follows:

_gg1~b1m1{d1g1 ð32Þ

_gg2~b2m2{d1g2 ð33Þ

_gg3~{d1g3{k3xgalg3zk{3gc
3zb3m3 ð34Þ

_gg80~b80m80{d1g80{k80gc
3g80z

k{80gc
80z2k{80dg80d{2k80dg2

80

ð35Þ

_mm1~a1F(g80d ,4){c1m1 ð36Þ

_mm2~a2F(g80d ,2){c2m2 ð37Þ

_mm3~a3F(g80d ,1){c3m3 ð38Þ

_mm80~a80F(g80d ,1){c80m80 ð39Þ

_gg80d~k80dg2
80{k{80dg80d{d1g80d ð40Þ

_ggc
3~k3½gal�g3{k{3gc

3{k80gc
3g80zk{80gc

80{d1gc
3 ð41Þ

_ggc
80~k80gc

3g80{k{80gc
80{d1gc

80 ð42Þ

_½gal�½gal�~ktrg2
½gal�e{½gal�

kmtrz½gal�ez½gal�{
kcatg1½gal�
kmgkz½gal�{

k3g3½gal�zk{3gc
3{d1½gal�

ð43Þ

where

F(g80d ,N)~1{
CQKQg80d

1zCQKQg80d

� �N

: ð44Þ

All parameters are summarized in Table 2.

The comparison of the outputs of the Original Model and the

Reduced Model is shown in Figure 5. The differences between

the two models occur in the transition process before the first

200 min, while the difference decreases significantly in the steady

state. According to the experimental results from [11,12], the

galactose network takes 4–7 hours (240–420 minutes) to reach a

steady state. Our simulation results in Figure 3 are consistent

with the experimental data. When the external galactose level

is set at ½gal�e~4|107 molec: or ½gal�e~4|102 molec:, the

steady-state deviation of GAL1 mRNA, m1 (molec./cell) is similar

between the full and reduced models. However, the deviation of

the transition process, the time before achieving the steady state,

between the two models with the smaller external galactose level

is significant. This result is consistent with the sensitivity measure

in Figure 3.

Figure 4. Global sensitivity analysis at the steady states of four GAL mRNAs with respect to all model parameters under constant
control ½gal�e~4|107 molec. The bars denote the range of the sensitivity coefficients of four GAL mRNAs with respect to each parameter. The blue
solid line stands for the global sensitivity coefficients for GAL1 mRNA.
doi:10.1371/journal.pone.0019353.g004

External Control of Cellular Systems

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e19353



Biologically, the reduced model varies from the complex model

only within the first 200 minutes of expression for relatively low

galactose levels, 400 molecules. The steady-state levels of GAL1

mRNA expression after the first 200 min for both galactose levels

tested were the same in both models (Figure 5). In this way, the

reduced model can be used to explain the expression of GAL1

mRNA, once the expression level has reached a steady state.

Before the steady state is reached, only a complex model can

completely model the effects of GAL1 mRNA expression from the

introduction of low levels of galactose. A similar technique can be

applied if the control target changes to any of the other mRNAs or

proteins. This paper exemplifies GAL1 mRNA as a primary

control target, but the applications of the method are not limited

to a certain mRNA. Choosing GAL2 or GAL3, as well as GAL80,

will produce very similar reduced models; however, using GAL4 as

a control target will obviously yield a different reduced model

because of the simplification in the GAL1 output system obtained

by the removal of the GAL4p subsystem. A reduced model for

GAL4 would have to include the GAL4p subsystem, and thus a

much different reduced model would be generated.

Figure 3 describes the local sensitivity analysis at the steady

states of four GAL mRNAs with respect to all model parameters.

The bars denote the range of the sensitivity coefficients of four

GAL mRNAs with respect to each parameter. The parameters d1,

atr, vsd , ksd , b4, k4d , k{4d , k{r, kr, Kp, and Cp are smaller than

0.25, while the others are greater than one. This implies that the

reaction terms associated with the insensitive parameters can be

omitted no matter which mRNA is chosen as the control target.

The design of a control model to control steady-state expression of

GAL1, GAL2, GAL3, and GAL80 mRNA (m1, m2, m3 and m80) is

described in the following section.

The local sensitivity analysis describes the change of system

dynamics at time t after a step-wise perturbation to a parameter

occurs at time zero. One might wonder what the effect would be

when all parameters are perturbed simultaneously. Global

sensitivity analysis investigates the effect of simultaneous large

variations of all parameters on the states. The common methods to

test global sensitivity include the Fourier amplitude sensitivity test

(FAST) [20], extended FAST [21], Sobol’s method [22], the

partial rank correlation coefficient (PRCC) [23], as well as the

weighted average local sensitivity method [24].

FAST is one of the classical methods to determine global

sensitivity. Assuming that the time dependence of each uncertain

parameter wi is associated with a frequency vj , we can describe

that parameter by a transformation function of a sinusoid, i.e.,

wj(s)~Gj ½sin (vjs)�, j~1,2,:::,m ð45Þ

for all m parameters, where s is the time.

The first order global sensitivity of xi with respect to the

variation of the parameter wi can be defined as the ratio of the

variance of wi to the total variance

GSi(wj)~s2
i,vj
=s2

i , ð46Þ

where the total variance is

s2
i ~2

X?
k~1

½A2
i (k)zB2

i (k)� ð47Þ

Figure 5. Comparison of original model and reduced model. The difference between the two models occurs in the transition process before
the first 200 min, while the difference decreases significantly in the steady state. When ½gal�e~4|107 molec: and ½gal�e~4|102 molec: are applied
to both models, the steady-state deviation of the output m1 (molec./cell) is less than 1 percent. However, the deviation of the transition process
between the two models with the smaller external galactose is significant. This result is consistent with the sensitivity measure in Figure 3. The solid
line is for m1 concentration in the original model, while the open symbol is for the reduced model.
doi:10.1371/journal.pone.0019353.g005
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and the variance of wi becomes

s2
i,vj

~2
X?
k~1

½A2
i (kvj)zB2

i (kvj)�, ð48Þ

with

Ai(v)~
1

2p

ðp

{p

xi(w,s) cos (vs)ds ð49Þ

Bi(v)~
1

2p

ðp

{p

xi(w,s) sin (vs)ds: ð50Þ

Although the above local sensitivity analysis pointed out some

candidate parameters and their associated terms that may be

removed, it only guarantees the scenario when the parameters

are tuned one by one. When the parameters are simultaneously

adjusted, some may become sensitive. Thus, we must also

apply global sensitivity analysis to rule out corresponding

parameters.

As shown in Figure 4, the bars denote the range of the sensitivity

coefficients of four GAL mRNAs with respect to each parameter

under constant control ½gal�e~4|107 molec: The blue solid line

stands for the global sensitivity coefficients for GAL1 mRNA. In

particular, atr, ksd , b4, k4d , k{4d , k{r, kr, Kp, and Cp are nearly

zero. The maximum of the coefficients d1, vsd and k{80d is smaller

than 0.2, while that of the others is larger than 0.2, consistent with

the local sensitivity coefficients in Figure 3. This implies that the

reaction terms associated with insensitive parameters can be

omitted no matter which mRNA is chosen as the control target.

Thus, both local and global sensitivity analyses indicate that the

reduced model, equations (32–43), can be used for regulating all

four GAL mRNAs.

Control Design
As discussed earlier, any of the four GAL mRNAs can be chosen

as the control target. For demonstration purposes, we have chosen

to control GAL1 mRNA (m1), i.e., essentially maintain the GAL1

mRNA at a desired level m�1, i.e.,

m1~m�1and _mm1~€mm1~:::~0: ð51Þ

In order to keep equation (51) true, the steady state of the system

becomes

g80d
�~

1=CqKq

1{ 1{c1m1
�=a1½ �1=4

{
1

CqKq

: ð52Þ

As a test case for this model, we will demonstrate the control

of GAL1 mRNA expression by controlling the external level of

galactose. It is important to note that any gene or protein

represented in the reduced model can be controlled in a

similar manner. Following this same pattern, recombinant

genes regulated by GAL1 could be controlled in the same

manner.

Similarly, we can find the steady states for m2,m3,m80, and g1,

m2
�~a2F (g80d

�,2)=c2 ð53Þ

m3
�~a3F (g80d

�,1)=c3, ð54Þ

m80
�~a80F(g80d

�,1)=c80 ð55Þ

g1
�~bm1

�=d1 ð56Þ

g2
�~bm2

�=d1 ð57Þ

g�80~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k{80dzd1)g80d

�=k80d

p
ð58Þ

gc
3

� ��
~(k{80zd1)(gc

80)�=(k80g80
�): ð59Þ

Observing the galactose network, we can obtain two auxiliary

equations:

d g3z gc
3

� ��
z gc

80

� ��� �
dt

~b3m3{d1 g3z gc
3

� ��
z gc

80

� ��� �
ð60Þ

d g80z2g80dz gc
80

� ��� �
dt

~b80m80{d1 g80z2g80dz gc
80

� ��� �
: ð61Þ

Equation (60) indicates that the total mass of g3, gc
3

� ��
, gc

80

� ��� �
,

is up-regulated by m3. Biologically, this is a simple concept to

understand, as expression of GAL3 mRNA, m3, is necessary for the

generation of GAL3p, g3, and the Gal3p dimer, gc
3

� ��
, in a dose-

dependent manner. Similarly, the GAL80p/GAL3p dimer complex

is dependent on the expression of GAL3p. Equation (61) indicates
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that the total mass of g80, g80d , gc
80

� ��� �
, is up-regulated by m80, in

a manner similar to that described above. Both of these equations

show the interplay between the biological mechanisms responsible

for their creation.

Through equations (60) and (61) we can determine the

remaining steady states g3
�, gc

80

� ��
and ½gal�� using the auxiliary

equations

g3
�z gc

3

� ��
z gc

80

� ��
~b3m3

�=d1 ð62Þ

g80
�z2g80d

�z gc
80

� ��
~b80m80

�=d1: ð63Þ

Thus,

gc
80

� ��
~b80m80

�=d1{m80
�{2g80d

� ð64Þ

g3
�~b3m7

�=d1{ gc
3

� ��
{ gc

80

� �� ð65Þ

½gal��~ (k{3zd1) gc
3

� ��
zd1 gc

80

� ��� 	
=(k3g3

�): ð66Þ

Given our desire to enforce the control condition of m1~m�1,

we need to control the external galactose, ½gal�e
�

, which at steady

state can be calculated as follows,

½gal�e
�
~

kmtrVz½gal��(1zV)

1{V
, ð67Þ

where V~
kcatg1

�½gal��

kmgkz½gal��zk3g3
�½gal��{k{3 gc

3

� ��
zd1½gal��

� �
=

(ktrg2
�):

Similarly, if the control objective is to regulate GAL2 mRNA,

m2~m�2, then

g80d
�~

1=CqKq

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{c2=a2m�2

p {
1

CqKq

ð68Þ

m1
�~a3F(g80d

�,4)=c1: ð69Þ

The rest of the terms can be achieved using the same

equations (54)–(67). Because this system has only a single steady

state, one can always find a nominal control value for external

galactose ½gal�e
�

to maintain any control objective at a desired

level. In other words, we can always compute the necessary

amount of galactose offline in order to maintain GAL1 mRNA or

any other factor, such as GAL2 mRNA or GAL3p, at a level of

interest.

Thus, offline, we can calculate an open-loop constant control,

which is the simplest type of controller that does not take into

consideration state information that is fed back into the system for

control purposes.

Open{loop Constant Control: ½gal�e~½gal��e ð70Þ

for any of the targeting mRNA, m1, m2, m3, and m80, if these

mRNAs are not measurable in real-time. However, if they are

measurable, one can improve the control algorithm by introducing

a closed-loop feedback control. A simple proportional output

feedback control for m1 can be described as

Closed{loop Feedback Control: ½gal�e~½gal��ez

k(m�1{m1)
ð71Þ

where the feedback gain k~108. The gain k directly affects the

convergence rate of the controlled GAL network. However, the

external galactose amount should not exceed the maximum

concentration of galactose. Thus, the control dosage should be

bounded by

½gal�e~min gal½ �e gal½ �
max

e


 �
ð72Þ

Of course, one can use a proportional-integral-derivative (PID)

control in practice. Integral control can adjust the static error, but

too much integral gain can reduce the stabilization of the system.

Derivative control can adjust the convergence rates, however, it is

too sensitive to high frequency noise. For pursuing different

requirements, many more complicated control methods can be

applied, such as optimal control for minimizing the galactose

dosage and robust control for reducing the uncertainty, among

others. Because the control objective of regulating the mRNA

concentration to a desired value, is a relatively simple task, without

strict requirements for reaction time and galactose dosage, a

simple proportional control is adequate to accomplish the control

goal.

Results

Control Stability Analysis
Next, we will prove the stability of this equilibrium because the

equilibrium is a unique steady state. If it is stable, then the state

will tend to this steady state given the nominal control. The control

objective m1 will be maintained at the desired level m�1.

Biologically, this system is stable based on experimental results

[12]. The following is a theoretical proof based on the mathe-

matical model.

The Jacobian matrix at this equilibrium is
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where

F1~{4a1(KqCq)4(g�80d )3=(1zKqCqg�80d )5, ð74Þ

F2~{2a2(KqCq)2g�80d=(1zKqCqg�80d )3, ð75Þ

F3~{a3KqCq=(1zKqCqg�80d )2, ð76Þ

F80~{a80KqCq=(1zKqCqg�80d )2, ð77Þ

G1~
{kcat½gal��

kmgkz½gal�� , ð78Þ

G2~ktr
gal½ ��e{ gal½ ��

kmtrz gal½ ��ez gal½ �� , and ð79Þ

G3~k3g�3z
kcatkmgkg�1

kmgkz gal½ ��
� �2

z
2 gal½ ��ezkmtr

� �
g�2ktr

kmtrz gal½ ��ez gal½ ��
� �2

: ð80Þ

If m�1~20, one finds the eigenvalues of the Jacobian matrix are

[2895.99, 2194.68, 212.54, 212.04, 20.0295, 20.0387+
0.0024i, 20.03872 0.0024i, 20.0360, 20.0015, 20.0033,

20.0033, 20.0033]. A standard stability analysis of the dynamic

systems finds that the equilibrium is asymptotically stable. Thus

the system will tend to the steady state asymptotically.

Because most of the eigenvalues are small in magnitude, it

implies that the convergence of this controlled system will take a

long time. Biologically, after we set the external galactose level to a

constant value, the yeast galactose utilization network will slowly

achieve balance (a steady state) and the GAL1 mRNA level will

gradually reach and maintain the desired level. At this steady-state

level, there will not be oscillations in the mRNA or protein levels

associated with this system.

In order to change the eigenvalues to negative, we follow a

common practice in control systems engineering and introduce a

linear output feedback control

½gal�e~½gal��ezk(m�1{m1), ð81Þ

where k~108. J(12,5)~{
2 gal½ ��zkmtr

� �
g�2ktrk

kmtrz gal½ ��ez gal½ ��
� �2. The eigen-

values of the Jacobian matrix indicate how fast the control can

reach a steady state. In general, the more negative, the faster. In

the above control, the eigenvalues of the Jacobian matrix (73)

move far away from the y axis: [2895.99, 2194.67, 216.40,

25.33, 22.91, 20.026, 20.0361, 20.0360, 20.0033, 20.0033,

20.0033]. This implies that the system will converge faster under

the linear feedback control. Increasing the value of k will lead to

faster convergence. However, the growth of the convergence rate

is limited due to the maximum concentration of galactose. From

Figure 1, we can find that the internalized galactose level

increases with rising external galactose levels, and the internalized

galactose level enhances GAL 4, which in turn promotes GAL1

mRNA expression. Increased GAL1 mRNA expression will also

increase the degradation rate of the internalized galactose, thus the

internalized galactose will reach a steady state faster. In essence,

the introduction of the feedback control loop actually increases the

external galactose level, but dynamically adjusts the amount such

that the GAL1 mRNA can still reach the desired level. In this

process, the degradation rate of the internalized galactose is largely

enhanced, consistent with a significant increase of the magnitude

of several negative eigenvalues.

We set the desired level of GAL1 mRNA as m1 = 20. From

equation (67), the nominal control values for [gal]e* can be

obtained as 4:0552|107 molec./cell. Application of the nominal

control should cause the system to slowly reach a stable

equilibrium. As shown in Figure 6, it takes more than

1500 min for m1 to reach the desired level. From Figure 5, we

can see that achieving the desired high GAL1 mRNA level usually

demands a much longer time than is required for low GAL1

mRNA levels. The metabolic reactions involved in promoting

mRNA expression and subsequent translation into proteins

require a lengthy time. Multiple positive and negative feedback

loops inside the network actually prevent mRNAs and the

associated proteins from rapid changes due to external stimuli.

J~

{d1 0 0 0 b1 0 0 0 0 0 0 0

0 {d1 0 0 0 b2 0 0 0 0 0 0

0 0 {d1{k3½gal�� 0 0 0 b3 0 0 k{3 0 {k3g�3
0 0 0 {d1{4k80d g�80{k80 gc

3

� ��
0 0 0 b80 2k{80d {k80g�80 k{80 0

0 0 0 0 {c1 0 0 0 F1 0 0 0

0 0 0 0 0 {c2 0 0 F2 0 0 0

0 0 0 0 0 0 {c3 0 F3 0 0 0
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0 0 0 2k80d g�80 0 0 0 0 {d1{k{80d 0 0 0
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3
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3
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The effects of protein concentration profiles by feedback control

on GAL1 mRNA expression on the GAL network are illustrated in

Figure 7. All states (unit: molec./cell) converge to a stable steady

state, while g2, gc
3 and gc

80 have slower convergence rates than the

other states. It is not surprising to see that all concentrations tend

to a steady state, since the system has a unique stable steady state.

But the transient response of the galactose system is equally

important, because a large fluctuation is not desired in a reliable

bioreactor. The figure shows that the system does not have large

overshoots and is thus safe for implementation in practice.

Figure 8 compares the set point regulation performance of the

feedback control between the original model and the reduced

model using feedback control. Setting three desired levels of m1 as

10, 15, and 20, feedback control based on both the original model

(solid) and the reduced model (open) can be maintained at the

desired levels within a similar time frame. The reduced model-

based feedback control, however, leads to slightly larger

magnitudes of oscillations at the transient response. The difference

is small enough not to result in any severe fluctuation in the

biological system. Thus, the control design based on the reduced

model can be applied to the original model directly.

Sensitivity Analysis
The steady-state sensitivity describes the change of the steady

state given a small perturbation of a certain parameter [25]. It can

be given by the first-order partial derivative of a state with respect to

the parameter. Using the finite difference method, the normalized

steady-state sensitivity (NSSS) coefficient for the steady state of state

xi with respect to the parameter wj can be approximated by

SSij~
LZssi wj

� ��
Zssi wj

� �
Lwj

�
wj

&
Zssi wjzDwj

� �
{Zssi wj

� �
Dwj

wj

Zssi wj

� � , ð82Þ

where Zssi is the steady state of the state xi.

A small magnitude of NSSS of state xi with respect to the

parameter wj implies that the parameter uncertainty of wj has no

significant influence on the state xi locally. In contrast, a large

NSSS implies serious influence by the parameter uncertainty. It is

necessary to emphasize ‘‘locally’’ because the steady-state

sensitivity is a local sensitivity measurement that perturbs one

parameter and fixes the other parameters. As shown in Figure 9,

we calculated the NSSS of all states with respect to the output m1

for both constant control and the feedback control algorithm. The

NSSS of the feedback control case has significantly smaller

magnitude in terms of average maximum sensitivities for all states

(0.93 v.s. 3.42) and output state (0.02 v.s. 1.66). Especially for the

output state, the magnitude of NSSS was reduced 100-fold. This

implies that the parameter uncertainty does not affect the steady

state of the output. The feedback control law (81) can always drive

the output to the reference level subject to uncertainties and

perturbation in the parameters locally.

Biologically, we can conclude from the above data that the

feedback control is less influenced by disturbances within the

system, as shown in Figure 9. For mRNA expression, this means

that a feedback control prevents the system from being overly

sensitive to any specific parameter. The perturbations or

parameter uncertainty in any parameter will not cause a

significant deviation to the steady mRNA level. This is necessary

for complex biological systems, where parameter uncertainty and

perturbations widely exist. If the system was overly sensitive over

some parameters, then it would be difficult to maintain the mRNA

at a desired level. A series of checks and balances are always

present to prevent the system from fluctuating out of control.

Discussion

This paper employs control theory and a systems engineering

approach to demonstrate the regulation in silico of the budding

Figure 6. Comparison between constant and feedback control for the Reduced Order Model. It takes more than 1500 min for GAL1
mRNA, m1 to reach the desired level of 20 (molec./cell) using the constant control (top); however, only 40 min are required for the feedback control
(bottom). According to the simulation, feedback control is much more effective at bringing the yeast system into a steady-state level of mRNA
expression.
doi:10.1371/journal.pone.0019353.g006

ð82Þ
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yeast, Saccharomyces cerevisiae, into a desired gene expression and/

or metabolic activity pattern. The GAL network is used as an

example to demonstrate the effectiveness of a systems approach

for complex cellular system control. We demonstrate that

although the structure and computational models are compli-

cated, it is possible to use a ‘‘simple’’ control algorithm to

manipulate the system. According to the local parameter

sensitivity analysis, some terms can be eliminated from the

model without adversely affecting its long-term behavior, and

the control design based on the reduced model can still be

applied to the original model. Both constant control and

feedback control laws have been designed for the galactose

network. To evaluate the control performance, we conducted

local steady-state sensitivity and global sensitivity analysis. The

results accordingly imply that feedback control significantly

suppresses the parameter uncertainties. This sheds light on the

potential to provide novel control components to eukaryotic

transcriptional regulation networks, as well as other gene

regulatory networks.

The approach we propose can not only be used to control the

yeast GAL network, but the fundamental principles can be applied

to a wide range of biological network control. Complex networks

involving cell-cycle controls, DNA repair, and other genes of

interest can be controlled in a similar manner, given an effective

means of monitoring the output of the system. The most attractive

application is the control of bioreactors. If done properly, the

ability to yield a large amount of the target in a relatively short

period of time, while minimizing the effects of toxic levels of gene

expression products can be achieved. If these systems are tightly

controlled at the cellular level, proteins of interest, such as

immunogenic proteins used in the production of vaccines,

restriction enzymes, biopharmaceuticals, biochemicals can be

tightly regulated. This would allow for a cost-effective means of

producing a large variety of products for research and commercial

use. Applications to other systems include bacterial expression

systems and even mammalian cell systems, based on the

effectiveness of the bioreactor and the access to the requisite

control variables. Of course, other physical and chemical

parameters would be necessary to completely control a bioreac-

tor-based system, including pH, temperature, and nutrient

conditions. The major difference between these and the above

approach is that the proposed approach focuses on cellular system

control, which is still a widely open field. Our future research will

implement this control system with a fully established microfluidic

device to monitor the real-time expression of GAL-GFP fusion

proteins. By validating the above control in an experimental

environment we will demonstrate the usefulness and validity of our

approach.

Figure 7. Effect of protein concentration on mRNA expression by feedback control on the GAL network. All states (unit: molec./cell)
converge to a stable steady state, while g2, gc

3 and gc
80 have slower convergence rates than the other states. The transient process of states g80 and gc

3
is listed in the small windows above. The overshoot of the states is kept in a reasonable range. No severe fluctuations or oscillations are found in the
GAL network under feedback control.
doi:10.1371/journal.pone.0019353.g007
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Figure 8. Comparison of referenced tracking between the original model and the reduced model using feedback control. Under the
feedback control, the tracking performance of the original model and the reduced model is similar. Thus, the control design based on the reduced
model can be applied to the original model directly.
doi:10.1371/journal.pone.0019353.g008

Figure 9. Comparison of normalized steady-state sensitivities (NSSS) between constant and feedback control. The NSSS of the
feedback control case has significantly smaller magnitude in terms of average maximal sensitivities for all states (0.93 v.s. 3.42) and the output state
(0.02 v.s. 1.66). The bars describe the maximum and minimum values of NSSS of the states with respect to each parameter. The solid lines denote the
output NSSS on each parameter.
doi:10.1371/journal.pone.0019353.g009
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