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Abstract

Many scientific investigations depend on obtaining data-driven, accurate, robust and computationally-tractable parameter
estimates. In the face of unavoidable intrinsic variability, there are different algorithmic approaches, prior assumptions and
fundamental principles for computing point and interval estimates. Efficient and reliable parameter estimation is critical in
making inference about observable experiments, summarizing process characteristics and prediction of experimental
behaviors. In this manuscript, we demonstrate simulation, construction, validation and interpretation of confidence
intervals, under various assumptions, using the interactive web-based tools provided by the Statistics Online Computational
Resource (http://www.SOCR.ucla.edu). Specifically, we present confidence interval examples for population means, with
known or unknown population standard deviation; population variance; population proportion (exact and approximate), as
well as confidence intervals based on bootstrapping or the asymptotic properties of the maximum likelihood estimates. Like
all SOCR resources, these confidence interval resources may be openly accessed via an Internet-connected Java-enabled
browser. The SOCR confidence interval applet enables the user to empirically explore and investigate the effects of the
confidence-level, the sample-size and parameter of interest on the corresponding confidence interval. Two applications of
the new interval estimation computational library are presented. The first one is a simulation of confidence interval
estimating the US unemployment rate and the second application demonstrates the computations of point and interval
estimates of hippocampal surface complexity for Alzheimers disease patients, mild cognitive impairment subjects and
asymptomatic controls.
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Introduction

Variability and Estimation in Quantitative Studies
Solutions to many biological, engineering, social, environmental

or health related challenges depend on obtaining accurate, robust

and computationally-tractable parameter estimates. All natural

processes, observable phenomena and designed experiments are

affected by intrinsically or extrinsically induced variation [1]. Our

understanding of such processes frequently revolves around

estimating various population parameters of interest based on

observed (acquired) data. Commonly used parameters of interest

include measures of centrality (e.g., mean, modes), measures of

variability (e.g., mean absolute deviation, range), measures of

shape (e.g., skewness, kurtosis), proportions, quantiles, and many,

many others. There are two types of parameter estimates - point-

based and interval-based estimates. The former refer to unique

quantitative estimates, and the latter represent ranges of plausible

values for the parameters of interest. There are different

algorithmic approaches, prior assumptions and principals for

computing data-driven parameter estimates. These depend on the

distribution of the process of interest, the available computational

resources and other criteria that may be desirable [2], e.g.,

biasness and robustness of the estimates. Accurate, robust and

efficient parameter estimation is critical in making inference about

observable experiments, summarizing process characteristics and

prediction of experimental behaviors.

For example, a 2005 study proposing a new computational

brain atlas for Alzheimer’s disease [3] investigated the mean

volumetric characteristics and the spectra of shapes and sizes of

different cortical and subcortical brain regions for Alzheimer’s

patients, individuals with minor cognitive impairment and

asymptomatic subjects. This study estimated several centrality

and variability parameters for these populations. Based on these

point- and interval-estimates, the study analyzed a number of

digital scans to derive criteria for imaging-based classification of

subjects based on the intensities of their 3D brain scans. Their

results enabled a number of subsequent inference studies that

quantified the effects of subject demographics (e.g., education

level, familial history, APOE allele, etc.), stage of the disease and

the efficacy of new drug treatments targeting Alzheimer’s disease.

Figure 1 illustrates the shape, center and distribution parameters

for the 3D geometric structure of the right hippocampus in the

AlzheimerÕs disease brain atlas. New imaging data can then be

co-registered and quantitatively compared relative to the amount

of anatomical variability encoded in this atlas. This enables

automated, efficient and quantitative inference on large number of

brain volumes. Examples of point and interval estimates computed

in this atlas framework include the mean-intensity and mean shape
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location, and the standard deviation of intensities and the mean

deviation of shape, respectively.

The Statistics Online Computational Resource (SOCR)
The Statistics Online Computational Resource (SOCR) (http://

www.socr.ucla.edu) is an NSF-funded project that designs,

implements, validates and integrates various interactive tools for

statistics and probability education and computing. SOCR

resource tools attempt to bridge between the learning and practice

of introductory and more advanced computational and applied

probability and statistics concepts. The SOCR resource comprises

of a hierarchy of portable online interactive aids for motivating,

modernizing and improving the teaching format in college-level

probability and statistics courses. These tools include a number of

applets, user interfaces and demonstrations, which are fully

accessible over the Internet [4–6]. The SOCR resources allow

instructors to supplement methodological course material with

hands-on demonstrations, simulations and interactive graphical

displays illustrating in a problem-driven manner the presented

theoretical and data-analytic concepts. SOCR consists of seven

major categories of resources: interactive distribution modeler,

virtual experiments, statistical analyses, computer generated

games, a data modeler, a data-graphing tool and a newly added

java applet on confidence intervals. In this paper, we will

demonstrate simulation, construction, validation and interpreta-

tion of confidence intervals, under various assumptions, using the

interactive web-based tools and materials provided by the Statistics

Computational Resource. Specific confidence interval demonstra-

tion examples will include intervals for: the population mean, with

known or unknown population standard deviation; population

variance; population proportion (exact and approximate), as well

as confidence intervals based on bootstrapping and using the

Figure 1. Biomedical example of interval-based parameter estimation - probabilistic representation of the 3D shape of the right
hippocampus in the computational Alzheimer’s disease brain atlas.
doi:10.1371/journal.pone.0019178.g001

SOCR Confidence Intervals
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asymptotic properties of the maximum likelihood estimates. Like

all SOCR resources, these confidence interval applets and

activities are openly accessible via an Internet-connected computer

with a Java-enabled browser [7]. The SOCR confidence interval

applet enables the user to empirically explore and investigate the

effect of the confidence-level, the sample-size and parameter of

interest on the size and location of the corresponding confidence

interval. This confidence interval applet also allows random

sampling from a large number of discrete and continuous

distributions and interactive user-selection of the distribution

parameters. These materials are tested and validated in various

settings and can be directly integrated in high-school and college

curricula.

Background
Most scientific investigations rely on observable data (quantita-

tive and/or qualitative), which is typically used to develop models,

validate diverse research hypotheses, statistically analyze the

power of different studies and interpret the intrinsic characteristics

of the process of interest. Each observed dataset is assumed to

be a representative sample of the population. Throughout this

manuscript we are using the common statistics notation denoting

by capital letters (e.g., X ,Y ,Z) and lower case letters (e.g., x,y,z)

random variables and observed sample values, respectively. Random

samples of n observations may be represented by fXign
i~1~

fX1,X2, � � � ,Xng. For instance, if fXign
i~1 are independent and

identically distributed random variables from N(m,s) distribution,

we can compute interval estimates (ranges) for the population

mean using a sample (specific sequence of observations)

fxign
i~1~fx1,x2, � � � ,xng. There are several different situations:

1. Depending upon our knowledge of the population variance

(s2), there are two approaches for constructing the confidence

interval for the population mean, m.

If the population standard deviation s is known the confidence

interval for the mean m is:

�XX+za
2

sffiffiffi
n
p ,

where za
2

is the 1{
a

2
percentile of the N(0,1) distribution.

If the population standard deviation s is unknown:

�xx+ta
2
;n{1

sffiffiffi
n
p ,

where ta
2
;n{1 is the

a

2
percentile of the student’s t distribution with

n{1 degrees of freedom. Note that this interval is generally wider

than the first one.

2. The confidence interval for the population variance is obtained

by

n{1ð Þs2

x2
1{a

2
;n{1

,
n{1ð Þs2

x2
a
2
;n{1

2
4

3
5,

where x2
a
2
;n{1

is the
a

2
percentile of the x2 distribution with n{1

degrees of freedom.

3. Confidence intervals for the population proportion may also be

constructed in several different ways. Suppose X1,X2, � � � ,Xn are

binary (dichotomous) observations (e.g., ‘‘yes’’ or ‘‘no’’ responses).

A simple confidence interval for the population proportion (p) of

yes responses is most commonly constructed using the Wald

method:

p̂p+za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p 1{p̂pð Þ

n

r
,

where p̂p is the sample proportion. However, the Wald confidence

interval has poor coverage of the true parameter (p) when the

sample size is small or when the sample proportion p̂p is near zero

or near 1. A better estimation of the confidence interval for p is

obtained by:

p̂pz
z2

a
2

2n
+za

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂p 1{p̂pð Þ

n
z

z2
a
2

4n2

s

1z
z2

a
2

n

:

And the best (exact) confidence interval for p, also called the

‘‘Clopper-Pearson’’ interval [8] is computed by:

1z
n{xz1

xFa
2
;2x,2 n{xz1ð Þ

" #{1

vpv 1z
n{x

xz1ð ÞF1{a
2
;2 xz1ð Þ,2 n{xð Þ

" #{1

,

where Fa
2
,df 1,df 2 is the

a

2
percentile of the F distribution with

numerator degrees of freedom df 1 and denominator degrees of

freedom df 2.

Results

The SOCR confidence interval applet is unique in a way that it

allows the user to interactively sample from any of the 70z
distributions of SOCR (http://www.socr.ucla.edu/htmls/SOCR_

Distributions.html) (Figure 2), set the specific parameters of the

distribution, select the appropriate confidence interval parameter

(m,s,p, etc.) and then choose the

a. Sample size,

b. Confidence level,

c. Number of intervals to construct.

The SOCR confidence interval applet can be accessed directly

at (http://socr.ucla.edu/htmls/exp/Confidence_Interval_Experi

ment_General.html) or via the main SOCR Experiments

(http://www.socr.ucla.edu/htmls/SOCR_Experiments.html), se-

lect ‘‘Confidence Interval Experiment General’’ from the drop-

down menu). The output window of the applet is shown on Figure 3.

The selection of the various parameters of the experiment can

be done through the ‘‘Confidence Interval’’ tab of the main

window. Figure 4 shows the default settings of the input window.

In this input window the user can choose:

a. The type of confidence interval to construct (m,p,s2).
b. Choose the distribution from where the samples will be taken

and enter values for the appropriate parameters of this distribution.

c. Select the sample size.

d. Choose the number of intervals to construct.

e. Set the confidence level (1{a).

f. Multiple sample simulation or bootstrapping resampling

approach.

Clicking on the ‘‘Step’’ tab on the main applet window will

show the results of a single run of the confidence interval (CI)

experiment, using the user specified parameters, Figure 5.

SOCR Confidence Intervals
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We observe that all the input parameters are recorded on the

right margin of the applet’s main window (Figure 6). There are

two displays on this window. The top display shows the

distribution mean and the sample values (n~20 in our example)

selected for each interval (we have constructed 20 intervals). The

second display depicts the actual 20 intervals which are

constructed from the 20 random samples (red segments). When

a confidence interval misses the true mean (here m~2) a green dot

is shown to indicate this discrepancy. Observe that in this example

because we have assumed that the population standard deviation is

known (s~1) all the intervals have the same length. The

confidence level was chosen to be 1{a~0:95 and therefore it is

not surprising that among the 20 intervals only one missed the

target parameter (m~2). If we choose to run the experiment

Figure 2. The SOCR distributions applet provides interactive calculation of critical and probability values for over 70 different
probability distributions.
doi:10.1371/journal.pone.0019178.g002

Figure 3. Output window of the SOCR confidence interval applet.
doi:10.1371/journal.pone.0019178.g003

SOCR Confidence Intervals
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multiple times (for example 10 times), we simply select the

‘‘Number of Experiments = 10’’ and then click on the ‘‘Run’’

button. The results from each run of these 10 experiments are

recorded on the right margin of the applet and are shown on

Figure 7. In general, as these are random simulations, repeats of

the experiment using the same parameter settings would generate

different outcomes (sample instances and corresponding confi-

dence intervals).

We can now access again the input window and observe how

changes of the parameters may affect the appearance (size and

location) of the confidence intervals. For example, if we increase

the sample size, we will observe narrower confidence intervals. On

the other hand, increasing the confidence level will generate

higher interval coverage (more intervals will include the actual

population mean parameter), however the width of the CIs will

increase.

Confidence intervals for the mean with unknown standard

deviation can be constructed analogously. These confidence

intervals are based on the t distribution and the length of different

intervals will vary because the specific sample standard deviation is

used in their construction. Consider the exponential distribution

with parameter l~5 (mean of 0.2), sample size 60, confidence

level 0.95, and number of intervals 50. Results of this experiment

are shown on Figure 8 and Figure 9.

We now examine the confidence interval for the population

variance s2. Suppose we first use the confidence intervals applet to

sample from a normal distribution with mean 5 and standard

deviation 2, specifying sample size 30, confidence intervals 50, and

confidence level 0.95. We observe that the coverage is indeed

about 0:95 (Figure 10 - see results on the right margin of the

applet). Again, this is not surprising since when sampling from

normal distribution the confidence interval is based on the chi-

square distribution.

However, if the population is not normal the interval coverage is

poor as can be seen in the following SOCR example. Consider the

exponential distribution with l~2 (variance is s2~0:25). If we use

the confidence interval based on the x2 distribution we obtain the

following results (first with sample size 30 and then sample size

300), Figure 11. Specifically, we observe that in both cases

(regardless of the sample size - small or large) the coverage is poor,

significantly less than 0:95. For example, on Figure 11, a meta-

experiment, each consisting of generating 50 intervals of sample

Figure 4. Input window of the SOCR confidence interval applet.
doi:10.1371/journal.pone.0019178.g004

SOCR Confidence Intervals
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size n~30, yields an overall average number of confidence

intervals that fail to cover the true population variance equals to

16. On Figure 12 we see the same poor coverage even when the

sample size increases to (n~300). In these situations (sampling

from non-normal populations), an asymptotic distribution-free

confidence interval for the variance can be obtained using the

following large sample theory result [9]:

ffiffiffi
n
p

s2{s2
� �

?N 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4{s4

q� �

or,

ffiffiffi
n
p

s2{s2
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4{s4

p ?N 0,1ð Þ

where, m4~E(X{m)4 is the fourth moment of the distribution. Of

course, m4 is unknown and will be estimated by the fourth sample

moment m4~
1

n

Xn

i~1
Xi{ �XXð Þ4. The confidence interval for the

population variance is then computed as follows:

s2{za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4{s4

p
ffiffiffi
n
p ƒs2

ƒs2zza
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4{s4

p
ffiffiffi
n
p

Using the SOCR confidence intervals applet (exponential

distribution with l~2, sample size 300, number of intervals 50,

confidence level 0.95), we observe an approximate interval

coverage of 0:95, Figure 13.

We will examine now the confidence interval for the population

parameter p. The SOCR confidence interval applet provides

calculation for the three types of confidence interval for p
mentioned in the Background Section. The applet’s unique

feature is that the user can again sample from any of the available

SOCR distributions and define what the meaning of a success is.

Success is defined as a randomly chosen observation falling within a user-

specified interval. Success intervals are selected by drawing left and

right interval limit on the distribution curve using the mouse, or by

entering appropriate numerical limits in the distribution left and

right text fields (see Figure 14). For example, suppose we choose to

sample n~100 observations from a normal distribution with mean

m~5, and standard deviation s~2. The user may define as

Figure 5. An example: Normal distribution, m~2,s~1,n~20,1{a~0:95, 20 confidence intervals.
doi:10.1371/journal.pone.0019178.g005

SOCR Confidence Intervals
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success any observations that fall between 4 and 7 or any other

valid range. Once this is done, it is easy to compute the sample

proportion using p̂p~
x

n
where x is the number of observations that

fall between 4 and 7, and n~100.

In the next two figures we are presenting the case of poor

coverage of the Wald confidence interval (Figure 15 when p̂p is

large (close to one), and the much better coverage for the same

case using the Clopper-Pearson (exact) confidence interval

(Figure 16). In both cases we sample n~100 observations from

N(5,2), a 0:95 confidence level is used, and success is defined by

an observation falling between 0 and 11.

In addition, the SOCR confidence interval applet provides

interval estimation for population parameters of a distribution

Figure 6. Results of a single run of the CI experiment.
doi:10.1371/journal.pone.0019178.g006

Figure 7. Results of 10 runs of the experiment.
doi:10.1371/journal.pone.0019178.g007

SOCR Confidence Intervals
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based on the asymptotic properties of maximum likelihood

estimates. This is based on the large sample theory result of

maximum likelihood estimates.

As the sample size n increases it can be shown [10] that the

maximum likelihood estimate (MLE) ĥh of a parameter h follows

approximately normal distribution with mean h and variance

equal to the lower bound of the Cramer-Rao inequality [10].

ĥh*N h,

ffiffiffiffiffiffiffiffiffiffiffi
1

nI hð Þ

s !
, where

ffiffiffiffiffiffiffiffiffiffiffi
1

nI hð Þ

s
is the lower bound of

the Cramer{Rao inequality :

Because I(h) (Fisher’s information) is a function of the unknown

parameter h, the parameter is replaced by its maximum likelihood

estimate ĥh to get I(ĥh).

Since,

Z~
ĥh{hffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nI ĥh
� �

vuut
,

we can write

P {za
2
ƒZƒza

2

� �
:

We replace Z with Z~
ĥh{hffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nI ĥh
� �

vuut
to get

P {za
2
ƒ

ĥh{hffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nI ĥh
� �

vuut
ƒza

2

0
BBBBBB@

1
CCCCCCA
:

And finally,

P ĥh{za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nI ĥh
� �

vuut ƒhƒĥhzza
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nI ĥh
� �

vuut
0
B@

1
CA:

Figure 8. Input of the experiment when s2 is not known.
doi:10.1371/journal.pone.0019178.g008
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Therefore, we are 1{a confident that h falls in the interval

ĥh+za
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nI ĥh
� �

vuut :

This result is used in the example below to construct a

confidence interval for Poisson distribution with parameter l. Let

X1,X2, � � � ,Xn be independent and identically distributed random

variables from a Poisson distribution with parameter l. We know

that the maximum likelihood estimate of l is l̂l~�xx. We need to

find the lower bound of the Cramer-Rao inequality:

f xð Þ~ le{l

x!
[lnf xð Þ~xlnl{l{lnx!

Let’s find the first and second derivativeswith respect to l.

Llnf xð Þ
Ll

~
x

l
{1 and

L2lnf xð Þ
Ll2

~{
x

l2
:

Figure 10. Confidence intervals for s2 - sampling from normal distribution.
doi:10.1371/journal.pone.0019178.g010

Figure 9. Results of 10 runs of the experiment.
doi:10.1371/journal.pone.0019178.g009

SOCR Confidence Intervals
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Therefore,

1

{nE
L2lnf xð Þ

Ll2

 !~
1

{nE {
X

l2

� �~
l2

n
~

l

n
:

When n is large, l̂l follows approximately

l̂l*N l,

ffiffiffi
l

n

r !

Because l is unknown we replace it with its MLE estimate l̂l:

l̂l*N l,

ffiffiffî
ll

n

s0
@

1
A or l̂l*N l,

ffiffiffiffi
�XX

n

r !

Hence, the confidence interval for l is:

�XX+za
2

ffiffiffiffi
�XX

n

r
:

Figure 12. Confidence intervals for s2 - sampling from non-normal distribution, n~300.
doi:10.1371/journal.pone.0019178.g012

Figure 11. Confidence intervals for s2 - sampling from non-normal distribution, e.g. exponential, n~30.
doi:10.1371/journal.pone.0019178.g011

SOCR Confidence Intervals
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Studies of the number of pine trees in certain forests provide

interesting applications. Suppose the number of pine trees per acre

follows Poisson distribution with unknown parameter l. If we

select a random sample of size n~50 acres and count the number

of pine trees in each acre. The following sample of observations

represents the real measurements for the number of trees in 50

one-acre areas:

7 4 5 3 1 5 7 6 4 3 2 6 6 9 2 3 3 7 2 5 5 4 4 8 8 7 2 6 3 5 0 5 8 9 3

4 5 4 6 1 0 5 4 6 3 6 9 5 7 6.

The sample mean is �xx~4:76. Therefore a 0:95 confidence

interval for the parameter l would be

4:76+1:96

ffiffiffiffiffiffiffiffiffi
4:76

50

r
or 4:76+0:31:

In other words, 4:15ƒlƒ5:34.

Using the same method, a confidence interval for the parameter

l of the exponential distribution may be obtained. It can be shown

that the confidence interval obtained by this method is given as

follows:

Figure 14. Confidence interval for proportion p: Sampling from N(5,2).
doi:10.1371/journal.pone.0019178.g014

Figure 13. Large samples confidence intervals for s2 - sampling from non-normal distribution.
doi:10.1371/journal.pone.0019178.g013

SOCR Confidence Intervals
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1

�xx
+za

2

ffiffiffiffiffiffiffi
1

n�xx2

r

Currently the SOCR confidence interval applet provides these

two intervals using the asymptotic properties of maximum

likelihood estimates. The following SOCR simulations (Figure 17

and Figure 18) refer to

a. Poisson distribution, l~5, sample size 40, number of

intervals 50, confidence level 0.95, Figure 17.

b. Exponential distribution, l~0:5, sample size 30, number of

intervals 50, confidence level 0.95, Figure 18.

The following two applications of the new SOCR Confidence

Interval applet demonstrate the practical usage of these new

statistical computing resources.

The first application shows a study of US unemployment. One

question is how can we find the 99% confidence interval for the

Figure 16. Confidence interval for proportion p: Good coverage using the Clopper-Pearson confidence interval.
doi:10.1371/journal.pone.0019178.g016

Figure 15. Confidence interval for proportion p: Poor coverage using the Wald confidence interval.
doi:10.1371/journal.pone.0019178.g015

SOCR Confidence Intervals
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proportion (p) of (officially) unemployed workers in the US. We

begin by looking at some of real unemployment data for the

period 1959–2009 (http://wiki.stat.ucla.edu/socr/index.php/

021111) provided by the Federal Reserve Bank of St. Louis,

MO. These data contain a number of economic indicators for a

50-year time span. The distribution of unemployment is shown

on Figure 19.

Next, we fit in a generalized Beta distribution model to the

frequency distribution of the unemployment data. Figure 20 shows

the Beta model fit density curve juxtaposed on top of the

unemployment data distribution. The maximum likelihood

estimates of the four Beta distribution parameters are obtained

using the SOCR Modeler (http://socr.ucla.edu/htmls/SOCR_-

Modeler.html):

Left (Shape) Parameter (a) = 1.5903

Right (Shape) Parameter (b) = 3.1453

Left (Location) Limit = 3.4

Right (Location) Limit = 10.8

Kolmogorov-Smirnoff (KS) test was used to determine that the

differences between the unemployment data distribution and Beta

model distribution are not statistically significant (KS D-Statistics

= 0.07347, Z-Statistics = 0.51948, P-value = 0.921).

Then, we can run a simulation and estimate the confidence

interval for the proportion of unemployment population to be

Figure 17. Confidence intervals using asymptotic properties of maximum likelihood estimates - Poisson distribution with
parameter l.
doi:10.1371/journal.pone.0019178.g017

Figure 18. Confidence intervals using asymptotic properties of maximum likelihood estimates - Exponential distribution with
parameter l.
doi:10.1371/journal.pone.0019178.g018

SOCR Confidence Intervals
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within the desirable range of 2%{5% (note that 5:3% is

considered ‘‘full employment’’). Figure 21 shows the 0:99
confidence interval simulation settings panel, and Figure 22

illustrates the results of the simulation. The 100 simulations of 0:99
confidence intervals for the population proportion use the exact

method and provide effective coverage of 0:95. In other words, 5

of the 100 simulations miss the real population proportion

(p~0:47 representing the shaded area below the Beta density

function on Figure 22, which indicates a healthy unemployment

rate between 2%{5%). Note that each of the 100 samples

contains N~2,000 random observations from Beta distribution.

The discrepancy between the expected 0:99 coverage and the

observed 0:95 coverage rates for the simulated confidence intervals

of the population proportion can be explained by random

sampling variation or the small number of intervals (100). A

larger number of simulations using 1,000 0:99 confidence intervals

cover the population proportion of interest (p~0:47) 97:5% of the

time (or 9751000).

Finally, we can use the analysis portion of the SOCR confidence

interval analysis applet (http://socr.ucla.edu/htmls/ana/Confi

denceInterval_Analysis.html) to estimate the 0:99 confidence

intervals for the expected (mean) unemployment rate in the US

using the available sample data of 609 monthly unemployment

measurement for 1959–2009: [5.732, 6.038], with a 50-year

unemployment median of 5.885.

The second application of the SOCR confidence interval

computational library involves a large neuroimaging study where

automated volumetric data processing [11] is used to obtain

different shape and volume measures of local brain anatomy. The

subject population is derived from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (http://ADNI.loni.

ucla.edu/) [12] and includes 27 Alzheimer’s disease (AD) subjects,

35 normal controls (NC), and 42 mild cognitive impairment

subjects (MCI). The broad goal of this study is to identify

associations and relationships between neuroimaging biomarkers

and various subject demographics and traits. For instance, we use

Figure 19. US Unemployment distribution (1959–2009).
doi:10.1371/journal.pone.0019178.g019

Figure 20. Modeling the unemployment data using generalized Beta distribution. The coordinate axes represent X = (values)
unemployment rate and Y = (frequencies) number of months (1959–2009) when unemployment rate was at the given X value.
doi:10.1371/journal.pone.0019178.g020
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the Bootstrapping method to construct 0:99 confidence intervals

for the mean curvedness (measure of shape) for the left and right

hippocampus for each of the three cohorts. Given the two

principal curvatures k1 and k2 [13], where k1ƒk2, the curvedness

(CV) is defined by:

CV~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1zk2
2

2

s
:

The CV shape measure is computed at each vertex on the shape

and we used the global curvedness, which is the overall average of

local curvedness measured at each hippocampal surface vertex.

Figure 23 shows an example of the local curvedness map on the

left hemisphere of the cortical surface for one subject.

This neuroimaging dataset is available online (http://wiki.stat.

ucla.edu/socr/index.php/021211). It contains (deidentified) sub-

ject index, group indicator (AD, NC, MCI), two cognitive

assessment measures: MMSE (Mini-Mental State Exam) score

and CDR (Clinical Dementia Rating) scale, subject’s gender, age,

TBV (Total Brain Volume) measure, total GMV (Gray Matter

Volume), total WMV (White Matter Volume), total CSFV

(Cerebrospinal Fluid Volume), and a numerical value for four

shape-based measures (Surface Area, Shape Index, Curvedness

and Fractal Dimension) for each of 56 brain Regions of Interest

(ROIs) [14]. All of these measures are extracted using the Global

Shape Analysis protocol via the LONI Pipeline environment [11].

Here we only demonstrate the Bootstrap based construction of the

confidence intervals for the average left and right hippocampal

curvedness measure for each of the three cohorts, Table 1. These

results clearly show a monotonic increase of the curvedness shape

measure between the 3 cohorts. This trend indicating group

differences of the centers (medians) and dispersion (width) of

estimated confidence intervals supports prior studies indicating

progressive hippocampal anatomical atrophy reported in dementia

subjects as they progress from NC to MCI and AD [15–18].

Similarly, for the same dataset we may obtain point and interval

estimates for other parameters of interest (e.g., variance, various

types of proportions) for specific ROI and shape measure based on

any of the available confidence interval methods included in the

SOCR CI computational library.

Figure 21. SOCR Confidence interval simulation settings panel for estimating the unemployment rate (proportion of US
unemployed workers) using the generalized Beta (a~1:5903,b~3:1453,left~3:4,right~10:8) distribution model described above.
doi:10.1371/journal.pone.0019178.g021
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Discussion

Interval estimation of population parameters is an important

component of many quantitative scientific investigations. Algo-

rithmic constructions of interval estimates depend on a number of

different factors, e.g., the characteristics of the natural distribution

of the process, parameter of interest, computational efficiency and

stability of the estimates, and sample size. In addition, there are

different approaches for obtaining parameter interval estimates.

For instance, there are completely automated and semi-automated

techniques for constructing confidence intervals facilitating

quantitative statistical analysis. Automatic protocols for obtaining

confidence intervals (CIs) represent software programs which

compute the intervals directly (using the data and the process

density function). Some of the examples above show that in certain

situations the interpretations of these intervals may significantly

deviate from our common understanding of confidence intervals.

Variable transformations (e.g., ln, xk, tanh{1) are known to help

aligning the theoretical approaches, algorithmic implementations

and the practical interpretations of confidence intervals. However,

the choice of an appropriate transformation is mostly subjective

and requires input from investigators. There are also completely

automated approaches to produce approximate confidence intervals.

Confidence intervals bootstrapping is one notable example

[19,20], which requires no special expert intervention. Drawbacks

of such techniques include significant dependence of the interval

on small variations in the data and the large amount of computing

required to obtain the interval estimates (often 10,000Õs of

iterations of bootstrap CI calculation are required) [21].

Completely automated nonparametric CI estimates are always

approximate since exact estimates do not exist for most parameters

[22].

There are a number of pedagogical challenges in motivation,

application and interpretation of confidence intervals for different

population parameters [23]. Some of these challenges relate to the

underlying assumptions, applications or limitations, accuracy and

validity of the confidence intervals, as well as the interplays

between sample size, confidence level and process density

function. Graphical renderings and interactive simulations of data

sampling and CI calculations may require some technical expertise

and programming skills, but provide powerful instructional aides

for training novice researchers and junior investigators. A direct

example of these pedagogical challenges is the interrelation

between the desirable narrow-width confidence interval and the

expectation for high level of confidence.

Theory, construction and interpretation of CIÕs may all

present problems for learners and practitioners of quantitative

statistical methodologies. Frequent refreshers and reinforcement of

these ideas using interactive graphical tools improves the

knowledge retention and understanding the role of the sample in

the construction of dynamic confidence intervals with each

repetition of the experiment.

Computational challenges present another barrier for many

confidence intervals learners, applied scientists and clinical

investigators [24,25]. There are two specific types of CI

computational challenges. The first one is identifying the

Figure 22. Results of 100 simulations (samples include N = 2,000 random observations from Beta distribution) of 0.99 confidence
intervals for the population proportion (using the exact method) provide effective coverage of 95%. Five of the 100 simulations miss
the real population proportion p = 0.47, which represents the shaded area below the Beta density function. This proportion indicates a healthy US
unemployment rate between 2%{5%.
doi:10.1371/journal.pone.0019178.g022

Figure 23. Illustration of the relation between local cortical
folding patterns and the values of the curvedness measure
computed for each vertex on the shape. Averaging all local
curvedness measures over the entire surface provides a global
curvedness index measuring the overall complexity of a shape. This
figure shows the left lateral view of the cortical surface of one subject
color coded by the local curvedness.
doi:10.1371/journal.pone.0019178.g023
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distribution of the parameter of interest and developing a

computationally-tractable algorithmic approach for estimating

the parameter (and its moments). The second one is the

implementation of (accessible) software tools that provide efficient

and robust numerical CI estimates for datasets with varying

characteristics (e.g., scale, heterogeneous format, sample-size).

The SOCR confidence intervals applet allows simulation and

validation of various protocols for interval estimation using

random simulations. In practice, most investigators and learners

need to construct interval estimates for various parameters of

interest using data obtained via research or observational

protocols. The open-source SOCR library enables the integration

of these calculations as part of any web-based or stand-alone

computational tool. Complete Java documentations of this library

is available here (http://www.socr.ucla.edu/docs). An instance

demonstrating the usage of this CI computational library is

included in the SOCR Analysis package [5]. The interactive

SOCR confidence intervals analysis applet (http://www.socr.ucla.

edu/htmls/ana/ConfidenceInterval_Analysis.html) enables the

user to enter any (numerical) data, specify a parameter of interest,

select an interval generation protocol, and compute the corre-

sponding data-driven interval estimate. The applet provides

several default datasets, however researchers can load or paste in

external tabular data in the applet’s data tab. The source code for

this CI analysis applet demonstrates the externals invocation

protocol of the SOCR CI calculations and is also freely available

online.

This manuscript presents a unified, open-source, portable and

extensible computational framework for computing, simulating

and visualizing confidence intervals estimates in a broad spectrum

of conditions. These resources address many of the common

instructional, computational and application challenges described

above. We showed two applications of the new interval estimation

computational library. The first one is a simulation of confidence

interval estimates for the proportion of years when a healthy

2%{5% unemployment rate may be expected and an estimation

of the confidence interval for the US unemployment rate. The

second application demonstrates the computations of point and

interval estimates of hippocampal surface complexity for three

cohorts. The source code, web-applet and interactive learning

activity are all freely and anonymously accessible online (http://

wiki.stat.ucla.edu/socr/index.php/092110).

Acknowledgments

The authors are indebted to Jenny Cui, Teresa Lam, and Rahul Gidwani

for their ideas and help with development and validation of the confidence

interval demonstration applet and learning activity. In addition, the PLoS

editors and reviewers provided constructive recommendations that

improved the manuscript.

Author Contributions

Conceived and designed the experiments: NC IDD. Performed the

experiments: NC IDD. Analyzed the data: NC IDD. Contributed

reagents/materials/analysis tools: NC IDD. Wrote the paper: NC IDD.

References

1. Wolfram S (2002) A new kind of science. Wolfram Media.

2. Maronna R, Martin D, Yohai V (2006) Robust Statistics. Wiley.

3. Mega M, Dinov I, Mazziotta J, Manese M, Thompson P, et al. (2005) Automated

brain tissue assessment in the elderly and demented population: Construction and

validation of a sub-volume probabilistic brain atlas. NeuroImage 28: 15.

4. Al-Aziz J, Christou N, Dinov I (2010) SOCR motion charts: An efficient, open-

source, interactive and dynamic applet for visualizing longitudinal multivariate

data. JSE 18: 1–29.

5. Che A, Cui J, Dinov I (2009) Socr analyses: Implementation and demonstration

of a new graphical statistics educational toolkit. JSS 30.

6. Dinov I (2006) Statistics online computational resource. Journal of Statistical

Software 16: 1–16.

7. Dinov I, Sanchez J, Christou N (2008) Pedagogical utilization and assessment of

the statistic online computational resource in introductory probability and

statistics courses. Journal of Computers & Education 50: 284–300.

8. Sauro J, Lewis J (2005) Estimating completion rates from small samples using

binomial confidence intervals: Comparisons and recommendations. Human

Factors and Ergonomics Society Annual Meeting Proceedings, Test and

Evaluation. pp 2100–2105.

9. Ferguson T (1996) A Course in Large Sample Theory. Chapman & Hall.

10. Rice J (1995) Mathematical Statistics and Data Analysis. Doxbury.

11. Dinov I, Lozev K, Petrosyan P, Liu Z, Eggert P, et al. (2010) Neuroimaging

study designs, computational analyses and data provenance using the loni

pipeline. PLoS ONE 5.

Table 1. Bilateral (left and right) point (median) and interval (0.99 confidence intervals using bootstrapping with 20,000
resampling simulations) estimates for the hippocampal surface complexity (measured using curvedness) for the 3 cohorts.

Cohorts Left Hippocampus Right Hippocampus

Curvedness Shape Measure Curvedness Shape Measure

Median 0.99 Confidence Interval Median 0.99 Confidence Interval

Alzheimer’s

Disease 0.2081 [0.1989, 0.2174] 0.2044 [0.1944, 0.2152]

(N = 27)

Mild

Cognitive 0.1971 [0.1924, 0.2017] 0.1952 [0.1886, 0.2021]

Impairment

(N = 42)

Normal

Controls 0.1974 [0.1906, 0.2043] 0.1857 [0.1789, 0.1929]

(N = 35)

doi:10.1371/journal.pone.0019178.t001

SOCR Confidence Intervals

PLoS ONE | www.plosone.org 17 May 2011 | Volume 6 | Issue 5 | e19178



12. Jack CJ, Bernstein M, Fox N, Thompson P, G GA, et al. (2008) The alzheimer’s

disease neuroimaging initiative (adni): Mri methods. Magn Reson Imaging 27:
685–91.

13. Tosun D, Duchesne S, Rolland Y, Toga A, Verin M, et al. (2007) 3-d analysis of

cortical morphometry in differential diagnosis of parkinson’s plus syndromes:
mapping frontal lobe cortical atrophy in progressive supranuclear palsy patients.

Med Image Comput Comput Assist Interv 10: 891–899.
14. Tu Z, Narr K, Dinov I, Dollar P, Thompson P, et al. (2008) Brain anatomical

structure segmentation by hybrid discriminative/generative models. IEEE

Transactions on Medical Imaging 27: 495–508.
15. Yang Y, Raine A, Han CB, Schug RA, Toga AW, et al. (2010) Reduced

hippocampal and parahippocampal volumes in murderers with schizophrenia.
Psychiatry Research: Neuroimaging 182: 9–13.

16. Vespa P, McArthur D, et al. (2010) Nonconvulsive seizures after traumatic brain
injury are associated with hippocampal atrophy. Neurology 75: 792–798.

17. Apostolova L, Beyer G, et al. (2010) Hippocampal, caudate, and ventricular

changes in parkinson’s disease with and without dementia. Movement Disorders
25: 687–695.

18. Xu Y, Valentino DJ, Scher AI, Dinov I, White LR, et al. (2008) Age effects on

hippocampal structural changes in old men: The haas. Neuroimage 40:
1003–1015.

19. Efron B (1984) Better bootstrap confidence intervals. Technical report, Stanford

University, Department of Statistics.
20. Efron B (1985) Bootstrap confidence intervals for a class of parametric problems.

Biometrika 75: 45–68.
21. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence

intervals, and other measures of statistical accuracy. Statistical Science 1: 54–75.

22. Bahadur R, Savage L (1956) The nonexistence of certain statistical procedures in
nonparametric problems. Ann Math Statist 27: 1115–1122.

23. Hagtvedt R, Jones G, Jones K (2008) Teaching confidence intervals using
simulation. Teaching Statistics 30: 53–56.

24. Zhang H, Padmanabhan B, Tuzhilin A (2004) On the discovery of significant
statistical quantitative rules. Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining.

25. Thorne T, Stumpf M (2007) Generating confidence intervals on biological
networks. BMC Bioinformatics 8: 467.

SOCR Confidence Intervals

PLoS ONE | www.plosone.org 18 May 2011 | Volume 6 | Issue 5 | e19178


