
Acoustic Trauma Increases Cochlear and Hair Cell Uptake
of Gentamicin
Hongzhe Li*, Qi Wang, Peter S. Steyger*

Department of Otolaryngology/Head and Neck Surgery, Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon, United States of

America

Abstract

Background: Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds,
induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss.
When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure.
The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure
enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of
aminoglycosides and subsequent ototoxicity.

Methods: Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or
native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear
tissues by confocal microscopy.

Results: Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair
cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and
hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were
temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear
uptake of aminoglycosides.

Conclusions: Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria
vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could
increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.
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Introduction

Aminoglycosides are critical for treating life-threatening Gram-

negative bacterial infections, e.g., bacterial sepsis and meningitis

[1,2]. Yet, aminoglycosides also induce cytotoxicity in the kidney

and cochlea. After systemic administration, inner ear sensory hair

cells and kidney proximal tubule cells preferentially retain

aminoglycosides [3], display greater pharmacological sensitivity

and cytotoxicity to these drugs than other cell types in the body

[review by Rybak et al.[4]].

Acoustic trauma occurs in many environments, including

occupational (e.g., industrial, military), or recreational (e.g.,

musical concerts, hunting) settings. Sound trauma-induced

cochlear pathologies include increased endocytosis, vacuolation,

mitochondrial lesions, elevation of intracellular Ca2+ concentra-

tions and the generation of reactive oxygen species that can lead to

hair cell death and permanent hearing loss [5,6,7]. Moderate

acoustic damage can also be reversible, as temporary threshold

shifts (TTS), due to acute exposure to high sound levels or chronic

exposure to intermediate sound levels that induce reversible

physiological changes in hair cells and the blood-labyrinth barrier

[8,9,10].

Combining acoustic and ototoxic insults leads to synergistic

ototoxicity, that is, potentiation of aminoglycoside-induced

ototoxicity by acoustic trauma. This was first observed in the

1960s when animals receiving aminoglycosides appeared to be

more susceptible to noise-induced hearing loss [11] and confirmed

by subsequent studies [12,13,14,15]. The same ototoxic mecha-

nism is likely responsible for the increased deafness risk in pre-term

infants from neonatal intensive care units [16,17] and in wounded

soldiers [18,19,20,21,22]. Multiple cochlear events may be

responsible for sound-and-drug induced synergy. Aminoglycosides

slowly permeate through the mechanoelectrical transduction

(MET) channel on the apical surface of hair cells, blocking the

rapid depolarizing transduction current of MET channels,

preventing functional ion channel kinetics [23,24]. An increase

in the open probability of, and current through, MET channels

during sound exposure could increase aminoglycoside uptake, and
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form one underlying mechanism for sound and drug synergy [17].

Alternatively, pathological modifications, including variation in

vascular permeability [25], in the cochlear lateral wall are induced

by acoustic overstimulation. These modifications may increase

aminoglycoside permeation into endolymph that bathes the apical

surfaces of hair cells. Trans-strial trafficking of systemic amino-

glycosides into endolymph is considered to be a primary route for

aminoglycoside loading of sensory hair cells [26]. In this study, we

hypothesized that sound exposure enhances the intra-cochlear

trafficking of aminoglycosides, and consequently hair cell uptake of

aminoglycosides.

To test the hypothesis, mice were exposed to moderate or

intense sound levels either concurrently or prior to gentamicin

treatment. Fluorescently-conjugated (GTTR) or native gentamicin

was administered during or after a variety of sound exposures.

Here, we report that (i) chronic acoustic overstimulation increased

hair cell uptake of systemic aminoglycosides; (ii) acute, concurrent

sound and systemic aminoglycoside exposure did not increase hair

cell uptake of aminoglycosides; and (iii) broader examination of

cochlear tissues revealed that marginal cells in the stria vascularis

exhibit increased gentamicin uptake following chronic, sound-

induced TTS, representing one potential mechanism for sound-

then-drug induced ototoxic synergy.

Results

Prolonged prior sound exposure enhanced gentamicin
uptake in hair cells

In this study, to determine if prolonged wide-band noise (WBN)

exposure increased gentamicin uptake, mice were exposed to WBN

for 18 hours (86 dB SPL, over 3 days, 6 h per day). A moderate

sound level was intentionally selected to mimic the environment in

neonatal intensive care units [16]. After sound exposure on the 3rd

day, mice were allowed to rest for 30 minutes prior to i.p. injection

with GTTR (2 mg/kg). Mice were then kept in quiet for another 30

minutes prior to cochlear tissue collection. In 3 out of 4 sound-

exposed mice (Fig. 1E–H), robust GTTR fluorescence was observed

in OHCs in both middle and basal regions of the cochlea, compared

to weaker GTTR fluorescence in non-sound-exposed control mice

(Fig. 1A–D). GTTR uptake in some sound-exposed OHCs was very

robust that some pixels were saturated in intensity, i.e., the

fluorescence intensity in these pixels was likely underestimated.

The increase of fluorescence intensities was statistically significant

(Fig. 1I and Fig. 3F). Thus, prolonged prior sound exposure greatly

enhanced GTTR uptake in OHCs, although with some inter-

animal variation (summarized in Fig. 1I). Similar results were

observed when GTTR treatment was overlapped by the final 30-

min sound exposure on day 3 (Figure S1).

We repeated this experiment using prolonged sound exposure

and native gentamicin, followed by immunofluorescence. The

monoclonal gentamicin antisera used in this study produced a

monotonic increase in fluorescence intensity with increasing

gentamicin dose (Figure S2). Gentamicin (200 mg/kg i.p.) was

given to mice for 30-min following prolonged sound exposure

(18 hour WBN at 86 dB SPL over 3 days, 6 h per day). Control

animals were exposed to gentamicin only for 30 min. In 3 out of 4

sound-exposed mice, OHCs displayed greater gentamicin immu-

nofluorescence compared to non-sound-exposed mice (Fig. 2A–C

and Fig. 3G). Neither hair bundle damage, nor nuclear

abnormalities, were detectable in phalloidin (Fig. 2D) and DAPI-

stained (Fig. 2E) whole mounts from prolonged sound-exposed

cochleae. This paradigm of sound exposure induced significant

TTS at 8, 16 and 32 kHz, and substantial recovery 4 weeks later

(Fig. 2F). Together with earlier experiments, these data indicate

that chronic, moderate prior sound exposure can increase hair cell

uptake of gentamicin.

To investigate whether sound stimulation itself increased drug

uptake by hair cells, we presented WBN (100 dB SPL) for a shorter

3 hour period in an open field, and concurrently administered

GTTR (i.p.) systemically. Concurrent sound and GTTR exposure

for 3 hours did not enhance OHC uptake of GTTR in middle or

basal cochlear coils (Fig. 3A). To rule out the possibility that

GTTR trafficking mechanisms were saturated between the strial

vasculature and the organ of Corti, additional experiments were

done by reducing the GTTR level to 1 mg/kg (Fig. 3B), or

reducing the GTTR (2 mg/kg) exposure period to 30 minutes

(Fig. 3C). Neither exposure paradigm altered the degree of GTTR

uptake by sound-exposed OHCs compared to controls.

We then used closed tube sound delivery of octave-wide band

noise (OBN), and to provide frequency-specific sound exposure.

The OBN was centered at 12 kHz, corresponding to a cochlear

location of 33% from the apex [27], approximately the middle coil

region of the cochlea, and OHCs were imaged. A 30-minute

concurrent sound and GTTR exposure did not enhance GTTR

uptake by OHCs, at either moderate (76 dB SPL, Fig. 3D) or

intense (100 dB SPL, Fig. 3E) sound levels over control mice. In

addition, a frequency-specific enhancement of GTTR uptake by

OHCs was not observed, i.e., similar fluorescence levels occurred

in OHCs from the middle coil and basal coil in sound-exposed

ears. These experiments were repeated using gentamicin (200 mg/

kg i.p.), and no differential gentamicin immunofluorescence was

observed between sound-exposed and control ears, nor between

middle and basal coils (data not shown).

Heterogeneous enhancement of gentamicin uptake by
strial cells

Typically, the most intense gentamicin immunofluorescence in

control (non-sound-exposed) strial tissues was observed in the strial

vasculature (Fig. 4C), as for GTTR [26,28]. When we examined

the stria vascularis after chronic moderate sound exposure (same

animals as in Fig. 2), a subpopulation of marginal cells exhibited

more intense gentamicin immunofluorescence (Fig. 4B) compared

to adjacent marginal cells or marginal cells from control (non-

sound-exposed) mice (Fig. 4A). In addition, the fluorescent

intensity of the vasculature in sound-exposed stria vasculari

(Fig. 4D) was reduced compared to control (non-sound-exposed)

strial tissues (Fig. 4C); and the most intense fluorescence in sound-

exposed strial vasculari was localized in individual groups of

marginal cells (Fig. 4B). Furthermore, chronic sound exposure also

increased the diameter of strial blood vessels (i.e. vasodilation) in

the same strial regions with intensely-labeled marginal cells

compared to adjacent strial regions without intensely-labeled

marginal cells or in strial tissues from non-sound-exposed animals

(Fig. 4E, F and G).

Capillary or blood vessel diameter is highly correlated to strial

blood flow, an attribute that can be consistently monitored in vivo,

and can vary during sound exposure [29]. Noise-induced

variation in blood flow within the strial vasculature is transient,

and eventually recovers to pre-exposure values [30] within hours.

Mice were exposed to 100 dB SPL octave-wide band noise (8–

16 kHz) for 6 hours. The next morning, to allow recovery of any

transient diameter changes in strial vessels, mice were injected

with GTTR (2 mg/kg i.p.), and cochlear tissues collected 30

minutes later. In these mice, increased GTTR fluorescence was

observed in individual groups of marginal cells (Fig. 5B),

compared to non-sound-exposed control strial cells (Fig. 5A).

Directly below these intensely fluorescent marginal cells, the

intra-strial tissues also showed a corresponding increase in GTTR
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Figure 1. Prior prolonged sound exposure increased GTTR uptake in OHCs. GTTR (2 mg/kg) was injected i.p. for 30 minutes after an 18-
hour WBN exposure over 3 days (6 hours per day, 86 dB SPL). Increased GTTR fluorescence intensities were observed in OHCs from the middle coil of
cochleae from the majority of individual animals (E–H), compared to control (non-sound exposed) animals (A–D). Scale bar in H is 20 mm. I: The
fluorescence intensity of the cuticular plate region of each OHC was scored from each confocal stack. Four stacks were imaged from each animal. Two
sites were from the middle coil (circle) and 2 sites were from the basal coil (square). OHCs from 3 of 4 examined animals exhibited robust increase in
GTTR fluorescence after prolonged prior sound exposure, compared to control OHCs (n = 4). Horizontal lines depict the group mean of fluorescence
intensity. Solid line: middle coil; dashed line: basal coil. The Mann-Whitney nonparametric test indicated that prolonged sound exposure exerted a
statistically significant effect on GTTR fluorescence in OHC cuticular plates in both middle coil (p,0.001) and basal coil (p,0.01) locations compared
to control cuticular plates.
doi:10.1371/journal.pone.0019130.g001
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fluorescence (Fig. 5D), without evidence of vasodilation (Fig. 5E),

nor a decrease in fluorescence in the strial vasculature

(endothelial cells). These regions of increased drug uptake in

sound-exposed tissue were observed in 3 of 8 sound-exposed

cochleae, using GTTR or gentamicin (immuno)fluorescence. A

retrospective examination of cochleae in Fig. 1, also revealed

sound-induced heterogeneous uptake of GTTR by strial cells in

cochleae that displayed robust GTTR uptake in OHCs. This

suggests that chronic sound exposure or sound-induced trauma

can enhance aminoglycoside trafficking into the stria vascularis,

as well as hair cells, hours after cessation of exposure to loud

sounds.

Discussion

Preventing the ototoxic synergy of noise and aminoglycosides

can be best achieved by using non-ototoxic bactericidal drugs, and

by attenuating perceived sound levels when life-saving aminogly-

coside therapy is required. However, this is not always possible,

e.g., prior exposure to blasts and explosions followed by wound

Figure 2. Prolonged sound exposure increased gentamicin uptake in OHCs. Gentamicin (200 mg/kg) was injected i.p. for 30 minutes
following an 18-hour WBN exposure over 3 days (6 hours per day, 86 dB SPL). Increased gentamicin immunofluorescence was generally observed in
basal sound-exposed OHCs (B) compared to control (non-sound exposed) animals (A). Scale bar in A = 20 mm. C: The immunofluorescence intensity
of OHC cuticular plates from either middle coils (circle) or basal coils (square) were increased in 3 of 4 animals after chronic moderate sound exposure
(p,0.05, paired t-test). Immunoprocessing for each batch of animals were carried out simultaneously for each pair-wise comparison. Chronic
moderate sound exposure did not disrupt hair bundle morphology determined by phalloidin labeling (D, red), nor nuclei integrity by DAPI staining
(E, blue); green, anti-gentamicin IgG. Scale bar = 20 mm. F: This sound exposure paradigm produced a temporary elevation in hearing thresholds
(n = 6) that largely recovered within 4 weeks. Error bar is s.e.m. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0019130.g002
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treatment with aminoglycosides in war zones [18,19,20,21,22]; or

chronic exposure to moderate sound levels and aminoglycosides

by pre-term infants in intensive care units [16]. Therefore, it is

critical to understand how sound exposure can enhance the

unwanted ototoxic side-effects of the clinically-indispensable

aminoglycosides.

Previous animal studies of sound and aminoglycoside synergy

measured hearing sensitivity and constructed cytocochleograms of

hair cell survival [13,14]; they did not measure drug uptake in vivo.

Gentamicin is present within OHCs before onset of drug-induced

ototoxicity [31], emphasizing the need to identify and prevent the

underlying mechanism of drug trafficking. Since prior sound

exposures that induce TTS (or greater pathologies) can increase

hair cell uptake of gentamicin in vivo, interventions that inhibit

trafficking of aminoglycosides into the cochlea likely represent one

potential clinical strategy to prevent sound-then-drug ototoxic

synergism.

Previous studies of simultaneous sound and drug exposure took

place over many days, and are different from the acute concurrent

experimental paradigms used here. In a study by Collins [32]

showed that if sound exposure was given on the first day of a 10-

day gentamicin course there was considerable loss of hair cells; if

given on the 10th day the loss was several times less. Other studies

report ototoxic synergy when aminoglycoside treatment followed

acoustic overstimulation, but not when sound exposure followed

drug treatment [see review by Li and Steyger [17]]. We believe

that any weak synergistic effect observed in a drug-then-sound

paradigm, as by Hayashida and colleagues [33], is due to a

compound effect between residual aminoglycoside-induced dam-

age and subsequent sound exposure.

Despite attempts to understand the impact of noise on

permeability variation of blood-labyrinth barrier [such as [10]],

moderate sound levels that more relevant to clinical situations

were rarely tested. In this study, we demonstrate that chronic or

Figure 3. Concurrent sound exposure did not increase GTTR uptake in OHCs. The intensity of GTTR fluorescence in OHC cuticular plates
was scored from either middle or basal coils, and data are in box and whisker plots, which respectively represent the lower and upper quartiles, and
the minimum and maximum of each data set. A: WBN (100 dB SPL) and GTTR (2 mg/kg, i.p.) simultaneously administered for 3 hours. B: WBN
(100 dB SPL) and GTTR (1 mg/kg, i.p.) co-administered for 3 hours. C: GTTR (2 mg/kg, i.p.) administered 30 minutes prior to the end of 3 hour WBN
(100 dB SPL) exposure. Sound was delivered in open field in A–C, and GTTR fluorescence obtained from the left cochlea only. D: OBN of 76 dB SPL
(centered at 12 kHz) and GTTR (2 mg/kg, i.p.) co-administered for 30 minutes. E: OBN of 100 dB SPL (centered at 12 kHz) and GTTR (2 mg/kg, i.p.) co-
administered for 30 minutes. Sound was delivered in a closed tube system in D and E, while GTTR fluorescence intensities were compared between
sound-exposed left ears and non-sound exposed right ears. F: GTTR (2 mg/kg) was injected i.p. for 30 minutes after an 18-hour 86-dB-SPL WBN
exposure over 3 days (same dataset as Fig. 1I). G: Gentamicin (200 mg/kg) was injected i.p. for 30 minutes following an 18-hour 86-dB-SPL WBN
exposure over 3 days (same dataset as Fig. 2C). n.s. = not significant, by either unpaired (A, B, C and F) or paired (D, E and G) t-test. Experiments were
not compared across conditions/figure panels.
doi:10.1371/journal.pone.0019130.g003
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damaging sound exposures at moderate levels can enhance

cochlear uptake of gentamicin in vivo, which has not been

previously shown (to our knowledge). GTTR enters hair cells

within 30 minutes after systemic administration without sound

stimulation [26]. Exogenous stimulation such as administration of

vasoactive peptides, e.g., histamine, can significantly reduce OHC

uptake of GTTR within 30 minutes [34]. Thus, the 30 minute

timepoint represents a good baseline of GTTR uptake with

sufficient dynamic range to observe any sound-induced modula-

tion of OHC uptake of GTTR fluorescence.

Aminoglycoside uptake by hair cells
We observed that chronic moderate sound exposure can increase

hair cell uptake of GTTR or gentamicin. Variance of OHC

fluorescent intensity in control (non-sound exposed) cochleae with

30 minute systemic GTTR exposure was lower than in gentamicin-

immunolabeled OHCs (compare Fig. 1I with Fig. 2C). The

coefficient of variation of control mice in Fig. 1 was 0.13, and

0.33 for control mice in Fig. 2 (gentamicin immunofluorescence).

The difference in variance is statistically significant (f-test,

p,0.0001) if the distributions are assumed normal. This difference

is likely a result of the intrinsic variability inherent in immunopro-

cessing tissues through two stages of antigen-antibody reaction.

Nonetheless, chronic sound exposure robustly increased the

fluorescence signal by either method. However, GTTR is preferable

for differential testing of individual experimental variables over

gentamicin immunolabeling due to its consistent dose-intensity

relationships compared to immunofluorescence (see Figure S2) [26].

Aminoglycosides severely attenuate the permeation kinetics of

K+ and Ca2+ through MET channels while simultaneously slowly

permeating through the channel itself [23,24]. Several studies have

reported that dihydrostreptomycin and GTTR enter hair cells

through MET channels [24,26,35]. Our acute experimental data

show that sound exposure does not directly increase OHC uptake

of aminoglycosides through the MET channels in vivo, which fits

with the hypothesis that the open probability of OHC MET

channels remains relatively constant, whether at rest or during

stimulation [36].

Prolonged, and/or intense sound exposure that induces TTS

increased OHC uptake of gentamicin in vivo. One hypothesized

mechanism for TTS is the breaking of stereociliary tip-links that

gate the MET channels [37]. If this occurs in vivo, then the

decoupled MET channels are unlikely to be responsible for

increased OHC uptake of gentamicin during TTS. This suggests

that sound trauma-enhanced uptake of aminoglycosides by OHCs

occurs by a different mechanism, activated by prolonged sound

exposure, and/or other pathologies induced in hair cells or the

stria vascularis.

Strial blood-labyrinth barrier and gentamicin trafficking
Sound-induced damage in the cochlea is not limited to the

organ of Corti; reversible pathological changes also occur in the

stria vascularis, including modulation of cochlear blood flow

[29,30], induction of micro-ischemia, and changes in vascular

permeability [10,25]. The basal region of sound-exposed cochleae

frequently exhibited changes in vessel diameter and increased

loading of GTTR or gentamicin in a subset of marginal cells, after

chronic moderate or intense sound exposure. These phenomena

suggest that marginal cells can behave heterogeneously, in terms of

aminoglycoside uptake, after acoustic overstimulation. These

drug-loaded marginal cells appeared to be exclusively localized

over strial capillaries, and imply increased permeability of the strial

blood-labyrinth barrier (BLB) that enabled enhanced drug

trafficking into marginal cells. This sound-enhanced strial

permeability (or micro-leakage) is not restricted to aminoglyco-

sides, and has also been observed for other fluorescently-labeled

proteins [38]. Regardless, once in marginal cells, which have a

+10 mV potential greater than endolymph (+80 mV) [39], the

cationic aminoglycosides would passively flow down the electro-

chemical gradient into endolymph and subsequently into hair cells

(270 mV) to exert its ototoxic effect [26]. Thus, the effect of

acoustic trauma can be similar to loop diuretics, which also

increase aminoglycoside uptake by marginal cells and hair cells

[40].

Prominent vasodilation was observed immediately after chronic

sound exposure (Fig. 4). It is possible that only large variations in

vessel diameter can be reliably identified after cardiac perfusion

and fixation. Although fixation may induce variation in strial

capillary lumenal diameter, this was not observed in control

tissues. Increased capillary lumenal diameters following noise

exposure and fixation have been reported previously [41] and by

casting techniques [42]. Intriguingly, vasodilation is not a

prerequisite of sound-enhanced trans-strial trafficking. Enhanced

trans-strial trafficking was also observed after recovery from

sound-induced transient vasodilation (Fig. 5). This likely implicates

a molecular mechanism is involved in enhanced trafficking of

aminoglycosides.

TTS-enhanced trafficking of aminoglycosides across the strial

BLB would presumably increase drug levels in endolymph, and it

is this increased endolymph level that contributes to the observed

increase in aminoglycoside uptake by hair cells. This effect would

occur independently of sound stimulation itself since the open

probability of the MET channel is hypothesized to remain

relatively constant at rest or during stimulation [36]. Nonetheless,

any spatio-temporal correlation of increased marginal cell loading

of gentamicin, and uptake by hair cells in the proximity requires

further study with better anatomical resolution.

C57Bl/6 mice are known for early onset of presbycusis after

reaching three months of age [43]. Our subjects were 4–7 weeks of

age, prior to the early onset of presbycusis in these mice, which

were also used in prior murine studies using GTTR [3,26,28,44].

Nonetheless, the stria vascularis and endolymphatic potentials

from other strains of mice, such as CBA, may be more vulnerable

by acoustic trauma [45]. Determining whether these murine

Figure 4. Prolonged, moderate sound exposure increases gentamicin uptake in a subpopulation of cells in the stria vascularis. In
non-sound-exposed strial tissues (A, C and E), moderate gentamicin immunofluorescence was observed in marginal cells (A, asterisks), with more
intense fluorescence in the strial vasculature (C). After prolonged sound exposure (18 hours over 3 days, WBN 86 dB SPL; B, D and F), a subpopulation
of marginal cells showed increased gentamicin immunofluorescence compared to adjacent marginal cells (B, asterisks, normal region) and non-
sound-exposed marginal cells (A). D: The strial vasculature below the subpopulation of intensely-labeled marginal cells displayed reduced gentamicin
immunofluorescence (c) compared to strial capillaries below marginal cells with baseline levels of gentamicin immunolabeling (d), or non-sound-
exposed strial capillaries (C). Scale bar = 20 mm, fits all image panels. E: Plot profiles of lines a and b delineated in (C), showing the regular diameters
of blood vessels without sound exposure. F: Plot profiles of lines c and d delineated in (D), showing representative vasodilation and reduced
endothelial fluorescence in capillaries below the intensely labeled marginal cells following sound exposure. Bars above fluorescent traces depict the
diameter of capillary of interest. G: Sound-induced vasodilation in capillaries below intensely labeled marginal cells, but not in adjacent regions with
marginal cells with baseline levels of gentamicin immunofluorescence (***p,0.001). Error bar is s.d. n.s. = not significant.
doi:10.1371/journal.pone.0019130.g004
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strains harbor increased permeability (or trafficking) of aminogly-

cosides in stria vascularis during sound exposure, and display more

potent sound and drug synergism, requires further study. In

addition, it is unclear why of the large inter-animal variation on

the effect of chronic sound exposure. A consistent mouse model

harboring sound-induced (and/or age-induced) strial micro-

ischemia will be advantageous for ototoxicity research, and

provide opportunities to investigate any correlation between

sound-induced strial micro-ischemia and enhanced drug uptake

by hair cells. Our ultimate goal is to develop clinical strategies that

maintain the integrity of the strial BLB and reduce aminoglycoside

uptake by the cochlea during, or more frequently following sound-

induced damage within the cochlea after blast or percussive noise

exposure.

Figure 5. Intense sound exposure, followed by 18 hours recovery also increases GTTR uptake in the stria vascularis. In non-sound
exposed strial tissues (A and C), moderate GTTR fluorescence was observed in marginal cells (A, asterisks) and intra-strial cells (C), with most intense
GTTR fluorescence in the strial vasculature. Scale bar = 20 mm, fits all image panels. In intense-sound exposed tissues (6 hours, OBN 100 dB SPL, 18-
hour recovery; B and D), a subset of marginal cells show increased GTTR fluorescence compared to adjacent marginal cells (B, asterisks), and marginal
cells from non-sound exposed cochleae (A, asterisks). Directly below the intensely fluorescent marginal cells in (B), cells in the intra-strial layer also
exhibited increased GTTR fluorescence. E: After 18 hours of recovery, no vasodilation (increase in vessel diameter) was observed, in the strial
vasculature from either sound or non-sound-exposed cochleae (stressed: blood vessels from strial regions with enhanced uptake of GTTR in sound
exposed cochleae; normal, blood vessels from strial regions with normal uptake of GTTR in sound-exposed cochleae). Error bar is s.d.
doi:10.1371/journal.pone.0019130.g005
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Materials and Methods

Conjugation and purification of GTTR
Gentamicin-Texas Red conjugate (GTTR) was produced as

followed: 20% gentamicin (G-1264, Sigma, St. Louis, MO) in

K2CO3 (100 mM, pH = 10) and 1% Texas Red (TR) succinimidyl

esters (T6134, Invitrogen, Carlsbad, CA) in anhydrous N,N-

dimethyl formamide were mixed in ratio of 212:45 (v:v), and

agitated together for one week at room temperature prior to

purification. This protocol minimized the possibility of over-

labeling individual gentamicin molecules with more than one TR

molecule, and ensured the polycationic nature of the conjugate

(GTTR). The reaction mixture was then diluted with 100 ml 5%

Glacial acetic acid (GAA), and loaded onto pre-activated C-18

columns (Burdick and Jackson, Muskegon, MI) to purify the

conjugate using reversed phase chromatography. Each C-18

column was activated by pre-rinsing with 5 ml MeOH and 10 ml

5% GAA. Unconjugated gentamicin was eluted using 100 ml 5%

GAA; subsequently, unconjugated TR was eluted by rinsing with

MeOH. To elute purified GTTR, each column was rinsed with

3 ml chloroform:MeOH:NH3 (30:41:30). GTTR solutions from

multiple C-18 columns were pooled, aliquoted, lyophilized, and

stored desiccated in the dark at 220uC. The amount of GTTR in

each aliquot was calculated from the conjugation efficiency, and

verified by determining the fluorescence intensity for an aliquot

from each batch using a fluorimeter, and sample aliquots with

known concentrations.

Animal treatment, noise exposure and tissue preparation
Juvenile C57Bl/6 mice (4 to 7 weeks old) with positive Preyer’s

reflex were anesthetized with ketamine (65 mg/kg) and xylazine

(13 mg/kg) intra-peritoneally (i.p.). Two mg/kg GTTR (gentami-

cin base in PBS, pH 7.4) or 200 mg/kg gentamicin in PBS,

pH 7.4, was administered i.p. prior to, during or after sound

exposure, depending on experimental design. The care and use of

all animals reported in this study were approved by the Animal

Care and Use Committee of Oregon Health & Science University

(IACUC approval #IS00000351).

During prolonged or concurrent open field sound exposure, mice

were housed in a custom-made cage with free access to food and

water. The duration of sound exposure was either 3 or 6 hours at

100 dB SPL, or 18 hours over 3 days at 86 SPL. The cage was

placed in the center of a sound proof chamber (Industrial Acoustic

Company, New York, NY) with a total of 14 low, middle, and high

frequency range loud speakers mounted on the slanted walls to

achieve production of uniform sound fields with frequencies ranging

from 20 Hz to 48 kHz. In-house developed software was used to

flatten the speakers’ acoustic response during production of limited

and wide band noise (WBN) stimuli. A quarter-inch microphone

(Brüel & Kjær, Denmark) located proximately above the animal

housing, was capable of measuring the sound level in real time.

Closed sound delivery was only used for acute concurrent sound

and drug exposure. Mice were anesthetized and systemically-

administered with either GTTR or gentamicin at doses described

above, at the beginning of 30-min concurrent sound exposure. A

sound delivery tube was sealed into the left ear of anesthetized

animals. An inner tube within the sound delivery tube was

connected to a calibration microphone (ER-10B, Etymotic

Research, Inc, Elk Grove Village, IL) for real time sound level

monitoring. Sound level was fixed at 76 or 100 dB SPL. Only the

left ears were exposed to an OBN centered at 12 kHz, while the

right ears served as controls.

After sound exposure, deeply-anesthetized mice were promptly

cardiac-perfused with PBS, then 4% formaldehyde. Cochleae from

GTTR-treated mice were excised and post-fixed in 4% formal-

dehyde for one hour, then treated with Triton X-100 (0.5%) for

30 min. Gentamicin-treated cochleae were excised and post-fixed

in 4% formaldehyde plus 0.5% Triton X-100 overnight, followed

by immunolabeling (described below). All tissues were washed,

counter-labeled with Alexa-488-conjugated phalloidin to assess

hair bundle integrity, rinsed, and post-fixed with 4% formaldehyde

[46]. GTTR or gentamicin (immuno)fluorescence in hair cells was

documented from wholemounts of cochlear coils as described

previously [26,44].

Auditory brainstem responses (ABRs) to pure tones was used to

ensure normal cochlear function prior to each experiment, and

conducted as described earlier [47]. Briefly, each ear of

anesthetized mice was stimulated individually with a closed tube

sound delivery system sealed into the ear canal. The ABR to 1 ms

rise-time tone burst stimuli at 8, 16 and 32 kHz, with 5 dB steps,

was recorded and thresholds obtained for each ear. Only animals

with normal bilateral ABR thresholds were used.

Gentamicin immunofluorescence
Gentamicin-treated cochleae were immunoblocked in 10% goat

serum in PBS for 30 minutes and then incubated with 5 mg/ml

mouse monoclonal (Fitzgerald Industries, Concord, MA) genta-

micin antisera for 2 hours. After washing with 1% goat serum in

PBS, specimens were further incubated with 20 mg/ml Alexa-488-

conjugated goat anti-mouse antisera (Molecular Probes, Eugene,

OR) for one hour, washed three times, counter-labeled with

Alexa-568-conjugated phalloidin, washed three times, and post-

fixed with 4% formaldehyde for 15 minutes [46]. A subset of

tissues were counter-labeled with 0.5 mg/ml DAPI nucleic acid

stain (Molecular Probes, Eugene, OR) for 5 minutes prior to

rinsing and post-fixation. For immunocytochemical controls,

primary antiserum was omitted or replaced with gentamicin-

adsorbed antisera and immunoprocessed as above.

Imaging and data analysis
Specimens were whole-mounted in VectaShield (Vector Labs,

Burlingame, CA) and observed using a Bio-Rad MRC 1024 ES

laser scanning confocal system attached to a Nikon Eclipse TE300

inverted microscope. Fluorescent emissions were collected sequen-

tially. For each set of experiments, all specimens in each group of

experimental and control tissues were imaged at the same laser

intensity and gain settings. Images from each experiment were

identically prepared using Adobe Photoshop. Samples labeled with

DAPI were imaged using an Olympus IX81 inverted microscope

fitted with an Olympus Fluoview FV1000 (Japan) confocal laser

microscope system.

For statistical analysis, GTTR or gentamicin (immuno)fluores-

cence intensity values in outer hair cell (OHC) cuticular plate

region, from single optical sections were obtained by using the

pixel histogram function (ImageJ, NIH), after removal of

intercellular and extraneous tissue pixels using Photoshop

[26,48]. The cuticular plate region of OHCs had the highest

level of GTTR fluorescence and was set as the region of interest

(ROI) to be compared across experimental conditions (Figure S3).

Two major regions along the murine basilar membrane of two and

half turns were imaged. One was at the junction of the 1st and the

2nd turns, referred to ‘‘middle coil’’, the other was towards to the

end of 2nd turn before reaching the more calcified hook region,

referred to ‘‘basal coil’’. Mann-Whitney nonparametric tests or

paired t-tests, depending upon experimental design, were

performed between sound-exposed and non-sound-exposed co-

chleae at each cochlear section to identify any statistically
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significant effect of sound on the fluorescent intensity of cellular

drug uptake.

Supporting Information

Figure S1 Prior prolonged sound exposure increased
GTTR uptake in OHCs. GTTR (2 mg/kg) was injected i.p.

during the final 30 minutes of an 18-hour WBN exposure over 3

days (6 hours per day, 86 dB SPL). The fluorescence intensity of

the cuticular plate region of each OHC was scored from each

confocal stack. Four stacks were imaged from each animal. Two

sites were from the middle coil (circle) and 2 sites were from the

basal coil (square). OHCs exhibited robust increase in GTTR

fluorescence after prior prolonged sound exposure (n = 3),

compared to control OHCs (n = 2). Horizontal lines depict the

group mean of fluorescence intensity. Solid line: middle coil;

dashed line: basal coil. The Mann-Whitney nonparametric test

indicated that prolonged sound exposure exerted a statistically

significant effect on GTTR fluorescence in OHC cuticular plates

in both middle coil (p,0.001) and basal coil (p,0.05) locations

compared to control cuticular plates.

(TIF)

Figure S2 The dose-intensity relationship of GTTR or
gentamicin (immuno)fluorescence. The intensity of GTTR

and monoclonal gentamicin (immuno)fluorescence is dose-depen-

dent, unlike that for the polyclonal antibody. The panels on the

right display the immunofluorescence emission of different

gentamicin doses using monoclonal gentamicin antisera on

Madin-Darby canine kidney (MDCK) cells. Scale bar = 20 mm.

(TIF)

Figure S3 Greater GTTR fluorescence in the cuticular
plate region of OHCs. A: Representative xz section image of

organ of Corti from the basal cochlear turn of a GTTR-treated

mouse. Prominent GTTR fluorescence (red) was observed in hair

cells (OHCs, *; IHC, #), compared to surrounding supporting

cells and structures. Green: phalloidin. SL: spiral limbus. TC:

Tunnel of Corti. Scale bar = 20 mm. B: Representative variation

in GTTR fluorescence in the longitudinal axis of individual OHCs

from the same cochlea, at various cochlear locations. Three to four

OHCs per location were selected. More intense GTTR fluores-

cence occurred in the cuticular plate region (CP, gray area)

regardless of cochlear location for individual OHCs. OHCs from

more basal regions of the cochlea show the most intense GTTR

fluorescence. HB: hair bundle.

(TIF)
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