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Abstract

Aims: The influences of nonstationarity and nonlinearity on heart rate time series can be mathematically qualified or
quantified by multiscale entropy (MSE). The aim of this study is to investigate the prognostic value of parameters derived
from MSE in the patients with systolic heart failure.

Methods and Results: Patients with systolic heart failure were enrolled in this study. One month after clinical condition
being stable, 24-hour Holter electrocardiogram was recording. MSE as well as other standard parameters of heart rate
variability (HRV) and detrended fluctuation analysis (DFA) were assessed. A total of 40 heart failure patients with a mea age
of 56616 years were enrolled and followed-up for 6846441 days. There were 25 patients receiving b-blockers treatment.
During follow-up period, 6 patients died or received urgent heart transplantation. The short-term exponent of DFA and the
slope of MSE between scale 1 to 5 were significantly different between patients with or without b-blockers (p = 0.014 and
p = 0.028). Only the area under the MSE curve for scale 6 to 20 (Area6–20) showed the strongest predictive power between
survival (n = 34) and mortality (n = 6) groups among all the parameters. The value of Area6–20!21.2 served as a significant
predictor of mortality or heart transplant (p = 0.0014).

Conclusion: The area under the MSE curve for scale 6 to 20 is not relevant to b-blockers and could further warrant
independent risk stratification for the prognosis of CHF patients.
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Introduction

Congestive heart failure (CHF) remains to be one of the

major cardiovascular disorders in the world [1]. Despite its

high expenditure in healthcare budgets [2], the mortality rate

of CHF patients can be up to 8 times higher than the age-

matched control population [3]. The present treatment

protocols of CHF patients, such as administrating angiotensin

converting enzyme inhibitors (ACE-I) and b blockers, have

been proven to lower the mortality and hospital admission rate

[4]. Nevertheless, the residual risk for mortality and morbidity

of CHF remains high even under such treatment protocols

[5,6]. Therefore, further novel prognostic predictor is needed to

strengthen the treatment strategy in addition to neurohormonal

inhibition therapy.

Conventional linear heart rate variability (HRV) analyses,

including frequency and time domain analyses, have been

reported as prognostic factors for CHF [7,8]. However, heart

rate fluctuations have been recognized as complex behaviors

originated from nonlinear processes and often with nonstationary

property [9–11]. Applying linear algorithms to those seemingly

irregular and ‘‘patchy’’ patterns of heart rate fluctuations [12]

may cause the intrinsic computational errors of the linear

algorithms [11,13,14]. Properly use of the analyses based on

fractals and chaos theory [15–17] to qualify or quantify the

characteristics of heart rate time series are suggested to serve as a

more reliable index of physiological systems in many clinical

studies [10,11,18]. As one of such mathematic methods,

multiscale entropy (MSE) analysis has focused specifically on

characterizing heterogeneous complexity [19]. Such complex

structure is ‘‘breakdown’’ (loss of information richness) and

points to poor prognosis in CHF patients [19,20]. We

hypothesized that MSE could yield a prognostic marker which

was not relevant to neurohormonal inhibition therapy in CHF

patients. The aims of this study were 1) to evaluate the influences

of b-blockers on parameters derived from MSE; 2) to assess the

prognostic significance of parameters derived from MSE for

CHF patients.
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Methods

Study Population
Patients with manifestation of exertional dyspnea, leg edema

and systolic heart failure (LVEF,45% by echocardiography) at

the National Taiwan University Hospital were enrolled after

giving their inform consents. Baseline information, including age,

sex, etiologies for heart failure,diabetes mellitus, hypertension,

dyslipidemia (total cholesterol .220 mg/dl), and cardiovascular

medication use (b-blockers, ACE-I, angiotensin-II receptor

blockers, and spironolactone) was reviewed in medical records

and charts. Patients with renal dysfunction (defined by creati-

ne§2.0 mg/dl) were excluded. One month after clinical condition

being stable, standard ambulatory 24-hour electrocardiogram

(ECG) recorders were placed on all participants. The ECG signals

were sampled at 250 Hz and stored in SD memory card for offline

analysis on a microcomputer. Subsequently, these patients were

followed up and mortality or heart transplantation will be noted as

end-point for follow-up. The Ethics Committee of National

Taiwan University Hospital approved the study and all patients

provided written informed consent.

Data pre-processing
Each digitalized 24-hour ECG data was annotated by an

automated algorithm and the annotated file was then carefully

inspected and corrected by technicians for extracting the RR

intervals. The ectopic beats (including atrial or ventricular

premature beats) were interpolated by its adjacent RR intervals.

A four-hour period of RR intervals in daytime (between 9AM–

5PM) was selected from each recording to avoid confounding

effects on nonlinear or linear analysis caused by different sleep

stage or diurnal rhythm [21,22]. Only subjects consisted of more

than 80% of qualified normal sinus beats were included for further

analysis (the typical RR-interval tracings and the corresponding

recurrent plots for survival and mortality groups (Figure S1) as well

as all of the RR-interval data are provided as supplementary

materials (Materials S1)).

Time and frequency domain analysis
Standard deviation of normal RR intervals (SDNN) and

percentage of absolute differences in normal RR intervals greater

than 50 ms (pNN50) were calculated to represent the total variance

and vagal modulation of the HR. In addition, the spectrum

analysis was carried out in accordance with the recommendations

of the European Society of Cardiology and the North American

Society of Pacing Electrophysiology [23]. The spectral density of

each frequency band-high frequency (HF) (0.15–0.4 Hz), low

frequency (LF) (0.04–0.15 Hz), and very low frequency (VLF)

(0.003–0.04) were computed by average power spectrum.

Nonlinear methods
Nonlinear analysis enables the researchers to probe the

fundamental characteristics of the signals. However, unwanted

inferences such as noise and nonstationarity may introduce

spurious features to the signals [24,25]. The underlying mecha-

nisms of the irregular and unpredicted behavior of the signals can

be misinterpreted and the reliability of the results of analysis can

be compromised. Two methods had been chosen for their ability

to evaluate the main properties of the signals [14,26].

Detrended fluctuation analysis (DFA)
DFA is a modified root-mean-square analysis used to evaluate

the fractal correlation beneath the heart rate fluctuation originated

from the interacted regulatory mechanisms. The algorithm has

been described in detail elsewhere [14]. To briefly introduce this

method, at first, it eliminates the environmental inferences by

removing the linear-fitted ‘‘local’’ trend over different time scales

(‘‘box sizes’’) in an integrated time series. Next, the root-mean-

square fluctuation of this integrated and detrended time series is

calculated. This procedure is repeated over different time scales

and then the slope of the curve (a exponent) can be estimated on

the log-log plot of fluctuations versus box sizes.

In addition, a crossover phenomenon of a exponent in heart

rate dynamics between short (4–11 beats) and long (11–64 beats)

time scales has been proposed. The short-term (a1) as well as long-

term (a2) fractal correlation exponents were calculated to provide

better understanding of the fractal correlation property in

physiological system [14].

MSE analysis
Instead of simply using single time scale to estimate the complex

pattern (irregularity) of a time series, MSE extended this concept to

evaluate the complexity of physiological signals on multiple time

scales. It comprises of two steps: 1) coarse-graining the signals into

different time scales; 2) quantify the degree of irregularity in each

coarse-grained time series using sample entropy (SpEn) [27].

Finally, the entropy is calculated as a function of scale, providing

a measure of information richness embedded in different time

scales. In addition, it has shown that different features of small and

large scales in different groups of subjects may assist the clinical

categorization [19] and thus three different parameters were

derived from the MSE profile: the summations of quantitative

values of scale 1–5 (Area5) or scale 6–20 (Area6–20) which represent

the complexity exhibit in short and long time scales, respectively;

and the linear-fitted slope of the first 5 scales (Slope5) (Figure 1).

Although MSE was successfully applied in physiological signals

[18,19,24], nonstationary artifacts especially trends can compro-

mise the estimation of entropy-based analysis by increasing the

standard deviation of the data. Hence, detrending process was used

to attenuate the spurious influence caused by nonstationarity [24].

Figure 1. Demonstrative graph of MSE derived parameters. The
profile of MSE can be assessed by a) its linear-fitted slope between
certain scales which represent the complexity behaviors of the signals.
The negative slope may indicate a random-like structure over certain
timescale. B) the area under curve between certain scales that may
represent its quantitative feature of the underlying physiological
mechanisms in certain time scales (ex. area under scale1,5 may
respond to the ability of respiratory sinus arrhythmia).
doi:10.1371/journal.pone.0018699.g001

Heart Failure and Multi-Scale Entropy
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In this study, the empirical mode decomposition (EMD) method

was adopted as an adaptive filter to eliminate the oscillations

slower than VLF range in the original R-R interval signals [28].

The data subsequently evaluated by the MSE analysis after

detrending. This algorithm, instead of removing trend with a priori

mathematical formulas such as linear or polynomial functions

[14,29], could evaluate the hidden dynamics of heart beat

fluctuations better [9,10,29].

Statistical analysis
For the independence of different nominal variables between

groups, the chi-square test or Fisher exact test were performed.

The continuous variables were represented as mean value 6 SD

and the normality of those variables was evaluated by using the

Shapiro-Wilk test. Then, the Mann-Whitney U test or Student’s t

test was applied to the between-group comparison accordingly

while the Wilcoxon sign test or Student’s paired t test was

calculated for the intra-group comparison. The receiver operating

characteristic curve (ROC) was constructed by the sensitivity and

specificity of the continuous variable in predicting the end-point.

Area under the ROC curve (AUCs) gave an estimate of the overall

discriminate ability. Furthermore, the most predictive indexes will

be selected to seek the optimal cut point within the 30th to 70th

percentile for all patients in 5th-percentile step. The maximal

hazards ratio and independent correlation of variables with event

status (mortality) was determined by Cox regression analysis.

Then, Kaplan-Meier event probability curves and log rank

analysis of the dichotomized groups were obtained. The statistical

significance was set at p,0.05.

Results

Characteristics of Patients
A total of 40 heart failure patients (30 males and 10 females)

with a mean age of 56616 years were enrolled and followed-up for

6846441 days. Twenty-five patients received b-blockers (either

carvedilol or metoprolol). Carvedilol was titrated from 3.25 mg

per day and metoprolol was titrated from 12.5 mg per day to

maximal tolerable doses. Six patients died or received heart

transplantation during follow-up period of this study. The

demographic and clinical data were showed in Table 1. No

clinical variable was significantly different between these two

groups (with or without b-blocker therapy).

Effect of b-blockers on autonomic activities and its fractal
properties

While the conventional HRV measurements showed no

significant different between these two groups, DFAa1 showed

significantly higher values (p = 0.014) in patients with b-blocker

treatment (Table 2).

Effect of b-blockers on the dynamical complexity
assessed by the MSE analysis

There was no significant difference when any single sample

entropy value of scales 1 to 20 was compared between patient

groups with or without b-blockers. However, the value of Slope5

was not only significantly lower (p = 0.028) in patients without b-

blocker therapy but also exhibit a negative value (Table 2).

Application of MSE in prognostic prediction
Among all parameters, Area5, Area6–20, and LF were

significantly lower (p = 0.027, p = 0.021, and p = 0.004 respectively)

in the mortality group. (Table 3) Moreover, the ROC of the

previously proposed predictors (LF, VLF, and DFAa1) and the

new derived parameters (Area5 and Area6–20) were depicted in

Figure 2. Area6–20 (AUC:0.85860.075) showed the best overall

discriminative power than LF (AUC: 0.78460.087), VLF

(AUC:0.73560.117), DFAa1 (AUC:0.7160.145) and Area5

(AUC:0.79460.108) in mortality or heart transplant prediction.

Therefore, Area6–20 was adopted to perform the analysis of

Kaplan-Meier survival curves. The value of Area6–20!21.2 was a

significant predictor of mortality or heart transplant (p = 0.0014).

(Figure 3)

Discussion

Although the effects of b-blockers on HRV indices have been

extensively studied [30–32], the effects of b-blockers on MSE are

still unclear. The present study was the first study to assess the

relationship between b-blockers and MSE in CHF patients. The

main findings of this preliminary study were that the b-blocker

therapy may change the short-term complexity (the slope of MSE

between scale 1 to 5). But the most significant predictor of

Table 1. The clinical characteristics between patients with
and without using b-blockers.

Patient characteristics
b-blockers(2)
(n = 15)

b-blockers (+)
(n = 25) p value

Age (years) 61.7614.7 51.8613.5 p = 0.073

Male/Female 9/6 21/4 p = 0.158

Heart rate (bpm) 86613 87615 p = 0.793

LVEF(%) 33612 35614 p = 0.684

Creatinine 1.0760.25 1.1860.35 p = 0.280

Fasting sugar (mg/dl) 113647 122647 p = 0.573

Triglyceride (mg/dl) 129685 1956177 p = 0.189

Cholesterol (mg/dl) 185635 185665 p = 0.988

Hemoglobin (g/dl) 13.661.9 13.462.3 p = 0.712

Uric acid (mg/dl) 8.963.2 7.162.6 p = 0.138

NYHA functional class p = 0.660

I 2 4

II 8 10

III 5 9

IV 0 2

Body mass index 25.465.2 25.665.3 p = 0.929

Etiology of heart failure p = 0.924

Coronary artery disease 6 11

Non-coronary artery Diseases 9 14

Hypertension 4 11

Diabetes mellitus 6 10

Medication p = 0.845

ACE-I/ARB 12 19

Loop diuretics 10 18

Digoxin 9 10

Spironolactone 6 7

A total of 40 heart failure patients (30 males and 10 females) were enrolled in
this study. No clinical variable was significantly different between the patients
with or without b-blocker therapy.
NYHA = New York Heart Association; ACE-I = angiotensin converting enzyme
inhibitor; ARB = angiotensin receptor blocker.
doi:10.1371/journal.pone.0018699.t001
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mortality or heart transplantation was the long-term complexity

(the area under the MSE curve for scale 6 to 20). Therefore, we

found an alternative prognostic predictor of CHF in addition to

neurohormonal inhibition therapy by assessing the nonlinear

characteristics of the heart rate fluctuations.

Effect of b-blocker therapy on linear and nonlinear
properties of HRV

All linear HRV measurement showed no difference between

patients with or without b-blocker treatment in the present study.

Table 2. Effect of the b-blockers on the autonomic activities,
fractal properties and MSE.

b-blockers(2)
(n = 15)

b-blockers(+)
(n = 25) p value

Time domain analysis

SDNN 53.2617.8 49.1626.9 p = .332

pNN50 0.9160.85 0.7661.13 p = .100

Frequency domain analysis

HF 31.43620.91 27.9635.3 p = .088

LF 56.3643.0 90.96102.9 p = .659

VLF 484.86321.7 563.06462.9 p = .956

Detrended fluctuation analysis

a1 0.9160.22 1.1060.34 p = .014

a2 1.2760.09 1.2660.18 p = .679

Multiscale entropy

Slope5 20.0260.07 0.0360.08 p = .028

Area5 5.361.2 5.561.1 p = .719

Area6–20 13.163.0 14.362.7 p = .211

While the conventional HRV measurements showed no significant different
between these two groups, nonlinear indices, DFAa1 and the value of Slope5,
were significantly lower in patients without b-blocker therapy.
Slope5 = the linear-fitted slope of the first 5 scales, Area5 = the summations of
quantitative values of scale 1–5, Area6–20 = the summations of quantitative
values of scale 6–20.
doi:10.1371/journal.pone.0018699.t002

Figure 2. Very-low-frequency component (VLF; black, solid
line), low-frequency component (LF; black, dashed line), short-
term fractal exponent (DFAa1; black, dotted line), the summa-
tions of quantitative values of scale 1–5 (Area5; grey, dashed
line), and the summations of quantitative values of scale 6–20
(Area6–20; grey, dash-dotted line) receiver operating charac-
teristic (ROC) curves. The area under each ROC curves (AUC) was
calculated for each parameters. The AUCs were 0.735 for VLF, 0.784 for
LF, 0.701 for DFAa1, 0.794 for Area5, and 0.858 for Area6–20.
doi:10.1371/journal.pone.0018699.g002

Figure 3. Using MSE Area6–20!21.2 as a clinical predictor,
significant difference in survival was noted from the Kaplan-
Meier survival curve (P = 0.0014).
doi:10.1371/journal.pone.0018699.g003

Table 3. Prognostic value of parameters of HRV.

Survival
group
(n = 34)

Mortality
group
(n = 6) p value

Time domain analysis

SDNN 52.8623.5 38.4622.9 p = .225

pNN50 0.8861.09 0.4660.37 p = .939

Frequency domain analysis

HF 32.1632.0 12.669.9 p = .092

LF 87.6690.1 23.3622.6 p = .027

VLF 575.46420.4 297.46290.5 p = .071

Detrended fluctuation analysis

a1 1.0660.27 0.8460.45 p = .127

a2 1.2860.13 1.1560.23 p = .239

Multiscale entropy

Slope5 0.0260.07 20.0360.11 p = .197

Area5 5.661.0 4.561.1 P = .021

Area6–20 22.363.5 16.364.5 p = .004

Among all parameters, Area5, Area6–20, and LF were significantly lower
(p = 0.027, p = 0.021, and p = 0.004 respectively) in the mortality group and
those indices may potentially serve as outcome predictors.
Slope5 = the linear-fitted slope of the first 5 scales, Area5 = the summations of
quantitative values of scale 1–5, Area6–20 = the summations of quantitative
values of scale 6–20.
doi:10.1371/journal.pone.0018699.t003

Heart Failure and Multi-Scale Entropy

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18699



Other researchers have proposed that the restoration of autonomic

function can be assessed by HRV indices [30,31,33]. The

discrepancy between our finding and previous studies could be

due to several factors. The first, the b-blockers were titrated

according to patients’ tolerance in our study. Therefore, the

duration and dosage of b-blockers were variable. The second, the

ECG was recorded 1 month after clinical condition being stable in

our study. However, significant changes of most linear HRV

parameters are found after 12 weeks of treatments. The short-term

fractal scaling correlation index, DFAa1, was markedly higher in

b-blocker group. The reversal of DFAa1 is also reported after

administrating b-blocker in patients with CHF [33]. Our data

showed similar results.

The new nonlinear method, MSE, allows us to evaluate the

information richness in heart beat time series over different time

scales. Although the underlying mechanisms responsible for the

quantitative feature of the MSE in different time scales are still

unclear, previous studies have shown that the complexity

decreased significantly during aging and further deteriorated in

patients with CHF [19]. We applied three different parameters,

Area5, Area6–20, and Slope5, to compare patients with or without

b-blocker treatment. The summation of entropy values at different

time scales may give the quantitative estimation of information

richness over certain time scales. That is, Area5 and Area6–20 can

probe the complexity structure of the heart rate dynamics in short

(e.g., 1 to 5 heart beats) and longer (e.g., 6 to 20 heart beats) time

scales, respectively. The Slope5 also outlined the structure of heart

rate dynamics in short time scale [19]. The negative value of

Slope5 indicates random-like patterns in short time scales.

Therefore, the significant difference between b-blocker and non

b-blocker groups might due to dysfunction of the short-term

regulatory mechanisms coincided with the results assessed by

DFAa1.

Complexity analysis as a prognosis predictor
Applying Fourier-based method to nonlinear or nonstationary

signals may result in inaccurate estimations [9,29] and compro-

mise the sensitivity of linear HRV measurements. Recently,

DFAa1 has been proposed to be a better predictor for CHF

patients [34]. In the present study, SDNN and DFAa1 failed to

predict the prognosis of CHF patients. Makikallio et al. noticed that

HRV indexes such as SDNN is less sensitive in CHF patient with

NYHA.III [35]. Sixteen patients (40%) were classified as NYHA

III–IV in our study and five out of them were in mortality group.

Moreover, administration of beta-blockade has shown a reversal

effect in either linear and nonlinear parameters such as SDNN,

HF, LF and DFAa1 [30,32,33]. Half of the patients with poor

outcome were treated with beta blocker which may potentially

influence the parameters. SDNN and DFAa1 may be, therefore,

insensitive to predict their prognosis. Area5 and Area6–20 derived

from MSE were markedly lower in the mortality group. This

phenomenon was in agreement with those found by Costa et al. in

MUSIC study [19]. Although the underlying mechanisms were

still unclear, this preliminary study provided a new insight for the

prognosis of CHF by probing the dynamical complexity on the

system level. It could potentially offer an alternative marker for the

outcome of CHF in addition to neurohormonal inhibition therapy.

Limitations of study
First, our study had small sample size and no placebo-controlled

group. Second, all ECG data were recorded in normal ‘‘free-

running’’ conditions with possible confounding factors (e.g.,

physical activities, different breathing patterns, and so on). The

additive or dynamical noises may affect the properties of the

signals. Although we examined and interpreted the results of the

analysis cautiously and the differences characteristics of the

patients were unlikely due to the noise, we did not assess the

features or level of noise for more detailed information that may

benefit the exploration of the underlying deterministic rules.

Finally, some parameters related to possible physiological

mechanisms of MSE were not collected, such as baroreflex

sensitivity, catecholamine levels, and chemoreflex activities.

In conclusions, the area under the MSE curve for scale 6 to 20 is

not relevant to b-blockers and could further warrant independent

risk stratification for the prognosis of CHF patients.

Supporting Information

Figure S1 The 4-hour time tracings of RR intervals of
survived patient (A) and patient who died after 1 year (B)
and the return map traits of three-dimensional RR time
series reconstruction (x-axis for RRn, y-axis for RRn+1

and z-axis for RRn+2) of survived patient (C) and expired
patients (D). Note that the trait of the map in survival patient

was similar to that in expired patient.

(TIFF)

Materials S1 The RR intervals of each patient was
output in a one-column Ascii file and categorized into
two groups according to their outcomes after 2.5 years
follow up. All of the files were packed into a compressed RAR

file.

(RAR)
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