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Abstract

Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) could induce apoptosis of HIV-1-infected
monocyte-derived macrophage (MDM), but the molecular mechanisms are not well understood.

Methodology/Principal Findings: By using an HIV-1 Env-pseudotyped virus (HIV-1 PV)-infected MDM cell model we
demonstrate that HIV-1 PV infection down-regulates the expression of TRAIL decoy receptor 1 (DcR1) and 2 (DcR2), and
cellular FLICE-inhibitory protein (c-FLIP), but dose not affect the expression of death receptor 4 and 5 (DR4, DR5), and Bcl-2
family members in MDM cells. Furthermore, recombinant soluble TRAIL and an agonistic anti-DR5 antibody, AD5-10,
treatment stimulates reactive oxygen species (ROS) generation and JNK phosphorylation.

Conclusions/Significance: HIV infection facilitates TRIAL-induced cell death in MDM by down-regulating the expression of
TRAIL decoy receptors and intracellular c-FLIP. Meanwhile, the agonistic anti-DR5 antibody, AD5-10, induces apoptosis
synergistically with TRAIL in HIV-1-infected cells. ROS generation and JNK phosphorylation are involved in this process.
These findings potentiate clinical usage of the combination of TRAIL and AD5-10 in eradication of HIV-infected macrophage
and AIDS.
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Introduction

HIV infection of macrophages is a critically important

component of viral pathogenesis and progression to AIDS.

Macrophage contributes an important cellular target for R5-

tropic strains of HIV-1 and could disseminates the virus to diverse

tissues and organs [1]. HIV-1-infected macrophage is considered

as the source not only of viral proteins but also of many

inflammatory cytokines, which lead to recruitment of additional

susceptible T cells to the primary infection site and contribute to

that more cells are infected [1,2]. Furthermore, macrophage

dysfunction as well as induction of immune response is responsible

for HIV-associated disorder and AIDS development [3,4,5,6]. It is

reported that several aspects of virus-host interaction are unique to

macrophage in contrast to T cell, which enables HIV-infected

macrophage to be hardly recognized and eliminated by host

immune system. Thus cells of macrophage lineage provide an

important viral reservoir in vivo and play critical roles in early-

stage viral transmission and viral persistence [7,8]. Therefore,

development of therapeutic strategies or agents targeting HIV-

infected macrophage is urgently needed.

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand

(TRAIL), a member of the TNF superfamily, could induce

apoptosis in various tumor cells and virus-infected cells, but not

most normal cells [9]. It is recently reported that TRAIL induces

apoptosis in HIV-infected macrophage [10,11], but the exact

underling mechanism is not well defined. TRAIL-induced

apoptotic signaling pathway can be modulated by many factors.

It is known that there are five TRAIL receptors, i.e., TRAIL

receptor 1 (DR4), TRAIL receptor 2 (DR5/TRICK2/KILLER),

TRAIL receptor 3 (decoy receptor 1, DcR1/TRID/LIT), TRAIL

receptor 4 (decoy receptor 2, DcR2/TRUNDD) and osteoprote-

gerin (OPG) [12,13]. There is a death domain in the intracellular

region of DR4 or DR5, which can recruit death-inducing signaling

complex (DISC) upon TRAIL stimulation, therefore, activate

down stream caspase cascade leading to cell death by apoptosis.

There is no intact death domain in the intracellular region of

DcR1 and DcR2, and OPG, a soluble receptor, so that they are

unable to induce apoptosis, even though they could compete with

DR4 or DR5 for binding with TRAIL [14] and over-expression of

DcR1 and/or DcR2 blocks TRAIL-mediated apoptosis in some

cell types [12,15]. It is reported that cellular FLICE-inhibitory

protein (c-FLIP) suppresses the transduction of the death signal at

the receptor level by occupying caspase-8 binding site on FADD

thus blocking TRAIL-induced death signals [16,17], and expres-

sion of inhibitor of apoptosis proteins including XIAP, c-IAP1, c-
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IAP2 and survivin suppresses activation of caspase cascade,

therefore, protects the cells from apoptosis [18,19,20]. Bcl-2

family members, nuclear factor-kappa B (NF-kB) as well as PI3K/

AKT could also affect TRAIL-induced apoptosis [17,21,22].

Herein, we established an HIV-1 Env-pseudotyped virus (HIV-

1 PV)-infected MDM cell model to explore the molecular

mechanism and signaling pathway, by which HIV-infected

MDM could be eliminated by recombinant soluble TRAIL

(rsTRAIL). Furthermore, we developed a more efficient method

to eliminate the HIV-infected macrophage by combination of

rsTRAIL with an agonistic anti-DR5 monoclonal antibody, which

shows strong tumoricidal activity both in vitro and in vivo by a

caspase-dependent and -independent manner [23]. It is signifi-

cantly for the eradication of latent HIV-1 infection and AIDS.

Materials and Methods

HIV-1 PV production and titration
Env-expressing plasmid (pTHRO.18) and HIV-1 backbone

plasmid lacking Env (pSG3gEnv) were kindly provided by

Professor Yiming Shao, Center for Disease Control (CDC),

Beijing, China. HEK 293T/17 cells (ATCC, Maryland, USA)

were co-transfected with 20 mg of pSG3gEnv and 10 mg of

pTHRO.18 plasmid DNA in a 10 cm tissue culture dish by a

calcium phosphate method as previously described [24] and the

medium was replaced with 37uC pre-warmed fresh medium 16 hr

post transfection and incubated for an additional 48 hr. The virus-

containing culture medium was harvested and clarified by

centrifugation at 2000 g for 5 min and filtered through a 0.45-

micron filter. The Env-pseudotyped HIV-1 virus (HIV-1 PV) was

purified by centrifugation at 80,000 g and 4uC for 2 hr and re-

suspended in complete medium and stored at 280uC till use. The

medium from HEK 293T/17 cells transfected with pSG3gEnv

only was used as mock infection control. Titration was performed

in TZM-bl cell [25] (AIDS Research and Reference Reagent

Program, NIH) using a standard TCID50 (50% tissue culture

infective dose) assay and HIV-1 p24 ELISA kit (ZeptoMetrix

Corporation, MA, USA) according to the manufacturer’s

instructions.

Isolation and infection of primary monocyte
Peripheral blood mononuclear cells (PBMCs) were isolated from

HIV- and HBV- seronegative peripheral blood (supplied by Red

Cross Blood Service Centre, Beijing, China) by centrifugation at

500 g for 20 min at room temperature on Ficoll-Paque solution.

Monocyte-enriched fraction was isolated from PBMCs by a

commonly used plastic adherence method [26,27] or purified by

CD14-positive selection using anti-CD14 microbeads (Miltenyi

Biotec, Bergisch Gladbach, Germany) with a Midi MACS

separator unit according to the manufacturer’s instructions.

Briefly, PBMCs were suspended in serum-free RPMI 1640

medium (GIBCO, Carlsbad, CA) at 56106 cells/ml and enabled

the monocyte adherence to the plastic by incubating at 37uC in a

humidified 5% CO2 incubator for one hour. After vigorously

washed for three times with serum-free RPMI 1640, the adherent

cells at a concentration of 0.5–16106 cells/ml were maintained in

RPMI 1640 supplemented with 10% heat-inactivated fetal bovine

serum (GIBCO, Carlsbad, CA), penicillin (100 U/ml), streptomy-

cin (100 mg/ml), and M-CSF (250 ng/ml; Peprotech, Rocky Hill,

NJ). The culture medium was half-exchanged every 3 days. The

purity of the primary monocytes was examined by CD14 staining

and flow cytometry. The monocytes (purity .90%) were allowed

to differentiate for 7 days, and then were infected with HIV-1 PV

at a multiplicity of infection (MOI) of ,3 in the existence of

polybrene at 10 ng/ml for 4 hr. MDM from the same donor

treated with polybrene at 10 ng/ml and mock infection with the

supernatant of HEK 293T/17 cells transfected with SG3gEnv

only were used as control. All culture supernatants, reagents and

medium were endotoxin free.

Assessment of cell viability
MDM cells were plated in 96-well plate at a density of 26104

cells per well and infected with HIV-1 PV for 7 days. The MDM

cells were switched into fresh medium and treated with various

concentration of rsTRAIL and/or AD5-10 [23] for a time course.

The cell viability was determined by using CellTiter 96 aqueous

nonradioactive cell proliferation assay (MTS) according to the

manufacturer’s instructions (Promega, Wisconsin, USA).

Immunofluorescence assay
MDM cells (DPI = 7) on cover slips were fixed in fixative

solution (V/V = 1:1, ethanol/acetone) at 220uC for 10 min. After

washed twice with PBS, the cells were incubated with sheep

antibody against HIV-1 p24 (1:80 dilution, the antibody was

obtained through the AIDS Research and Reference Reagent

Program, Division of AIDS, NIAID, NIH, from Dr. Michael

Phelan) [28] for 45 min at room temperature and followed by

FITC-conjugated mouse anti-sheep IgG monoclonal antibody

(1:200 dilution) staining for 30 min at room temperature. Hoechst

33342 (Sigma-Aldrich) was used for nuclear staining for 5 min at

room temperature. After twice washing, the cover slip was put

onto slide with mounting medium then painting the edge with a

rim of nail polish and observed by fluorescence microscopy (Nikon

Eclipse TE2000-U, Nikon).

Detection of TRAIL receptors by flow cytometry
MDM cells were cultured in 6-well plate at a density of 1,26106/

ml in the presence of 250 ng/ml M-CSF (Peprotech, Rocky Hill, NJ)

and infected with HIV-1 PV for 7 days. The cells were collected and

washed with PBS, then re-suspended in FACS buffer (2% FBS in PBS

with 0.1% sodium azide) and incubated with TRAIL receptor

antibody (antibodies to DR4 and DR5, eBioscience, San Diego, CA;

antibodies to DcR1 and DcR2 and the isotype control IgG, R&D

systems, Minneapolis) at 4uC for 1 hr. After washed twice with FACS

buffer, the cells were fixed in 2% paraformaldehyde and followed by

flow cytometry (FACScan, Becton Dickinson, Germany). Mean

fluorescence intensity of each receptor was assessed on the gated live-

cell population with CellQuest software.

Lentivirus infection
The recombinant lentiviral vectors expressing DcR1, DcR2 or the

intracellular domain-deleted DR5 (DR5-delta) were constructed from

pWPXL (Addgene plasmid 12257) and designated as pWPXL-

DcR1, pWPXL-DcR2, pWPXL-DR5-delta, respectively. The target

gene expression was driven by EF-1 alpha promoter plus intron. The

lentiviral expression vector was transfected into HEK293T/17 cells

with psPAX2 (Addgene plasmid 12260) and pMD2.G (Addgene

plasmid 12259) using the calcium phosphate method as described

above. Freshly isolated monocytes were cultured for 5 days followed

by infection with the recombinant lentivirus and HIV-1 PV or mock

for 7 days. The cells were harvested and assessed for the cell viability

and the effect of expression of DcR1, DcR2 and DR5-delta on

rsTRAIL- or AD5-10-mediated cell death.

Western blot analysis
MDM cells were washed twice with phosphate-buffered saline

and lysed in the SDS-PAGE sample buffer (Roche, Basel). Protein

TRAIL Induce Cell Death in HIV-Infected Macrophage
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concentration was determined with BCA Protein Assay kit (Pierce,

Rockford). 30 mg or 60 mg of total proteins were boiled for 5–

10 min and subjected to 12% SDS-PAGE. The proteins separated

in the gel were subsequently electrotransferred onto a Polyviny-

lidene Fluoride membrane (PVDF, Amersham Biosciences,

Sweden). The membrane was blocked with 5% nonfat dry milk

or BSA in TBS-T buffer (20 mM Tris-HCl, pH = 7.4; 8 g/L

NaCl; 0.1% Tween 20) for 1 hr at room temperature followed by

incubating with primary antibody (1:1000 dilution for the

antibody against caspase-3, caspase-8, caspase-9 and c-FLIP, Cell

Signaling Technology; 1:100 for anti-Bcl-XL, 1:200 for anti-Bax,

-Bid and -Bak, 1:800 for anti-Bcl-2, Santa Cruz Biotechnology;

1 mg/ml of anti-actin, Sigma) in TBS-T buffer containing 5%

nonfat dry milk or BSA at 4uC overnight. The membrane was

washed for three times with TBS-T to remove any unbound

primary antibody then probed with horseradish peroxidase-

conjugated secondary antibody at room temperature for one hr.

After washing three times with TBS-T, the interesting protein was

visualized by using ECL Plus Western blotting detection system

according to the manufacturer’s instructions (Amersham Biosci-

ences, Sweden).

Measurement of reactive oxygen species (ROS)
Reactive oxygen species (ROS) generated in MDM cells was

measured by using a ROS detection kit according to the

manufacturer’s instructions (Biyuntian Co. Jiangsu, China).

Briefly, the HIV-1 PV-infected MDM cells were incubated in

serum-free medium containing 10 mM DCFH-DA (Biyuntian Co.

Jiangsu, China) for 20 min at 37uC. After washed for three times

with RPMI 1640, the cells were cultured in the complete medium

and treated with 200 ng/ml rsTRAIL and/or 200 ng/ml AD5-10

for 15, 30, 60, 120 and 240 min. Then the cells were harvested

and subjected to detection of DCF fluorescence by flow cytometry

(FACScan, Becton Dickinson, Germany).

Statistical analysis
Data were presented as mean values 6 S.D. and statistical

significant was assessed by one-way ANOVA with Tukey’s

Multiple Comparison Test using Graphpad Prism version 4

(GraphPad Software, San Diego CA). For comparison of the

expression of TRAIL receptors and other intracellular proteins, a

two-tailed, two samples Student t test was used for evaluating

statistical significance. P values were considered to be statistically

significant when less than 0.05. All data shown are representative

of at least 3 independent experiments.

Results

HIV-1 PV effectively infects primary MDM
Human monocytes were isolated and purified from healthy

donors by Ficoll-Paque centrifugation and plastic adherence or by

magnetic anti-CD14 microbeads. The primary monocytes (purity

.90%) were allowed to be differentiated into monocyte-derived

macrophage (MDM) and then infected with HIV-1 PV. The

efficacy assay of HIV-1 PV infection by inverted fluorescence

microscopy with FITC-labeled anti-HIV-1 p24 antibody demon-

strated that more than 90% MDM cells were infected by the virus,

but not the mock-infected control (Fig. 1A), indicating that

uniform infection of the MDM cells by HIV-1 PV implemented.

This result is consistent with previous report by Tsang et al. that

MDM cells could well be infected by R5 tropic HIV-1 virus [29].

To confirm this observation, PCR by using HIV-1 PV-infected

MDM DNA as template and HIV LTR-specific primers [30] was

performed. It was shown that HIV-1 PV DNA was existed in the

HIV-1 PV-infected MDM cells, but not in the non-infected cells

(Fig. 1B). Similarly, HIV-1 p24 protein examined by Western blot

assay was presented in the virus-infected MDM cells, but not in the

mock-infected cells (Fig. 1C). These data confirm that HIV-1 PV

infects human primary MDM cells effectively.

Figure 1. Infection of MDM by HIV-1 PV. Monocytes were isolated from the peripheral blood of healthy donors and culture for 7 days in RPMI
1640 supplemented with 10% heat-inactivated fetal bovine serum, penicillin (100 U/ml), streptomycin (100 mg/ml), and M-CSF (250 ng/ml) to allow
the cell differentiation. The MDM cells were infected with HIV-1 PV at a multiplicity of infection (MOI) of ,3 in the presence of 10 ng/ml of polybrene
for 4 hr and cultured for 7 more days. MDM from the same donor treated with polybrene at 10 ng/ml and mock infected with the supernatant of HEK
293T/17 cells transfected with SG3DEnv only were used as control. The cells were analyzed with immunofluorescence staining (A) and Western
blotting (C) for the viral p24 protein expression, and by HIV DNA PCR (B) for the presence of integrated proviral DNA.
doi:10.1371/journal.pone.0018291.g001
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Recombinant soluble TRAIL and anti-DR5 monoclonal
antibody AD5-10 synergetically induces apoptosis in
HIV-1 PV-infected MDM cells

To investigate whether recombinant soluble TRAIL (rsTRAIL)

as well as agonistic anti-DR5 antibody, AD5-10, could induce HIV-

1 PV-infected MDM cell death in the model system, HIV-1 PV-

infected and mock-infected MDM cells were treated with rsTRAIL

or/and AD5-10 at indicated concentration for 12 hours and

followed by MTS assay for the cell viability. As shown in Fig. 2A–

D, rsTRAIL and AD5-10 suppressed the viability of HIV-1 PV-

infected MDM cells in a dose- and time-dependent manner. The

combination of rsTRAIL and AD5-10 more effectively inhibited the

viability of HIV-1 PV-infected MDM cells (Fig. 2E and 2F). DNA

fragmentation ELISA confirmed that rsTRAIL and AD5-10

significantly induced apoptosis of HIV-1 PV-infected MDM cells,

but not the mock-infected cells (Fig. 2G and 2H), demonstrating

that both rsTRAIL and AD5-10 could induce cell death of the HIV-

1-infected MDM by apoptosis. Furthermore, rsTRAIL and AD5-10

synergetically induced apoptosis of the HIV-1-infected MDM cells.

HIV-1 PV infection suppresses expression of TRAIL decoy
receptors and c-FLIP

To explore the possible underlying mechanisms of rsTRAIL and/

or AD5-10 induced apoptosis in the HIV-1 PV-infected MDM cells,

expression of TRAIL receptors on the virus infected MDM cells were

examined by flow cytometry after staining with PE-labeled specific

antibodies. As shown in Fig. 3A and 3B, TRAIL decoy receptor,

DcR1 and DcR2 expression in MDM cells infected with HIV-1 PV

were significantly down-regulated on the 7th day post infection

compared with mock-infected control (n = 12; p = 0.0281 for DcR1,

p = 0.0475 for DcR2). Interestingly, DR4 and DR5 expression was

not affected by the virus infection compared with mock control

(n = 12; p = 0.3418 for DR4, p = 0.5516 for DR5). To demonstrate

whether the decoy receptor over-expression affects TRAIL- or AD5-

10-induced apoptosis of HIV-1 PV-infected MDM cells, MDM cells

were transformed with a lentivirus vector encoding DcR1, DcR2 or

dominant negative DR5 (intracellular domain deleted DR5, DR5-

delta) followed by HIV-1 PV infection and treatment with rsTRAIL

or AD5-10. The cell viability was tested by MTS assay followed by

Figure 2. rsTRAIL and AD5-10 synergetically induces apoptosis in HIV-1 PV-infected MDM. HIV-1 PV-infected MDM cells were treated
with increasing concentration of rsTRAIL (A) or AD5-10 (B). The cell viability was determined by MTS assay. C and D, the virus-infected MDM cells
were treated either with 500 ng/ml of rsTRAIL or 500 ng/ml of AD5-10 for 3, 6, 12, and 24 hr. The virus-infected MDM cells were overnight incubated
with or without 5 ng/ml of AD5-10 and rsTRAIL at indicated concentration (E), or 5 ng/ml of rsTRAIL and AD5-10 at indicated concentration (F). G
and H, the virus-infected MDM cells were incubated with 500 ng/ml rsTRAIL and/or 500 ng/ml AD5-10 for 6 hr, and the apoptotic nucleosome was
detected by Cell Death Detection ELISA kit. Values are represented results of three independent experiments with error bar representing standard
deviation of the mean. *, p,0.05; ***, p,0.001; ns, no significant.
doi:10.1371/journal.pone.0018291.g002
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flow cytometry. As shown in Fig. 3C, dominant negative DR5

expression well rescued rsTRAIL- or AD5-10-induced cell death in

HIV-1 PV-infected MDM cells. In contrast, the over-expression of

DcR1 or DcR2 rescued rsTRAIL- but not AD5-10-induced cell

death. These data reveal that down-regulation of TRAIL decoy

receptor facilitates TRAIL-induced cell death in HIV-1 PV-infected

MDM cells.

It is well known that some intracellular proteins could regulate

TRAIL receptor-mediated signaling pathway and cell death, such

as c-FLIP and Bcl-2 family members. We therefore further

examined the expression of c-FLIP and Bcl-2 family members by

Western blot analysis in HIV-1 PV- and mock-infected MDM

cells. As shown in Fig. 3D, HIV-1 PV-infection down-regulated c-

FLIP expression in the cells but did not affect the expression of

Figure 3. HIV-1 PV infection suppresses expression of TRAIL decoy receptors and c-FLIP. The virus-infected MDM were collected and
stained with PE-labeled anti- DR4, -DR5, -DcR1, -DcR2 antibody and the isotype control, respectively, and followed by flow cytometry. A,
representative analysis of TRAIL receptor expression on mock- or virus-infected MDM, Open histograms with solid lines, mock-infected MDM stained
with PE-labeled anti-TRAIL receptor mAbs; Open histograms with dashed lines, HIV-1 PV infected MDM stained with PE-labeled anti-TRAIL receptor
mAbs; shaded histograms, mock-infected MDM stained with PE-labeled isotype control. B, statistical results from 12 samples. The MFI (mean
fluorescent intensities) of TRAIL receptor was assessed by flow cytometry and analyzed by a two tailed, two sample student t test (P values were
indicated). C, lentivirus-mediated over-expression of DR5-delta, DcR1 and DcR2 on MDM rescued rsTRAIL- or AD5-10-induced cell death. MDM cells
were infected with lentivirus vectors expressing DR5-delta, DcR1 or DcR2, respectively. HIV-1 PV-infected MDM cells were treated with 500 ng/ml of
rsTRAIL or 500 ng/ml of AD5-10 for 12 hr. The cell viability was examined by MTS assay. Data are representative of three independent experiments. D,
expressions of Bcl-2 family proteins and c-FLIP in HIV-1 PV-infected MDM were analyzed by Western blot assay. Data is presented as mean 6 S.D. of
12 independent experiments. *, p,0.05; **, p,0.01 compared with mock or HIV-1 PV.
doi:10.1371/journal.pone.0018291.g003
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Bcl-2 family members tested, suggesting that down-regulated

TRAIL decoy receptors and c-FLIP expression facilitate TRAIL-

induced apoptosis in HIV-1 PV-infected MDM.

Combination of rsTRAIL and AD5-10 induces a caspase-
dependent and -independent cell death pathway

Next, we investigated TRAIL or/and AD5-10-induced signal-

ing pathway in HIV-1 PV -infected MDM cells. HIV-1 PV-

infected MDM cells were treated with rsTRAIL and/or AD5-10

for the indicated time followed by Western blot assay with the

specific antibodies against caspase-8, -9, -3 to examine caspase

activation. As shown in Fig. 4A–C, rsTRAIL or/and AD5-10

treatment resulted in the cleavage of caspase-8, -9, and -3,

indicating that rsTRAIL or/and AD5-10 trigger the caspase

activation in HIV-1 PV-infected MDM cells, but not in the mock-

infected cells. However, while a pan-caspase inhibitor, Z-VAD

fmk, was used to block caspase-dependent cell death in the cells,

TRAIL-induced apoptosis was well blocked, but the cell death

induced by AD5-10 as well as the combination of AD5-10 plus

rsTRAIL was only partially inhibited in the cells (Fig. 4D-F),

suggesting that the combination of rsTRAIL and AD5-10 induces

cell death in the HIV-1 PV-infected MDM cells through a

caspase-dependent and -independent signaling pathway.

ROS generation and JNK phosphorylation are involved in
the cell death of HIV-1 PV-infected MDM cells

To explore the signaling molecules in the combination of

rsTRAIL and AD5-10 induced caspase-independent pathway, we

further investigated whether ROS generation was related to the

cell death of HIV-1 PV-infected MDM cells. As shown in Fig. 5A,

AD5-10, but not rsTRAIL, induced ROS generation in the HIV-1

PV-infected MDM cells. Since ROS could contribute to the

phosphorylation of JNK, which is an important event in the cell

death signaling, we further tested phosphorylation of JNK in HIV-

1 PV-infected MDM cells treated with rsTRAIL or/and AD5-10.

As shown in Fig. 5B, Western blot assay demonstrated that JNK

phosphorylation occurred affirmatively. These data indicate that

ROS generation and JNK phosphorylation are involved in the cell

death of the HIV-1 PV-infected MDM cells.

Discussion

In the present study, we have established HIV-1 PV-infected

MDM as a model system to study the effect of HIV-1 infection on

the cell apoptosis and signaling pathway. We firstly demonstrated

that HIV-1-infected MDM cells were more sensitive to the

recombinant soluble TRAIL (rsTRAIL) and the agonistic anti-

Figure 4. RsTRAIL and AD5-10 induced caspase-dependent and -independent cell death. A-C, Western blot analysis of caspase activation.
HIV-1 PV infected MDM cells were treated with either 250 ng/ml rsTRAIL (A) or 250 ng/ml AD5-10 (B) or 250 ng/ml rsTRAIL plus 250 ng/ml AD5-10 (C)
for 2, 4, 6 and 8 hr. The cells were lysed and the lysates were subjected to SDS-PAGE and immunoblotting with anti-caspase -3, -8, or -9 antibody. D–
E, cell viability determined by MTS. HIV-1 PV infected MDM were treated with 500 ng/ml rsTRAIL (D) or 500 ng/ml AD5-10 (E) or 250 ng/ml rsTRAIL
plus 250 ng/ml AD5-10 (F) in the absence or presence of 50 mM of Z-VAD-fmk for 12 hr. Values are mean of three independent experiments with
error bar representing standard deviation of the mean. *, p,0.05; **, p,0.01; ***, p,0.001; ns, no significant.
doi:10.1371/journal.pone.0018291.g004
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DR5 monoclonal antibody AD5-10 induced cell death. The

receptor expression study showed that TRAIL decoy receptors

DcR1 and DcR2 were down-regulated, but DR4 and DR5

expression remained no changes, suggesting that DcR1 and DcR2

expression disregulation might contribute to the susceptibility of

HIV-1 infected MDM cells to TRAIL and/or AD5-10 induced

cell death. To confirm this hypothesis, we further demonstrated

that lentivirus mediated over-expression of dominant negative

DR5 (DR5-delta) well rescued rsTRAIL- or AD5-10-induced cell

death in HIV-1 PV-infected MDM cells, but DcR1 or DcR2 over-

expression only rescued rsTRAIL- but not AD5-10-induced cell

death since AD5-10 is specifically to DR5 but not to DcR1 or

DcR2 [23]. However, this finding does not consist with the report

by Lum, et al. that HIV infection up-regulates DR5, but neither

DcR1 nor DcR2 expression in MDM cells of HIV positive subjects

[11]. As a matter of fact, dissymmetry expression of TRAIL

receptors are often observed in virus-infected cells as well as

various tumor cells, which are believed to account for the

susceptibility or resistance to TRAIL-induced apoptosis

[31,32,33]. Down-regulation of the DcRs in cancer renders

cancer cells more susceptible to TRAIL-induced apoptosis, which

could be counted as a protective response against tumor formation

or progression. It is reported that hypermethylation of the

promoters of DcR1 and DcR2 is important in the down-regulation

of DcR1 and DcR2 expression in some tumor types [34].

Methylation of DcR1 and DcR2 gene may attribute to a

secondary effect of the methylation of DR4 and DR5, meanwhile,

methylation of the two decoy receptors may occurred indepen-

dently of each other and of DR4 and DR5. Down-regulation of

DcR1 and DcR2 in HIV-1 infected MDM may contribute to

epigenetic regulation in a DR4 and DR5-independent manner.

Consequently, down-regulation of the decoy receptors weakens

the cell competing capacity with TRAIL and strengthens the cell

binding activity to TRAIL through DR5, therefore, results in more

cell death in the HIV-1 PV-infected MDM cells.

However, it is known that expression levels of TRAIL receptors

do not always correlate with the cell sensitivity to TRAIL

cytotoxicity. A number of intracellular molecules play important

roles in the regulation of apoptotic signaling, such as c-FLIP

[16,35,36], IAPs (inhibitor of apoptosis proteins) [37] and Bcl-2

family proteins [38]. Examination by Western blotting showed that

c-FLIP expression was down-regulated, but without notable

exchanges in Bcl-2 family member expression in the HIV-1

pseudotyped virus-infected MDM cells compared with mock

control. It was reported in the literature that Bcl-2 expression

decreased transiently and followed by restoration to the initial level

in lymphoblastoid T (J.Jhan) or monocytic (U937) cells [39]. This

discrimination may caused by different cells used in the experi-

ments. c-FLIP is a catalytically inactive caspase-8/10 homologue,

which interferes with DISC (death inducing signal complex)

formation in the extrinsic cell death pathway, therefore, serves as

a key inhibitor of death receptor-induced apoptosis. In addition, c-

FLIP could activate NF-kB by recruiting tumor necrosis factor

receptor-associated factor 2 (TRAF-2) and receptor-interacting

protein-1 (RIP1) into DISC, therefore, promote cell survival and

proliferation [40,41]. However, at low concentration, c-FLIP

heterodimerizes with procaspase-8 and induces caspase-8 autopro-

cessing as well as apoptosis [42]. In the present study we observed

that down regulation of c-FLIP expression was occurred in the HIV-

1-infected MDM cells, but no changes in Bcl-2 family proteins,

indicating that down regulation of c-FLIP expression facilitates

death receptor-mediated cell death.

Western blotting analysis of caspase activation in the virus-

infected MDM cells showed that TRAIL or/and AD5-10

treatment activated caspase-8, -9, and -3 in HIV-1 infected

MDM cells, indicating that TRAIL or/and AD5-10 trigger the

caspase cascade. While a pan-caspase inhibitor, Z-VAD fmk, was

used, TRAIL-induced apoptosis was well blocked, but the cell

death induced by AD5-10 as well as the combination of AD5-10

plus rsTRAIL was only partially inhibited, indicating that caspase-

dependent apoptosis is activated by TRAIL- or TRAIL plus AD5-

10-induced cell death, but AD5-10 itself could also induce caspase-

independent cell death in the HIV-1 PV-infected MDM cells.

Finally, we demonstrated that ROS generation and JNK

phosphorylation were involved in TRAIL-mediated apoptosis of

HIV-1-infected MDM cells. ROS is known to be involved in the

early stage of apoptosis, and induces the depolarization of the

mitochondrial membrane [43]. We showed that cross link of DR5

by the anti-DR5 mAb, AD5-10, induced production of ROS and

subsequent apoptosis in HIV-1 infected MDM. Meanwhile, JNK

phosphorylation was detected along with ROS generation. It is

known that JNK participates in the apoptotic signaling pathway

initiated by stress or toxic stimuli [44]. These data suggest that

ROS generation in abundance in HIV-1 infected MDM upon

AD5-10 stimulation may further activate ROS-JNK-NF-kB

pathway and induces cell death by apoptosis as we have reported

in tumor cell model [45].

In summary, we have demonstrated that HIV infection

facilitates TRAIL-induced cell death in monocyte-derived macro-

phage by down regulating the expression of TRAIL decoy

receptors and intracellular c-FLIP. Meanwhile, the agonistic

anti-DR5 antibody, AD5-10, induces apoptosis synergistically

with TRAIL in HIV-1-infected cells. ROS generation and JNK

phosphorylation are involved in this process. These findings

potentiate clinical usage of the combination of TRAIL and AD5-

10 for eradication of HIV-infected macrophage as well as AIDS.
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Figure 5. ROS generation and JNK phosphorylation involves in AD5-10 induced cell death. A, HIV-1 PV- or mock-infected MDM cells were
treated with 200 ng/ml rsTRAIL (left) or 200 ng/ml AD5-10 (middle) or 200 ng/ml rsTRAIL plus 200 ng/ml AD5-10 (right) for 15, 30, 60, 120, 240 min.
ROS generation was examined by loading with DCFH and followed by flow cytometry. B, JNK phosphorylation was examined with indicated specific
antibody (1:1000 dilution, phosphor-SAPK/JNK(Thr183/Tyr185) and JNK antibody) in HIV-1 PV-infected MDM cells (DPI = 7) treated with 500 ng/ml
rsTRAIL (bottom) or 500 ng/ml AD5-10 (middle) or 250 ng/ml rsTRAIL plus 250 ng/ml (top) for indicated time. Data was obtained from three
independent assays and a typical experiment is presented.
doi:10.1371/journal.pone.0018291.g005
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