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Abstract

Background: Advanced technical systems and analytic methods promise to provide policy makers with information to help
them recognize the consequences of alternative courses of action during pandemics. Evaluations still show that response
programs are insufficiently supported by information systems. This paper sets out to derive a protocol for implementation
of integrated information infrastructures supporting regional and local pandemic response programs at the stage(s) when
the outbreak no longer can be contained at its source.

Methods: Nominal group methods for reaching consensus on complex problems were used to transform requirements data
obtained from international experts into an implementation protocol. The analysis was performed in a cyclical process in
which the experts first individually provided input to working documents and then discussed them in conferences calls.
Argument-based representation in design patterns was used to define the protocol at technical, system, and pandemic
evidence levels.

Results: The Protocol for a Standardized information infrastructure for Pandemic and Emerging infectious disease Response
(PROSPER) outlines the implementation of information infrastructure aligned with pandemic response programs. The
protocol covers analyses of the community at risk, the response processes, and response impacts. For each of these, the
protocol outlines the implementation of a supporting information infrastructure in hierarchical patterns ranging from
technical components and system functions to pandemic evidence production.

Conclusions: The PROSPER protocol provides guidelines for implementation of an information infrastructure for pandemic
response programs both in settings where sophisticated health information systems already are used and in developing
communities where there is limited access to financial and technical resources. The protocol is based on a generic health
service model and its functions are adjusted for community-level analyses of outbreak detection and progress, and response
program effectiveness. Scientifically grounded reporting principles need to be established for interpretation of information
derived from outbreak detection algorithms and predictive modeling.
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Introduction

A recent evaluation of national pandemic response polices

found that the regional and local information infrastructures for

collecting and processing pandemic data are not aligned with

response program processes and structures [1]. The infrastructures

needed differ in several aspects from traditional health information

systems because they are to be used in situations when outbreaks

threaten to overwhelm first-order information resources nationally

and locally on hand for infectious disease control [2,3]. This

occurred in 2009 with the emergence of a novel A (H1N1)

influenza virus (the ‘swine flu’) in Mexico. If the resources in the

information infrastructure used in such exceptional situations are

poorly validated and coordinated, then the information that is

produced may delay or even mislead response program imple-

mentation [4,5]. For instance, when the 2009 influenza outbreak

had progressed beyond pandemic levels 2 and 3, public health

officials in a rapidly increasing number of nations had to make

decisions about appropriate response actions. In the absence of a

vaccine, the closure of schools with infected pupils was used by

some countries, but not others. In the USA, the CDC initially

supported school closures, while the Public Health Agency of

Canada did not recommend this action. The UK Health

Protection Agency took the position that ‘‘consideration should
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be given to temporarily closing a school’’ [6]. In Sweden, a

decision was made to immunize the entire population. Similar

decisions were made in the UK, France, Ireland, Finland and

Greece, while most other European countries chose other

vaccination strategies. Hence, even though their action thresholds

may have differed for various reasons, it is unmistakable that

policy-makers in comparable countries arrived at different

decisions concerning pandemic response strategies. In other

words, despite the availability of advanced information systems

for early laboratory diagnosis and communication of virological

data during the initial phases of the outbreak, the planning of

further action did not appear to have been derived from shared

evidence. One reason for this may be that there was no integrated

information infrastructure in place that adequately could support

coordinated planning of regional and local pandemic response

during the later stages of the outbreak.

This paper sets out to derive a protocol that can be used to

implement an information infrastructure supporting pandemic

response programs at the stages when containment of the outbreak

at its source is no longer possible, i.e. for the support of national

and local responses in the organizational context(s) where the

corresponding public health agencies operate [7]. At these stages

(at pandemic levels 4 to 6), the microbiological characteristics of

the infectious agent can be expected to have been established [8].

Methods

Data collection
The nominal group technique [9] was used to collect and

analyze requirements data. This technique is a semi-formal

decision-making method for groups. Every member of the

group gives their view of the solution, with a short explanation.

Then, duplicate solutions are eliminated from the list of all

solutions, and the members proceed to rank the solutions. A

facilitator encourages the sharing and discussion of reasons for

the choices made by each group member, thereby identifying

common ground, and a plurality of ideas and approaches. This

diversity may allow the creation of a hybrid idea, combining

parts of two or more ideas. In the basic method, the numbers

each solution receives are totaled, and the solution with the

most favored ranking is selected as the final decision. In this

study, a review of the literature on pandemic information

management practices was first performed. Two expert panels

were thereafter formed to outline requirements on data sources

and analytic functions for an information infrastructure for

pandemic response programs. The nominal group technique

was used to identify strengths versus areas in need of

development, as well as used as a decision-making voting

alternative. Options were not always numerically ranked, but

also evaluated more subjectively. Individual experts reviewed a

working requirements document followed by telephone confer-

ence discussions. Requirements on the data sources were

defined by a panel consisting of scientists and practitioners

(n = 8) with backgrounds in medicine, epidemiology, medical

anthropology, statistics, computer science, health informatics,

and socio-economic geography. The panel examining require-

ments on analytic functions consisted of scientists and

practitioners (n = 5) with backgrounds in medicine, statistics,

computer science, health informatics and cognitive science. The

experts provided a first round of comments to a requirements

process coordinator, who assembled these into requirements

specification documents. The group analyzing the data sources

produced an overview of the status of the present infrastructure

available for national and local response programs. They

thereafter concentrated on practical issues related to pandemic

planning. For example, the group reviewed outbreak-related

data and their sources, and the literature concerning the social

behavior during an ongoing pandemic. The functions group

identified requirements on outbreak detection and forecasting

methods. When subsequent turns did not return significant

changes in the documents, the requirement specifications were

considered to be established.

Data analysis
A formal argument-based method for reaching consensus on

complex problems [10,11] was used for analyzing requirements

data. Here, members of the two panels were merged into one

protocol specification group. The task communicated to the group

was to formulate a protocol design using the requirements, their

expertise, and the published literature. The experts first provided

their individual comments, which were collected by a design

process coordinator. Functional protocol solutions were formulat-

ed independently by experts who reviewed a document that

outlined design patterns describing the protocol. Inter-connected

design patterns were used because they can communicate the

functionality of a design in a way that is understandable to a

variety of non-expert stakeholders [12]. Each pattern language

represents a specific problem and describes a possible solution. In

the present analysis, the design patterns were represented in the

form Title, Problem-Requirements, Design, and Examples. The

Examples section provides illustrations of how a design can be

implemented in order to address a particular information problem

in pandemic response. Comments on subsequent versions of the

design patterns were circulated to the entire expert group, and a

consensus document was established describing a final set of design

patterns. In the third and final step, the design patterns were

summarized into a final protocol. After having formulated the

protocol, each expert panel member was asked to report possible

disagreements with the protocol (Text S1).

Results

Protocol requirements
The review of the literature on pandemic information

management practices showed that major present obstacles were

a shortage of reliable data on populations’ disease and suscepti-

bility status and a lack of validated outbreak detection and

forecasting methods (Text S2). The requirements on the data to be

handled in an information infrastructure supporting pandemic

response were subdivided into specifications of socio-immuno-

geographic data to be collected to describe communities, the

quality and timeliness of epidemiological outbreak data, and on

how data and assumptions about population behavior are

managed (Text S3). The most important requirement on analytic

functions to be supplied by the infrastructure was that the

functions could work in routine surveillance and monitoring of

intervention effectiveness in public health practice, and not just in

temporary trials of response program components (Text S4).

Protocol design
The Protocol for a Standardized information infrastructure for

Pandemic and Emerging infectious disease Response (PROSPER)

outlines an information infrastructure for pandemic response that

is aligned with regional and local response programs. The

infrastructure covers information resources for community sur-

veillance and initiation of response, iterative design of response

processes, and examination of outcomes and impacts. For each of

these areas, PROSPER describes a supporting information

Design of the PROSPER Protocol
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infrastructure in three hierarchically related levels, from technical

components and system functions to pandemic evidence compi-

lation (Figure 1). The technical components can be compiled using

conventional information system methods by regional and local

public health agencies or by other organizations tasked with

responding to a pandemic threat. An example of how an

information infrastructure based on PROSPER can support

planning, performance, and evaluation of local and regional

response during a pandemic outbreak is provided in Figure 2.

The system functions for capacity and needs analysis (CNA),

response design modeling (RDM), and outcome and impact

analysis (OIA) in PROSPER reflect the methods used to produce

pandemic evidence and the organization of infectious disease

response. The implementation of these functions is described at

the technical component level using examples.

Capacity and needs analysis
The CNA functions are supplied by computer hardware and

software for scenario management and data access for epidemi-

ological surveillance and outbreak detection. The Strengthening

the Reporting of Observational Studies in Epidemiology

(STROBE) recommendations [13] specifying what should be

included in accurate reports of observational studies are used to

organize the communication of results from the analyses at the

evidence level.

CNA1 Analysis scenario management
Problem-Requirements. A1 Socio-immuno-geographical

representation of communities. I2 Explicit fact and hypothesis

management.

Design. Spatially explicit representations of communities are

used to allow experiments with factual and synthetic populations.

This design solution allows different scenarios to be defined by

changing the socio-immuno-geographical starting conditions of

the analysis model. Basic model categories included in the

pandemic outbreak scenario define homes, transportation

systems, and other geographic conditions, e.g. location of

workplaces, schools, shopping malls, and facilities for sports and

entertainment events. Besides personal variables, such as

immunological status, the representations also include relational

variables, such as individual-mother, -partner, -child, and -co-

worker at workplace. These relational variables allow for modeling

and representing a substantial part of the social networks that

transmit infectious agents. In other words, socio-geographical

preprocessing of spatially explicit population data can be used to,

in advance, identify specific groups and populations that may

require more careful and intensified surveillance.

Examples. The scenario management can be based on a

ontology handling system [14] and computer-based models for

socio-immuno-geographical representation of populations [15].

Settings for increasingly detailed scenario models can be

Figure 1. The PROSPER protocol for implementation of a standardized information infrastructure for evidence-based pandemic
response. Cross-references are provided in the protocol to design patterns at evidence and functional levels.
doi:10.1371/journal.pone.0017941.g001
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developed, representing, e.g. local social interaction and

commuting patterns [16].

CNA2 Epidemiological surveillance and outbreak
detection

Problem-Requirements. A2 Control and visualization of

data quality and timeliness. D1 Access and adjustments to data.

D2 Integration of multiple context-specific detection algorithms.

Design. Epidemiological data from actual outbreaks are

collected and stored in networked databases and complemented

with artificially generated data. This integration of data supports both

detailed analyses of ongoing outbreaks and experiments on

hypothetical outbreaks in populations. The factual outbreak data

range from highly specific genomic and microbiological laboratory

data [17,18] to non-specific syndromic data, e.g. from telephone

health advice centres and Internet website logs. It is strongly

recommended that data sources are controlled by methods that allow

for systematic statistical follow-up of the data used. In particular, this

approach can address short-term trends in the pandemic progress

that are easily masked by errors in sampling or laboratory practices.

Statistical tools for trend analysis, such as semi-parametric regression

models [19], are used to identify causes of flaws in data collection

routines that can lead to erroneous interpretations. Interactive graphs

(http://www.ggobi.org) and motion chart (http://www.gapminder.

org) services available on the Internet are used for obtaining

overviews of large data sets. Studies have shown that

epidemiologists using human visual pattern-recognition capacities

can signal epidemiological alerts from ‘‘image walls’’ presenting local,

regional and/or national surveillance patterns even though the

patterns passed unnoticed through conventional systems [20]. The

design is based on outbreak detection algorithms that are context

sensitive. The performance and timeliness of spatial, temporal and

spatio-temporal algorithms can be connected to particular settings.

Global sensitivity and uncertainty analyses are supported in order to

take into account the features of separate sets of data sources,

outbreak detection algorithms, and the interaction between these in

an integrated system [21,22].

Examples. With the recent observation of new highly

pathogenic H5N1 and H7N7 strains, and the appearance of the

influenza pandemic caused by the H1N1 swine-like lineage,

collaborative efforts to share observations on the influenza virus in

both animals and humans has been established. Open access

genomic databases are available over the Internet, which facilitates

the identification of locally and regionally circulating viruses. The

OpenFlu database (OpenFluDB; http://openflu.vital-it.ch) [23]

contains genomic and protein sequences, as well as epidemiological

Figure 2. Display of the PROSPER protocol in relation to infectious disease response program implementation. During inter-pandemic
phases, Capacity and needs analysis (CNA) functions are used for examination and surveillance of the community. In support of early situated
preparedness, the impact from alternative response measures, such as social distancing, are already in this phase preliminarily estimated using
community data supplied by the CNA functions and forecasting methods available through Response design modeling (RDM) functions. When a
pandemic alert is issued by the WHO, the outbreak detection algorithms included in the CNA functions are calibrated with regard to the most recent
information about the infectious agent and local circumstances. During the early stages of a detected local outbreak, also the parameters used by the
RDM functions are adjusted as more information on transmission characteristics and genomic features of the agent becomes available. When policy-
makers prepare to decide about first local response measures, such as closing schools or issues antiviral prophylaxis schemes, results from the
progressing analyses of the local community are used and compared with recommendations from the WHO and other external sources. If an early
response measure is decided, it can be monitored through the RDM functions and data from the CNA functions. When the monitoring indicates that
the outbreak is decreasing in strength, the local policy-makers can use this information in lieu with reports of the global progress of the pandemic to
withdraw restricting measures, e.g. social distancing. Following the outbreak, the precision of the forecasts and effectiveness of the interventions can
be analyzed using the Outcome and impact assessment (OIA) functions.
doi:10.1371/journal.pone.0017941.g002
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data from more than 27,000 isolates. The isolate annotations

include virus type, host, geographical location and experimentally

tested antiviral resistance. Administrative healthcare databases [24]

can be used to assemble geographically explicit case data at multiple

levels. In addition to tabulations, these data can also be visualized

graphically and by using motion charts (http://www.crisim.org).

Influenza diagnoses recorded at primary care centers can hereby be

used to track the disease progress in the community, while data from

hospital wards and intensive care units can be used to establish the

proportion of severe cases in different population strata. Moreover,

telenursing services are in many countries supported by telehealth

Electronic Patient Records (tEPRs), where the reason for contact

and the residence of each caller is documented [25,26]. Databases

that collect data from regional tEPRs can be used for surveillance

and early detection of infectious disease outbreaks. Other sources of

syndromic data available in many communities include school

absence records and software monitoring visits at public health

websites. Outbreak detection can be performed in the

administrative healthcare database environment [24]. The

relevant algorithms can be integrated with the database

managements systems to facilitate ease of use. Detection methods

with specific characteristics advantageous for influenza outbreak

detection in such databases can be developed. Alarm levels can here

be set with regard to the sensitivity and specificity that is suitable for

the particular community context at hand.

Response design modeling
The RDM design patterns outline how the corresponding

functions are supplied by hardware and software for response process

analysis and knowledge-base maintenance. The Standards for

Quality Improvement Reporting Excellence (SQUIRE) guidelines

for reporting studies of quality improvement in health services [27]

are used to organize the results of these analyses at the evidence level.

RDM1 Iterative response process analyses
Problem-Requirements. A3 Explicit representation of

populations over time. D1 Access and adjustments to data. I2

Explicit fact and hypothesis management.
Design. Analyses of outbreak response program components

using simulated interventions and historical or virtual data are

employed until real-time surveillance data become available and

evaluations of factual interventions are feasible. The early disease

models used in the virtual analyses are derived from the literature,

e.g. with regard to incubation period and serial interval. Response

program components are specified as intervention models. Public

health analysts can prepare analyses of response processes by

configuring program components and specifying intervention

model parameters, e.g. the prophylactic performance of specific

antiviral drugs or drug combinations.
Examples. In the simulation environment, the software for

the management of the response program models and the software

for the execution of the analyses are preferably separated [28].

Such separation allows for flexible modeling of unexpected events

and circumstances, while maintaining the run-time performance of

simulation programs. Disease and intervention characteristics are

available from profiles reported in the literature [29] and on the

Internet (https://www.epimodels.org/midas/modelProfilesFull.

do). These characteristics can be combined to obtain a typology

of basic models and baseline parameter settings.

RDM2 Maintenance of a knowledge base on
interventions

Problem-Requirements. D1 Access and adjustments to

data. I2 Explicit fact and hypothesis management.

Design. To support an iterative response program design,

each program configuration is stored together with the

corresponding simulation results in a program database. This

makes it possible to track and report algorithms and the

effectiveness of different response program components under

particular preconditions. For each simulation cycle, the models

used in program representation, parameter settings (literature-

derived and assumption-based), and data sources are documented

together with outcomes.

Examples. An ontology handling system can act both as a

model configuration manager and as a model archive.

Components of previously analyzed interventions can be stored

as library items. Separate interventions can be combined into

multi-component intervention programs, and their collective

effectiveness rapidly estimated by simulations. The assumptions

used for the analyses can be made explicit by an assumptions

tracing function for each specific class of analyses [30], and a

report function can be used to compile displays that specify the

assumptions underlying each evaluation result [31].

Outcome and impact analysis
The OIA section of the protocol provides an outline for analyses

of outbreak detection and intervention effectiveness. The

SQUIRE guidelines for reporting studies of quality improvement

in health services [27] are used when communicating results from

the analyses at the evidence level. The functions in this section are

based on computer hardware and software that normally not are

used by regional and local public health departments. However,

these resources can today be accessed or acquired without major

financial investments by utilizing open source software and short-

term rental of computing power via the Internet, e.g. through

Amazon’s Elastic Computing Cloud (EC2).

OIA1 Comparative analyses of outbreak detection
effectiveness

Problem-Requirements. D1 Access and adjustments to

data. D2 Integration of multiple context-specific detection

algorithms. I1 Comparative studies of intervention strategies. I2

Explicit fact and hypothesis management.

Design. Evaluations are focused on comparisons between

different outbreak detection methods and their components in

specified socio-geographical environmental settings and real-world

contexts.

Examples. Comparative assessments can be performed using

both databases containing data from historical and current

influenza outbreaks as well as from synthetic datasets. The

major part of the assessments can be performed in the

administrative healthcare database environment [24]. Detection

methods with specific characteristics advantageous for influenza

outbreak detection in such databases can thereby be developed.

Comparative analyses can be performed using the CUSUM

methods [32] and SatScan software [33] as references.

OIA2 Comparative analyses of response intervention
effectiveness

Problem-Requirements. D1 Access and adjustments to

data. I1 Comparative studies of intervention strategies. I2

Explicit fact and hypothesis management.

Design. Two types of analyses are supported: forecasting

comparisons of different intervention alternatives before or during

an outbreak, and comparisons between forecasted and actual

outcomes. Because forecasts are highly context-dependent, the

design focuses on analyses of intervention effectiveness.

Design of the PROSPER Protocol
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Comparative forecasts of intervention effectiveness are typically

based on differences in outcome as measured by, e.g. disease

reproduction rates, epidemic curves with daily new cases (attack

rates per geographic region), and burden of illness in different

vocational groups. Assumptions used are explicitly specified in the

definition of program components and disease models. For

example, if there is a lack of information on local school

structures, it is possible to document that the administrative

organization of local elementary schools used in a community

model is an assumption rather than a verified fact. In comparative

analyses performed after an outbreak, the forecasts are compared

with the observed outcomes in order to support organizational

learning. Cloud computing methods are used for demanding

computational tasks. In cloud computing, clients do not own the

computer hardware in question: The services are rented from a

third party Internet provider. This procedure reduces capital costs

because the health service provider only has to pay for the

resources consumed [34].

Examples. Comparative assessments can be performed using

both databases containing data from historical and current

influenza outbreaks as well as from synthetic datasets. For

computational efficiency, data and parameter settings from

scenario and surveillance modules can be transferred to separate

simulation software that runs the comparative analyses [28].

Cloud computing schemes can be used to allocate computationally

demanding tasks to computer networks available on the Internet.

The analysis software can also be adapted to produce

documentation of each step in the evaluation process [31]. Such

documentation makes traceable information available for post-

processing and quality control.

Discussion

The PROSPER protocol is to be used for implementation of

regional and local information infrastructures supporting response

to rapidly emerging infectious diseases. Both policy-makers and

public health specialists are exposed to conflicts that arise when

trying to create local information systems for pandemic response

within centralized health systems. While each of these groups has

relied on modern information technology during recent infectious

disease outbreaks, insufficient attention has been paid to that the

theoretical possibilities of this technology are limited by charac-

teristics of the health system of which the information system is but

a part [35]. Managers anticipate improved efficiency and rational

allocation of resources, but rational decision-making in pandemics

does not automatically emerge from stand-alone or asynchronous

decision support systems. While public health specialists seek more

effective and equitable response systems, the methodological

problems and the expense of many conventional epidemiological

approaches continue to limit the usefulness of pandemic

surveillance, program monitoring and evaluation. In order to

cover and coordinate the key processes in pandemic response, the

PROSPER protocol is matched to a generic model for health

service delivery and evaluation [36]. For the same reasons, the

functions in the infrastructure are adjusted for support of response

programs in practice settings, rather than short-term efficacy trials

of program components. However, it must be remembered that to

build a complete local response system appropriate for the

organizational context at hand, the PROSPER protocol has to

be complemented with methods for recruitment and coordination

of the human resources needed to carry out response actions [37].

Some issues identified in the requirements analysis are not

covered by the present version of PROSPER. For example, more

research is needed on how pandemic evidence is defined and

revised as new infectious diseases progress, and how organizational

and intellectual factors influence the uptake of evidence in

situations when the timeframe for taking preventive action is

short [38]. The implementation of evidence from individual

forecasts directly into public health response cycles is not desirable

[39,40]. Therefore, the methods used for synthesizing evidence

from predictive modeling will be made explicit in future versions of

PROSPER, including guidelines for reporting from different types

of modeling. Because of uncertainties associated with even the

most advanced current models, their outcomes should be

presented as informational resources for pandemic planning,

rather than as accurate predictions of intervention or outbreak

detection effectiveness [41]. Moreover, the rapid sequence of

events during the progress of the 2009 pandemic influenza

revealed a functional gap between present methods used for

outbreak detection and pandemic forecasting. A technology that

could fill this space is nowcasting, i.e. short-term predictions that

rely on straight-forward extrapolation of recent observations in

time. In meteorology, various nowcasting methods have been

developed over the past 20 years for analyses of primary remote

sensing data from radar, satellite and lightning [42]. Such

nowcasting methods have not yet been included at the functional

and technical systems levels in the protocol.

Using PROSPER, basic oversights can be avoided in settings

that lack experience of assembling information resources for

pandemic response. Interactive modeling packages of ‘what-if

analysis’ type, such as FluAid (http://www.cdc.gov/flu/tools/

fluaid/) and FluSurge (http://www.cdc.gov/flu/tools/flusurge/)

are presently used to inform regional and local policies concerning

hospital surge capacity [43] and loss of medical work time [44]

when planning pandemic responses. However, use of current

‘what-if’ modeling packages does seldom make it possible to satisfy

the conditions for evidence-based reporting according to the

STROBE guidelines for observational studies or the SQUIRE

guidelines for corresponding reporting from quality improvement

studies in health service settings. In evidence-based analysis, users

of predictive pandemic modeling should be able to critically

inspect all material(s) and model(s) embedded in the analytic

resources used. While the need for such transparency has been

recognized by the public health modeling community, few models

or information structures yet support this feature [45]. The

functions included in the PROSPER protocol are defined to be

adapted for transparency, e.g. by allowing users to inspect and

adjust baseline assumptions used in forecasting. With this

transparency, the analytic resources included in the information

infrastructure are less likely to be misleading for decision-making

at any level.

The PROSPER protocol describes the means required to

implement a pandemic information infrastructure regardless of

organizational, technical, and financial context. The protocol is

preferably applied during inter-pandemic phases, but can also be

put into operation by health service providers while an outbreak is

progressing through the initial phases, i.e. before it has reached

pandemic levels 4 to 6. It can be used to implement support for

pandemic response programs not only in environments where

sophisticated health information systems are already in place, but

also in developing settings with limited access to advanced

technology. The protocol allows existing and emerging informa-

tion technologies to be gradually integrated into the analyses of

new infectious diseases, thereby forming an adaptable information

infrastructure for synchronized public health response also at

national and local levels [46]. It is today mainly applicable to

pandemic response, but the protocol can easily be adapted to other

human and animal infectious diseases, including bioterrorism [47].

Design of the PROSPER Protocol

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e17941



In architecture and urban planning, consensus-based design

patterns have been extensively used to transfer design features

between different milieus [48]. We have tried to increase the

intelligibility of the consensus process in which the protocol was

developed by making the goals explicit and providing information

on disagreements within the expert group (Text S1) [49].

We have drafted the PROSPER protocol for implementation of

information infrastructures that support regional and local

pandemic response programs in different organizational settings.

To cover key structures and processes in local response, the

protocol is based on a generic health service model and its

functions are adjusted for community-level analyses of outbreak

progress and response program effectiveness. However, if the

implementations are to result in reliable and sustainable

information infrastructures, corresponding public health theories

and practices also have to be integrated. This integration in

particular must include the establishment of guidelines for

reporting scientific evidence derived from predictive modeling

related to infectious diseases.
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