
GGAGA-3). For Southern blot analysis, genomic DNA was
digested with the enzymesBamHI and SacI. Digested DNA was
subjected to electrophoresis in a 1.5% agarose gel and transferred
onto a nylon membrane. After UV cross-linking, DNA on the
membrane was hybridized to the NdeI/PmeI VAChT DNA
fragment (see Fig. 1 for the position of the probe fragment).
Detection was done using the Alkphos direct labelling and
detection system kit (GE Healthcare) according to the manufac-
turer’s instructions.

qPCR
For real-time quantitative PCR (qPCR), total RNA was extracted

using the Aurum Total RNA for fatty and fibrous tissue kit from
Biorad. Quantification and quality analysis of RNA in the extracted
samples was done by microfluidic analysis (Agilent Technologies’
Bioanalyzer). First-strand cDNA was synthesized using the iSCRIPT
cDNA SYNTHESIS KIT from Biorad. cDNA was subsequently
subjected to qPCR on a CFX-96 Real Time System (Bio-Rad) using
the iQ SYBR GREEN SUPERMIX (Bio-Rad). For each experi-

ment, a non-template reaction was used as a negative control. In
addition, the absence of DNA contaminants was assessed in reverse
transcription-negative samples and by melting-curve analysis.
Relative quantification of gene expression was done with theDDCT
method usingb-actin gene expression to normalize the data.

Western blotting
Immunoblot analysis was carried out as described previously

[12]. Antibodies used were anti-VAChT (rabbit polyclonal 1:2000,
Synaptic System, Germany), anti-CHT1 (rabbit polyclonal
1:1000, kindly provided by R. Jane Rylett, University of Western
Ontario, London, Canada), anti-CHAT (rabbit polyclonal 1:1000,
Chemicon) and anti-actin (Chemicon, CA). Images were acquired
using the FluorChem Q System from Alpha Innotech and
analysed using the AlphaVie software.

Immunofluorescence analysis of brain slices were performed as
described previously [12]. Images were acquired using an Axiovert
200 M using the ApoTome system or a LEICA SP5 confocal
microscope as previously described [17].

Figure 9. Habituation and anxiety are not changed in VAChT mutant mice. a) Habituation to open field during 3 consecutive days for WT,
VAChTFloxNeo/FloxNeoand VAChTFloxNeo/Delmice. Mice showed no impairment in habituation in the novel environment. Two-way repeated measures
ANOVA- main effect of genotype,F(2, 86)= 15.825,p, 0.001, dayF(2, 86)= 35.318,p, 0.001 and interaction genotype x dayF(4, 86)= 2.505,p, 0.05]. b)
Time spend in the centre during the 2 hour in the open field for WT, VAChTWT/Del, VAChTFloxNeo/FloxNeoand VAChTFloxNeo/Delmice. VAChTFloxNeo/del

mice spent significant more time in the center of the open field apparatus (Kruskal-Wallis test, H(3)= 11.537, p, 0.05; post-hoc Dunn’s method,
p, 0.05). c) Time spend in the open arm of elevated plus maze for WT, VAChTFloxNeo/FloxNeoand VAChTFloxNeo/Delmice was not significantly affected.
One Way Analysis of Variance F(2,58)= 1,603, NS). d) Number of entries in the open arm of elevated plus maze for WT, VAChTFloxNeo/FloxNeoand
VAChTFloxNeo/Delmice was not significantly affected. One Way Analysis of Variance (F(2,58)= 1,845, NS). (*), (**) and (***) indicate p, 0.05, p, 0.01 and
p, 0.001 respectively.
doi:10.1371/journal.pone.0017611.g009
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animal was considered to be completely within a section of the
maze when its center of gravity was in this section. The result was
expressed as the percentage of time spent in the open arm.

Statistical Analysis
Data were statistically analyzed by a two-tailed Student’st test

or by two-way or repeated measure ANOVA. If data were not
normal, we used the adequate non-parametric test. The specific
statistical analyses used are noted in the text and legends.

Supporting Information

Figure S1 Protein expression is changed in VAChT
mutant mice. a) Western blot analysis of VAChT in the striatum
of VAChTFloxNeo/FloxNeo mice compared to WT control and b)
quantification of protein levels. c) Western blot analysis of VAChT
in the striatum of VAChTFloxNeo/Del mice, VAChTWT/Del and
VAChTWT/WT . d) quantification of protein levels. Actin immuno-
reactivity was used to correct for protein loading between

experiments. Data are presented as a percentage of wild-type levels.
Graphs represent average of 4–6 different mice. (*) indicates
statistically different from WT/WT control (Student test, p, 0.05),
(**) indicates statistically different from VAChTWT/Del (Student test,
p, 0.01).
(TIF)
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Figure 11. Restoration of normal phenotype by removing of the Neo-cassette. a) Spontaneous horizontal activity during two hours in the
open field for VAChTFlox/Flox mice. The total locomotion is similar in both genotype (t(36)= 2 0.769 P = 0.447). b) Grip force for VAChTFlox/Flox mice.
(t(12)= 2 1.414 P = 0.183) c) Time spent in the open arm of elevated plus maze for VAChTFlox/Floxmice. No difference in anxiety level was observed
(t (20)= 2 0,670, P = 0,510). d) Number of entries in the open arm of elevated plus maze for WT and VAChTFlox/Flox mice. e) Spontaneous horizontal
activity during two hours in the open field for VAChTFlox/Floxmice. f) Habituation to open field during 3 consecutive days. The ANOVA reveal no effect
of genotype (F(1,44)= 0.475, P = 0.498), a significant effect of the factor day (F(2,44)= 16.733, P, 0.001) and no interaction genotype x day (F(2,44)= 0.364,
P = 0.697). Post-hoc showed difference between the Day1 and Day2, 3. (***) indicate p, 0.001.
doi:10.1371/journal.pone.0017611.g011
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