
Time since Introduction, Seed Mass, and Genome Size
Predict Successful Invaders among the Cultivated
Vascular Plants of Hawaii
John Paul Schmidt*, John M. Drake

Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America

Abstract

Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems
worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the
pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or
become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results
from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental
species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as
weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced .80 years ago, 253 (31%)
have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression
trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of
naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by
genus which, when data on residence time was removed, were able to predict all three groups with 76–82% accuracy. We
conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of
biological traits can be achieved with sufficient accuracy for policy and management purposes.
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Introduction

Extensive environmental and economic damage has resulted

from the introduction of invasive exotic plant species [1,2].

Understanding the process of invasion by exotic species is critical

to predicting and preventing the entry of new invasive plants. For

this reason, many comparative studies have attempted to predict

which species will become invasive, once introduced into a region,

from biological traits postulated to be correlated with invasiveness

[3,4]. However, generalization from comparative studies has been

hampered by data limitations and ecological complexities that

manifest as nonlinearities or interactions in data [5,6]. Generally,

studies with a regional scope, focusing on predicting classes of pest

species from the pool of naturalized alien species, have been more

successful than studies with universal application [7,8] (but see [9]).

Despite the importance of introduction as a rate-limiting step in the

invasion process [10,11], relatively few studies [12,13,14] have

included data on the less well-documented, though larger, pool of

species which have been introduced and cultivated, but have not

naturalized. Even fewer studies [12,15] have controlled for time

between the introduction of a species and naturalization and/or

multiplication to pest densities – leaving untested the possibility that

many species which are not currently established or invasive may

actually naturalize or become pests given sufficient time.

In this study, we investigate the importance of time since

introduction and putative biological traits that correlate with a

propensity toward naturalization and invasiveness in 7,866 species

cultivated on the islands of Hawaii since 1840. Because several

studies had indicated a relationship between invasiveness in plants

and seed mass [16,17,18] and chromosome number or ploidy

[19,20,21], we compiled, from large online databases, values for

both traits as predictor data. To test whether values for these traits

relative to closely related species might also be predictive, we

calculated genus-standardized values for them where possible. For

each class (naturalized species = 420, weeds = 141, noxious

species = 39), we then used boosted regression trees [22,23], a

machine learning approach, to 1) quantify the relationship

between naturalized, weed or noxious status and minimum years

since introduction, and 2) test the prediction that seed mass and

genome size alone may be sufficient to classify naturalized and pest

species from among introductions to Hawaii with and without

controlling for minimum years since introduction.

Materials and Methods

Data
The Annotated Checklist of Cultivated Plants of Hawai’i (http://

www2 bishopmuseum org/HBS/botany/cultivatedplants/) lists

7,866 cultivated species grown for ornamental and landscape

purposes by home gardeners and labels 420 species as naturalized.

We combined these data with information on pest species status

for Hawaii from the Plants National Database (http://plants.usda.
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gov/, maintained by the USDA Natural Resources Conservation

Service). Noxious species are listed as such by the state of Hawaii,

and weeds are designated by the Hawaiian Ecosystems at Risk

Project (http://www.hear.org/). Naturalized, weed, and noxious

species form nested subsets. While we recognize that these

categories combine species which are ecologically disparate, and,

therefore, may not closely correspond to the biological groupings

recommended by some authorities [24], they are classes which

capture degree of current or emerging pest status from the

viewpoint of natural resource managers, independent of judgments

by us.

Within the Annotated Checklist, the year first collected in

Hawaii is recorded for 3,437 (44%) species. Twenty-two species

listed as Polynesian introductions were assigned a date coincident

with the oldest records (1840). We assume that date of first

collection approximates date of introduction rather than date of

initial spread. Thus, we subtracted year of first collection from

1999, the latest date in the checklist, to derive a value for

minimum years since introduction (,10–,150 years) to Hawaii.

We compiled data on seed/spore mass and chromosome number

both of which are available from large on-line databases. Values

for average seed/spore mass were obtained from the Kew Gardens

Seed Information Database (http://www.kew.org/data/sid) for 1,888

species. Values for highest reported chromosome number for each

species were obtained from the Missouri Botanical Gardens Index to

Plant Chromosome Numbers (http://mobot.mobot.org/W3T/Search/

ipcn.html) for 2,221 species. As a means of quantifying whether

species were typical or occupiedq extremes within a genus, we

calculated a standardized value ~xxs~ xs{�xxg

� ��
sg for highest

chromosome number and seed mass where xs is the measured trait

value for species s, �xxg is the mean of all values available from either

online database for the genus s, and sg is the genus standard

deviation for 1,992 species belonging to a genus where data existed

for more than one species. By dividing by the standard deviation,

standardization results in a scale-invariant value. We included

both raw and standardized values for both seed mass and highest

chromosome number in explanatory models. Finally, to control for

differences between major groups of vascular plants, we included

the categorical variables gymnosperm, fern, and angiosperm as

predictors. Data are provided in Table S1.

Statistical analyses
We used machine learning approaches, specifically boosted

regression tree analysis, to develop classification models for each

class of invasive plants. Machine learning avoids starting with a

data model, instead using an algorithm to learn the relationship

between response and predictors [25]. Boosted regression trees

which differ from traditional regression methods that produce a

single ‘‘best’’ model or tree, relying, instead, on boosting, a

technique that combines large numbers of relatively simple models

adaptively to optimize prediction [22,23,26]. Boosted regression

trees have important advantages for improving the analysis of

large and complex data sets with many independent variables.

Like regularized regression, boosted regression trees provides a

robust alternative to traditional approaches such as stepwise

variable selection. There is no need for prior data transformation

or elimination of outliers. Complex nonlinear relationships can be

fit, and interactions between predictors handled automatically. In

addition, predictive performance in boosted regression trees is

superior to most traditional modeling methods, and despite the

complexity of boosted regression trees models, they can be

summarized to provide mechanistic insights [22,23]. All results

reported here were obtained using the gbm package in R [27]

which has the additional advantages of handling missing data and

of allowing weighting of data.

Model tuning and selection
Because we wished to estimate the expected performance of the

model for species that were not used for fitting and to avoid the

unrealistically low error rates returned by in-sample comparisons,

we randomly divided the data, stratifying by class, into training

(75%), and test (25%) sets (22,23). Since the response variable in

each model was binary, models were fit using a Bernoulli

distribution and logit link. To maximize performance, samples

from the positive (minority) class were weighted to compensate for

data imbalances, and model parameters were tuned in ten-fold

cross-validation such that the minimum number of trees exceeded

1,000 [22,23]. During fitting, relative importance of predictor

variables was calculated as the number of times each variable was

selected for splitting, weighted by the squared improvement to the

model as a result of each split, averaged over all trees, and rescaled

to sum to 100 [28]. Variables with low importance (,2%) were

sequentially eliminated if model performance was not reduced.

The final model was then used to predict the final 25% holdout

test set, providing the performance estimates we report.

Because using the same data for model testing and validation

leads to overfitting and deflates the estimated error rate, we used

10-fold cross-validation on a randomly selected 75% training

sample for model training. Following model estimation, we used

receiver-operator curves (ROC), calculated on the holdout test set,

to assess model performance. ROC curves plot the proportion of

true positives against the proportion of false positives across the

complete range of possible cutoffs. We compared models

according to the area under the under the ROC curve (AUC).

AUC is a value between 0.5 and 1 which summarizes the

probability that a randomly chosen positive case (invasive) has a

higher predicted probability than a randomly chosen negative

(non-invasive) case. The closer AUC is to 1 the better a model is at

discriminating pest from non-pest species.

Results

The best models predicting naturalization and weed or noxious

status relied on three variables: time since introduction, seed mass

and highest chromosome number standardized by genus

(HCNSG). With these models, we were able to predict the

likelihood that a species had naturalized, had been designated a

weed, or had been designated noxious with AUC = 0.88–0.92.

Additional predictors (seed mass standardized by genus and

highest chromosome number) did not improve model perfor-

mance. Nor was prediction improved by distinguishing ferns and

gymnosperms from angiosperms in the models. The level of

prediction achieved using just two biological traits was 0.79 for

naturalized, 0.75 for weeds, and 0.82 for noxious.

The relationship between years-since-introduction and natural-

ized, weed, or noxious status is described by a quasi-logistic curve

with a midpoint around 65 years (Fig. 1). Of 815 species

introduced .80 years ago (the earliest period for which we have

a sizeable sample), 253 (31%) have naturalized, 90 (11%) are

weeds, and 22 (3%) are classified as noxious versus 122 (4.4%), 42

(1.5%), and 13 (0.5%) for those introduced ,80 years ago. The

proportion of species introduced .80 years ago which have

naturalized or become pests may represent the leveling off point in

the invasion process for Hawaii (assuming there is no relationship

between date of introduction and the invisibility of the species

introduced), and thus offer the best estimate of base rates of

invasion for the system. The probability that a species naturalizes

Time, Seed Mass, Genome Predict Invaders, Hawaii
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or becomes a pest declines with seed mass (Fig. 1). The smallest

seeds or spores (0.001 mg) show the highest probabilities of

naturalizing or becoming weeds. Very few naturalized, weed, or

noxious species exceed 2.5 g, and few noxious species exceed 2 g

although noxious species show a peak just below this threshold.

The probability of naturalization is highest for species with

average or below average chromosome numbers (relative to

congeners; Fig. 1). Weeds show a similar, though bimodal,

relationship. However, noxious species exhibit a strikingly

divergent pattern: species average or well above average in

chromosome number are much more likely to become noxious

than species below average.

When models were restricted to a single variable, prediction

ranged from 68–82%. Prediction as a function of years-since-

introduction was highest for naturalized species (AUC = 0.82),

lower for weeds (AUC = 0.80), and lowest for noxious species

(AUC = 0.76). HCNSG was the single best predictor of noxious

status (AUC = 0.80), but was the worst predictor of naturalized

and weed species (AUC = 0.69, AUC = 0.68). Seed mass was

similar in predictive performance (AUC = 0.71–0.74) for all three

classes. Prediction as a function of biological variables (seed mass

and HCNSG) was greater than prediction as a function of years

since introduction for noxious classes (AUC = 0.82 vs. AUC =

0.76), but not for naturalization or weeds (AUC = 0.76 vs. AUC

= 0.82, AUC = 0.75 vs. AUC = 0.80) (Table 1, Fig. 1).

Scatterplots of the relationship between the three covariates,

log(years) since introduction, ln(seed mass), and HCNSG reveal

little correlation between them (Figure S1). Given a lack of

covariance between explanatory variables, two-way (HCNSG x

ln(seed mass), etc.) marginal plots (improvements of the GBM

model as a function of a single predictor [29]) of the covariates

from the full models suggest a set of interactions between

HCSNSG and ln(seed mass) and between log(years) and both

HCNSG and ln(seed mass) in the weed and noxious models

(Figure S2). Interestingly, whereas seed mass and relative

chromosome number appear to interact such that small-seeded

species (,1.5 g) with low relative chromosome numbers (value,0)

are much more likely to be naturalized or weeds than species with

large seeds (.1.5 g) and large relative chromosome numbers

(value .0), the interaction is altered for the noxious model such

that small-seeded species with large relative chromosome numbers

are most likely to be noxious. This pattern is similar in the

relationship between time since introduction and HCNSG.

Species with high relative chromosome numbers and residence

times under 50–80 years are least likely to be weeds, whereas

species with similar residence times and low relative chromosome

numbers are least likely to be noxious. Finally, small-seeded species

(,0.5 g) introduced . 50–80 years prior are much more likely to

be either weeds or noxious than large-seeded species introduced

more recently.

Discussion

Despite the socially determined nature of weed and noxious

categories, a very low proportion of naturalized, weed or noxious

Figure 1. Plots showing the improvement of GBM models as a
function of a single predictor [29]. The effect of minimum years
since introduction, ln(seed mass), and highest chromosome number
standardized by genus (HCNSG) on the likelihood of naturalization,
weed status, and noxious status, are overlaid on a frequency histogram
(left y-axis) of each predictor in the complete data set. Functional values
(log odds ratio of naturalized, weed, noxious probability, right y-axis)
were standardized by shifting the lowest value to 0.
doi:10.1371/journal.pone.0017391.g001
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species in the data set, and a large proportion of missing data we

were able to predict whether species introduced to Hawaii did or

did not become naturalized, weedy or noxious with close to 90%

predictive performance. Although clearly facilitated by focusing on

ornamental plants within a single geographic region, a striking

result was the level of prediction (naturalized = 0.79, weeds =

0.75, and noxious = 0.82) achieved using just two biological traits.

Other screening tools – such as those that have been developed for

Australia [30], modified for Hawaii [31], and tested successfully in

a variety of regions [32] – have been shown to have even higher

accuracies. For example, predictive performance (AUC) of .0.90

was achieved for Hawaii and Pacific Islands. Yet, such high levels

of prediction required the inclusion of native range size and/or a

binary weediness (weedy elsewhere) score [31], in addition to other

traits and factors.

Seed mass and HCNSG appear to be highly informative

characteristics. Naturalization in plants has been positively related

to wind dispersal and negatively related to seed mass [3,16,17].

Seed mass may serve as a surrogate for a number of traits

important to the population biology of species, such as dispersal

ability [33], persistence in the soil [34], time to first reproduction,

plant life span and reproductive lifespan [35], seedling survival

[36], and number of seeds produced annually per plant [16,35].

Multiple ploidy levels per species [37], hybridization and

polyploidy [17,38,39,40,41], and DNA content [20,42] have all

been linked to invasiveness in previous studies. However, the

relationship appears to be complicated in that weeds have been

reported to have smaller DNA C-values than other species yet also

more likely to be polyploid [42]. HCNSG, by quantifying relative

genome size, may be particularly useful for distinguishing weeds

(often associated with smaller genome sizes, small seeds, and rapid

development times [42]) from more noxious species, frequently

polyploid hybrids with large genomes relative to congeners

[19,21].

Species with seeds or spores below a threshold and with either

large or small genomes (relative to congeners) are much more

likely to establish and invade once introduced. While seed mass

and highest chromosome number (rather than average or typical

value for a species) do not appear to be correlated in our data,

evidence exists [43] for a complex relationship between genome

size and seed mass. In angiosperms, genome size may set a

minimum seed mass which increases with increasing genome size,

but the maximum seed mass for any given genome size may be

determined by other factors [43]. Our results suggest that high

chromosome number relative to congeners presumably via recent

polyploid events and seeds small enough to facilitate dispersal by

wind and vertebrates (,,1.5 g) increases the likelihood that an

introduced species becomes a more serious, or noxious, invader.

As an example, Solidago gigantea occurs as a diploid, tetraploid, and

hexaploid in its native North American range, but is known

exclusively as a vigorously rhizomatous tetraploid in its introduced,

European, range - supporting the notion that formation of

polyploid hybrids may be a key factor promoting colonization

and spread of plant introductions [41]. However, in apparent

contradiction to the foregoing example is the pattern presented by

Solidago canadensis which also occurs as a diploid, tetraploid, and

hexaploid in its native North American range, but is known as a

diploid in its invasive range [44]. Nonetheless, the predictor

HCNSG would work equally well in either case given that both

species occur as hexaploids, and the ability to form polyploids may

represent a kind of phenotypic plasticity or genetic archictecture

promoting invasion success within species or genera.

In addition, we found that prediction as a function of seed mass

and HCNSG was greater than prediction as a function of years

since introduction for noxious classes, but not for naturalization or

weeds. We infer from these results that, while colonization and

invasion success is a function of both time and traits conferring the

ability to disperse and establish, often in disturbed environments,

many species will naturalize or become weeds given enough time,

the few species classed as noxious are best predicted by key

biological traits (Fig. 2) rather than time since introduction.

Moreover, minimum years since introduction was most important

in predicting naturalization, but decreased in importance as a

predictor of weeds, and was least important as a predictor of

noxious species. Together these findings may serve as indirect

evidence that pests or serious pests naturalize more quickly - a

hypothesis supported by at least one other study [45] but which we

were not able to test directly. Finally, we found 1) that weeds, and

to a lesser extent, naturalized species, are likely to exhibit values at

or below the mean for highest chromosome number relative to

congeners, whereas noxious species are likely to be significantly

above the mean; and 2) small-seeded species naturalize, and

become recognized as pests at a higher rate than larger-seeded

species with a threshold at ,2.5 g. Thus further suggesting that

differences between weeds and more serious pests may be related

to genome size and phenomena such as hybridization and

polyploidy.

Time lags can be distinguished as either the delay 1) between

introduction to an area and first spread, or 2) between initial

spread and significantly higher population growth, and may result

from 3) both [12]. Our estimate of 80 years for the lag time

between first introduction and naturalization - time lag type 1 - is

low relative to estimates of well over 100 years for Brandenburg,

Germany [12] and South Australia [45], yet similar to an estimate

for New Zealand [46] where 65 years was the mean residence time

for species which were established and spreading. The frequency

histogram (Fig. 2) of minimum time since introduction appears

bimodal which may be an artifact arising from variability in

collecting intensity or represent distinct peaks in the rate of

introduction of new plants - over time. If the former is the case, the

quasi-logistic relationship between minimum time since introduc-

tion and naturalized, weed, or noxious status we report (Fig. 2)

with midpoint (mean) at ,80 years may underestimate lag times.

Contrariwise, minimum time since introduction estimates may be

too high for species introduced earliest. For those species, the data

is right-censored since we have no indication when they were first

classed as naturalized, weeds, or noxious. However, we can

establish that plants introduced .80 years ago are roughly seven

times as likely to be naturalized or pests, implying that many

Table 1. Model performance measured by area under the
ROC curve (AUC) values for models of the invader classes as a
function of key predictors.

model model performance (AUC) num. species

naturalized weed noxious

full model 0.92 0.91 0.88 4861

years since introduction 0.82 0.80 0.76 3460

seed mass + HCNSG 0.76 0.75 0.82 3180*
(864)

HCNSG 0.69 0.68 0.80 2009

seed mass 0.71 0.71 0.74 2077

*species for which data contains values for either term, number of species with
values for both in parentheses.
doi:10.1371/journal.pone.0017391.t001
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current introductions may eventually naturalize and become pests

if base rates can be assumed to be similar for species introduced in

different time periods.

Recognizing that species introduced to Hawaii are clearly not a

random sample of the global flora, but rather species easily

brought into cultivation and expected by horticulturalists to thrive

in Hawaii, we emphasize the high level of performance in

predicting naturalized, weed, and noxious species as a function of

a small set of biological traits. We conclude that the propensity for

plants to achieve pest densities appears strongly related to seed

mass and HCNSG such that identification of potential weeds and,

especially, noxious plants based on these and additional biological

traits is possible. Interestingly, in our data set weeds generally have

lower chromosome numbers relative to congeners, while the more

noxious subset of weeds have much higher relative chromosome

numbers. While predictive models are greatly improved by the

inclusion of data on time since introduction [15], our results

demonstrate that models based on traits alone can perform well

providing a crucial tool for identifying likely pests a priori. Risk

screening at the level of predictive performance we have

demonstrated (naturalized, AUC = 0.75, weeds, AUC = 0.76,

noxious, AUC = 0.82) falls within the range (69–79%) likely to

be sufficient for cost-effective screening [47]. Furthermore,

effective screening of plant introductions is greatly facilitated by

the availability of large on-line databases of key plant traits, and,

by machine learning algorithms such as GBM which permit

analysis of highly incomplete data sets while readily incorporating

interactions and complex non-linear relationships.

Supporting Information

Figure S1 Scatterplots depicting the relationship be-
tween covariates in the complete data set. Plots are of 1)

ln(seed mass) x HCNSG, 2) ln(seed mass) x log(years since

introduction), and 3) HCNSG x log(years since introduction).

(TIFF)

Figure S2 Bivariate plots from full models showing
improvements of the GBM model as a function of a
single predictor [29]. Plots depict the probability that an

introduced species is classified as naturalized, weedy, or noxious.

(TIFF)

Table S1 Hawaii Vascular Plant Introduction Data.

(XLSX)
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