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Abstract

Background: Antibodies to the water channel protein aquaporin-4 (AQP4), which is expressed in astrocytic endfeet at the
blood brain barrier, have been identified in the serum of Neuromyelitis optica (NMO) patients and are believed to induce
damage to astrocytes. However, AQP4 specific T helper cell responses that are required for the generation of anti-AQP4
antibodies and most likely also for the formation of intraparenchymal CNS lesions have not been characterized.

Methodology/Principal Findings: Using overlapping 15-meric peptides of AQP4, we identified the immunogenic T cell
epitopes of AQP4 that are restricted to murine major histocompatibility complex (MHC) I-Ab. The N-terminal region of AQP4
was highly immunogenic. More precisely, the intracellular epitope AQP422–36 was detected as major immunogenic
determinant. AQP482–108 (located in the second transmembrane domain), AQP4139–153 (located in the second extracellular
loop), AQP4211–225 (located in the fifth transmembrane domain), AQP4235–249 (located in the sixth transmembrane domain),
as well as AQP4289–306 in the intracellular C-terminal region were also immunogenic epitopes. AQP422–36 and AQP4289–303

specific T cells were present in the natural T cell repertoire of wild type C57BL/6 mice and T cell lines were raised. However,
active immunization with these AQP4 peptides did not induce signs of spinal cord disease. Rather, sensitization with AQP4
peptides resulted in production of IFN-c, but also IL-5 and IL-10 by antigen-specific T cells. Consistent with this cytokine
profile, the AQP4 specific antibody response upon immunization with full length AQP4 included IgG1 and IgG2, which are
associated with a mixed Th2/Th1 T cell response.

Conclusions and Significance: AQP4 is able to induce an autoreactive T cell response. The identification of I-Ab restricted
AQP4 specific T cell epitopes will allow us to investigate how AQP4 specific autoimmune reactions are regulated and to
establish faithful mouse models of NMO that include both cellular and humoral responses against AQP4.
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Introduction

Neuromyelitis optica (Devic syndrome) is a severe inflammatory

demyelinating syndrome affecting optic nerves and spinal cord [1].

The detection of NMO-IgG antibodies in the sera of patients with

clinically defined NMO but not in patients with multiple sclerosis

(MS), gave rise to the concept that NMO might be a distinct

disease entity [2]. NMO-IgG reacts against aquaporin-4 (AQP4), a

water channel protein that is highly expressed in astrocytic endfeet

of the glia limitans [3]. AQP4 is expressed in the CNS, skeletal

muscle, lung, kidney, stomach, and exocrine glands (for review see

[4]). In the CNS, AQP4 is the main water channel and besides its

abundance in astrocytes at the blood/parenchyma barrier, is also

expressed in ependymal cells at the CSF/parenchyma barrier.

AQP4 KO mice are protected from conditions associated with

cytotoxic edema like experimental stroke, but do worse in response

to vasogenic edema like in brain tumor models [5,6]. These data

suggest that AQP4 has a role in removing excess water from the

CNS interstitial space either by uptake into glial cells or

transepithelial transport.

AQP4 has two translational isoforms: a long isoform (M1) in

which translation is initiated at Met-1 and a short isoform (M23) in

which translation is initiated at Met-23 [7]. M1 and M23 possess 6

putative transmembrane domains with intracellular N- and C-

terminal regions and form either homo or heterotetramers [8].

However, only M23 is arranged in large orthogonal arrays of

particles (OAP) in the plasma membrane of AQP4 expressing cells

[9]. In an mRNA expression study, it has been suggested that M1

and M23 might be differentially expressed in various parts of the

CNS with M1 prevailing in the optic nerve and spinal cord and

M23 in the brain and cerebellum [10]. It is not known whether

M1 and M23 are also differentially targeted by NMO-IgG in vivo,

which could explain in part the lesion distribution in the spinal

cord and optic nerves of NMO patients.
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Since the majority (60 to 70%) of patients that are diagnosed

with NMO according to clinical criteria are positive for anti-AQP4

antibodies of the IgG1 isotype [2,11,12], the presence of NMO-

IgG has been incorporated in the diagnostic criteria for NMO

[13]. The diagnositic sensitivity and specificity of serum NMO-

IgG have been reported to be in the range of 80 to 90% depending

on the assay system [2,11,14]. Several recent studies were designed

to test whether NMO-IgG, beyond its invaluable role as

biomarker, was also pathogenetically relevant in NMO. The

rationale was that NMO-IgG recognizes an extracellular epitope

of AQP4, binds to complement, and leads to the internalization of

AQP4 in vitro [15]. In addition, plasmapheresis is a beneficial

treatment strategy in NMO patients [16]. Indeed, anti-AQP4

IgG1 has now been shown to cause damage to astrocytes in vivo as

well. First, anti-AQP4-IgG1 and complement deposition can be

found in CNS lesions of NMO patients [17,18]. Second, binding

of anti-AQP4 IgG is associated with loss of AQP4 expression and

damage to astrocytes [18,19,20]. Third, systemic adoptive transfer

of AQP4 specific IgG antibodies engineered from intrathecal

clones of NMO patients or NMO-IgG serum fractions from

patients but not AQP4-preabsorbed serum IgG were able to

induce additional perivascular astrocyte loss in experimental rats

that had been pretreated with activated myelin specific CD4+ T

cells to induce disrupture of the blood brain barrier that by itself

was subclinical or only mildly symptomatic [21,22,23]. Together,

these results suggest that NMO-IgG might be involved in the

pathogenic process of NMO.

However, the lesions that could be induced in experimental

animals by transfer of NMO-IgG lacked the longitudinally extensive

properties and parenchymal involvement including myelinolysis that

Table 1. Overlapping AQP4 peptides.

No AA Sequence No AA Sequence No AA Sequence

1 1–15 MSDRPTARRWGKCGP 36 106–120 CTRKISIAKSVFYIA 71 211–225 SMNPARSFGPAVIMG

2 4–18 RPTARRWGKCGPLCT 37 109–123 KISIAKSVFYIAAQC 72 214–228 PARSFGPAVIMGNWE

3 7–21 ARRWGKCGPLCTREN 38 112–126 IAKSVFYIAAQCLGA 73 217–231 SFGPAVIMGNWENHW

4 10–24 WGKCGPLCTRENIMV 39 115–129 SVFYIAAQCLGAIIG 74 220–234 PAVIMGNWENHWIYW

5 13–27 CGPLCTRENIMVAFK 40 118–132 YIAAQCLGAIIGAGI 75 223–237 IMGNWENHWIYWVGP

6 16–30 LCTRENIMVAFKGVW 41 121–135 AQCLGAIIGAGILYL 76 226–240 NWENHWIYWVGPIIG

7 19–33 RENIMVAFKGVWTQA 42 124–138 LGAIIGAGILYLVTP 77 229–243 NHWIYWVGPIIGAVL

8 22–36 IMVAFKGVWTQAFWK 43 127–141 IIGAGILYLVTPPSV 78 232–246 IYWVGPIIGAVLAGG

9 25–39 AFKGVWTQAFWKAVT 44 130–144 AGILYLVTPPSVVGG 79 235–249 VGPIIGAVLAGGLYE

10 28–42 GVWTQAFWKAVTAEF 45 133–147 LYLVTPPSVVGGLGV 80 238–252 IIGAVLAGGLYEYVF

11 31–45 TQAFWKAVTAEFLAM 46 136–150 VTPPSVVGGLGVTMV 81 241–255 AVLAGGLYEYVFCPD

12 34–48 FWKAVTAEFLAMLIF 47 139–153 PSVVGGLGVTMVHGN 82 244–258 AGGLYEYVFCPDVEF

13 37–51 AVTAEFLAMLIFVLL 48 142–156 VGGLGVTMVHGNLTA 83 247–261 LYEYVFCPDVEFKRR

14 40–54 AEFLAMLIFVLLSLG 49 145–159 LGVTMVHGNLTAGHG 84 250–264 YVFCPDVEFKRRFKE

15 43–57 LAMLIFVLLSLGSTI 50 148–162 TMVHGNLTAGHGLLV 85 253–267 CPDVEFKRRFKEAFS

16 46–60 LIFVLLSLGSTINWG 51 151–165 HGNLTAGHGLLVELI 86 256–270 VEFKRRFKEAFSKAA

17 49–63 VLLSLGSTINWGGTE 52 154–168 LTAGHGLLVELIITF 87 259–273 KRRFKEAFSKAAQQT

18 52–66 SLGSTINWGGTEKPL 53 157–171 GHGLLVELIITFQLV 88 262–276 FKEAFSKAAQQTKGS

19 55–69 STINWGGTEKPLPVD 54 160–174 LLVELIITFQLVFTI 89 265–279 AFSKAAQQTKGSYME

20 58–72 NWGGTEKPLPVDMVL 55 163–177 ELIITFQLVFTIFAS 90 268–282 KAAQQTKGSYMEVED

21 61–75 GTEKPLPVDMVLISL 56 166–180 ITFQLVFTIFASCDS 91 271–285 QQTKGSYMEVEDNRS

22 64–78 KPLPVDMVLISLCFG 57 169–183 QLVFTIFASCDSKRT 92 274–288 KGSYMEVEDNRSQVE

23 67–81 PVDMVLISLCFGLSI 58 172–186 FTIFASCDSKRTDVT 93 277–291 YMEVEDNRSQVETDD

24 70–84 MVLISLCFGLSIATM 59 175–189 FASCDSKRTDVTGSI 94 280–294 VEDNRSQVETDDLIL

25 73–87 ISLCFGLSIATMVQC 60 178–192 CDSKRTDVTGSIALA 95 283–297 NRSQVETDDLILKPG

26 76–90 CFGLSIATMVQCFGH 61 181–195 KRTDVTGSIALAIGF 96 286–300 QVETDDLILKPGVVH

27 79–93 LSIATMVQCFGHISG 62 184–198 DVTGSIALAIGFSVA 97 289–303 TDDLILKPGVVHVID

28 82–96 ATMVQCFGHISGGHI 63 187–201 GSIALAIGFSVAIGH 98 292–306 LILKPGVVHVIDVDR

29 85–99 VQCFGHISGGHINPA 64 190–204 ALAIGFSVAIGHLFA 99 295–309 KPGVVHVIDVDRGEE

30 88–102 FGHISGGHINPAVTV 65 193–207 IGFSVAIGHLFAINY 100 298–312 VVHVIDVDRGEEKKG

31 91–105 ISGGHINPAVTVAMV 66 196–210 SVAIGHLFAINYTGA 101 301–315 VIDVDRGEEKKGKDQ

32 94–108 GHINPAVTVAMVCTR 67 199–213 IGHLFAINYTGASMN 102 304–318 VDRGEEKKGKDQSGE

33 97–111 NPAVTVAMVCTRKIS 68 202–216 LFAINYTGASMNPAR 103 307–321 GEEKKGKDQSGEVLS

34 100–114 VTVAMVCTRKISIAK 69 205–219 INYTGASMNPARSFG 104 309–323 EKKGKDQSGEVLSSV

35 103–117 AMVCTRKISIAKSVF 70 208–222 TGASMNPARSFGPAV

doi:10.1371/journal.pone.0016083.t001

Aquaporin-4 Specific T Cell Responses
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are observed in NMO patients [17] unless NMO-IgG and

complement were co-injected directly into the brain in a traumatic

approach [23]. Furthermore, intravenous or intraperitoneal transfer

of immunoglobulin fractions from NMO patients did not induce

astrocytic damage in laboratory animals whose blood brain barrier

was leaky in the absence of inflammatory stimuli [22] suggesting that

lesion development in NMO may not exclusively rely on effector

functions of NMO-IgG. In addition, the generation of anti-AQP4

antibodies of the IgG1 isotype in the peripheral immune compart-

ment inevitably requires class-switch recombination in antigen

specific B cells and thus cognate T cell help [24,25]. Therefore, we

hypothesized that there must be an anti-AQP4 specific T cell

response in NMO. In the present study, we tested the immunoge-

nicity of AQP4 in C57BL/6 mice and identified the major I-Ab

restricted immunogenic determinants of AQP4. These data might

build the foundation to develop animal models for NMO that include

both antigen specific T cell and B cell mediated immunopathology.

Results

Identification of I-Ab restricted epitopes of AQP4
In humans, AQP4 specific NMO immunoglobulins belong to

the IgG1 isotype. Less than 10% of NMO patients have serum

IgM antibodies to AQP4 in addition to NMO-IgG1. Thus, class

switch recombination must have taken place. A cognate T cell

response to AQP4 resulting in subsequent B cell help is required in

order to perform the isotype switch from IgM to IgG1. We wanted

to characterize the T cell response against AQP4 protein. Thus,

we generated lysates from LN18 cells engineered to overexpress

full length human AQP4 by lentiviral transduction and purified

AQP4 [26]. AQP4 is a highly conserved protein and the protein

sequence identity between human and mouse AQP4 M1 and M23

translational isoforms is 92.9% and 94.7%, respectively.

Full length AQP4 emulsified in CFA was used to immunize wild

type C57BL/6 mice (I-Ab). Draining lymph node cells and splenocytes

were isolated and restimulated in vitro with pools of overlapping 15-

meric peptides spanning the entire M1 AQP4 protein sequence

(Tables 1 and 2). While the strongest proliferative response was

detected upon restimulation with peptide pool 17 (Fig. 1A), the

stimulation indices were only in the range of 1.1 to 3.0 (Fig. 1A). Thus,

we decided to restimulate each pool with its individual peptides in a

second round. Irradiated syngeneic (H-2Kb, H-2Db, I-Ab) splenocytes

were used as APCs. Any 15-meric peptide that yielded proliferative

responses of at least 3 fold above background was considered as

potentially immunogenic in the context of I-Ab (Fig. 1B). Robust

proliferative T cell responses were obtained upon restimulation with

epitopes derived from AQP48–54 (peptides 3, 8, 9, 10, 12, 14), AQP482–

108 (peptides 28, 31, 32), AQP4139–153 (peptide 47), AQP4211–225

(peptide 71), AQP4235–249 (peptide 79), and AQP4289–306 (peptides 97,

98) (Fig. 1B). N-terminal peptide epitopes of AQP4 induced the

strongest recall responses (Fig. 1B) suggesting that the N-terminal

region of AQP4 comprises the most robust immunogenic I-Ab

restricted T cell epitopes (Fig. 2A). The core immunogenic N-terminal

determinant of AQP4 (AQP422–36 = peptide 8) is common to both the

M1 and M23 translational isoforms of AQP4, except for the isoleucine

at positon 22, which is absent in the M23 isoform of AQP4. The amino

acid sequence of AQP422–36 is identical between human and mouse

while there is only minimal amino acid variance between human and

mouse in the additional I-Ab restricted AQP4 epitopes (Fig. 2B). Thus,

AQP4 is immunogenic in the I-Ab context and wild type C57BL/6

mice harbor autoreactive AQP4 specific T cells in their natural

repertoire.

Characterization of AQP422–36 specific T cell lines
AQP422–36 proved to be immunodominant and the proliferative

response of short term T cell cultures from lymph node cells of

AQP422–36 immunized mice were very robust (Fig. 3A). In order

to qualitatively characterize AQP422–36 specific T cell responses,

we tested the cytokine profile of lymph node cells from AQP422–

36/CFA-sensitized mice upon restimulation with AQP422–36 in

vitro. Although we used CFA as adjuvant, the first rounds of

peptide specific restimulation of lymph node cells under neutral

conditions yielded mixed Th1/Th2 cytokine responses (Fig. 3B).

We observed production of IL-2, IFN-c, TNF, GM-CSF, IL-6,

but also IL-4 and large amounts of IL-5 and IL-10 while IL-17 was

not detectable (Fig. 3B). About one third of the responding T cells

were IFN-c+IL-10+ and close to one half were IFN-c+IL-5+

(Fig. 3C). Together, these data suggest that in our experimental

system, AQP422–36 induced the expansion of T cells with a unique

cytokine profile that was characterized by co-expression of large

amounts of Th1 and Th2 associated cytokines.

Immunization with AQP4 peptides does not induce
clinical disease

AQP4 specific T cell responses were characterized by a mixed

Th1/Th2 phenotype. We predicted that the exaggerated IL-10

production by AQP422–36 specific T cells would prevent T cell driven

immunopathology in AQP4 immunized animals. In order to test

whether active immunization with AQP4 in CFA was able to induce

clinical signs of central nervous damage, we sensitized C57BL/6 mice

with full length AQP4/CFA, AQP422–36 (peptide 8)/CFA, or

AQP4289–303 (peptide 97)/CFA plus administration of pertussis toxin

and followed the animals for 4 weeks. While all mice in a MOG35–55/

CFA immunized control group developed severe EAE, none of the

AQP4 immunization protocols resulted in the induction of a clinically

manifest spinal cord disease or signs of visual impairment (Fig. 4A).

Neither did we observe weight loss or signs of kidney disease. The

animals remained apparently healthy and after four weeks were

subjected to histological work-up. Here, neither cellular infiltrates nor

myelin loss were identified in the spinal cords or optic nerves of AQP4

peptide immunized animals (Fig. 4B, C). Thus, despite a strong

antigen specific T cell response against AQP4, the animals remained

protected from immunopathology in AQP4 expressing tissues.

T helper cell responses to AQP4 shape a specific AQP4
specific IgG response pattern

We wished to validate whether the cytokine pattern of AQP4

specific T cell responses was relevant to the adaptive immune

Table 2. Peptide pools.

Pool 1 2 3 4 5 6 7 8 9 10 11

12 1 3 5 7 9 11 13 15 17 19 21

13 23 25 27 29 31 33 35 37 39 41 43

14 45 47 49 51 53 55 57 59 61 63 65

15 67 69 71 73 75 77 79 81 83 85 87

16 89 91 93 95 97 99 101 103 2 4 6

17 8 10 12 14 16 18 20 22 24 26 28

18 30 32 34 36 38 40 42 44 46 48 50

19 52 54 56 58 60 62 64 66 68 70 72

20 74 76 78 80 82 84 86 88 90 92 94

21 96 98 100 102 104

doi:10.1371/journal.pone.0016083.t002
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response to AQP4 in vivo. The bias of antigen specific T helper cell

responses can be determined in vivo by measuring the IgG subtypes

that are produced by antigen specific B cells in a T helper cell

dependent manner. It is known that in mice, Th1 biased T helper

cell responses favor the production of antigen specific IgG2a and

IgG3 while Th2 responses prompt B cells to undergo class switch

recombination towards IgG1 and IgE [24,25,27]. Immunization

with AQP4 protein/CFA but not with MOG35–55/CFA evoked a

robust anti-AQP4 IgG response which was measured in the sera of

sensitized mice (Fig. 5A). While AQP4 specific IgA, IgE, and IgM

could not be detected, the dominant IgG subclasses were IgG1,

IgG2a, and IgG2b but not IgG3 (Fig. 5B, C) indicating that the T

helper cell response to AQP4/CFA in this immunization regimen

was a mixed Th1/Th2 response in vivo as well.

In summary, these data suggest that the antibody response to

AQP4 is T cell-dependent. Both direct analysis of T cell responses

to AQP4 and measurement of antigen specific Ig subclass patterns

in vivo highlight a mixed Th1/Th2 response upon immunization

with AQP4 protein.

Discussion

In the present study, we provide evidence that an autoreactive T

cell response against AQP4 can be induced in C57BL/6 mice and

Figure 1. Screening of T cell responses with pools of AQP4 peptides. Mice were immunized with full length AQP4 protein/CFA. Draining
lymph node cells and splenocytes were restimulated in vitro with pools of overlapping AQP4 peptides (Tables 1 and 2). (A) Proliferative responses of
AQP4-sensitized lymphocytes to 21 pools of overlapping AQP4 peptides as measured by 3[H] thymidine incorporation (c.p.m.). Mean of triplicate
cultures + SD or stimulation indices as calculated by deviding the c.p.m. values of each peptide pool by the background c.p.m. This experiment was
performed twice with similar results. (B) In a second round of restimulation, T cells out of each pool were stimulated with the individual peptides of
the parental pool in the presence of irradiated syngeneic splenocytes as APCs. Proliferative responses of T cell pools that showed antigen specific
responses to at least one individual splenocytes with a stimulation index of at least 3.0 are depicted. Mean of 3[H] thymidine incorporation (c.p.m.) of
triplicate cultures + SD are shown.
doi:10.1371/journal.pone.0016083.g001
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Figure 2. Immunodominant I-Ab restricted epitopes of AQP4 and sequence homology of human vs mouse AQP4. (A) Topological
model of AQP4 (M1 translational isoform) according to Crane and coworkers [8]. The core immunogenic (I-Ab restricted) determinant of AQP4 in the
N-terminus is highlighted in dark blue. The remainder of the immunogenic T cell epitopes is highlighted in cyan. The numbers indicate the amino
acid residue position in the AQP4 protein sequence. (B) Amino acid sequence alignment of human and mouse AQP4 M1 isoforms. I-Ab restricted T cell
determinants are highlighted (cyan). The dominant immunogenic epitope is represented by peptide 8 as indicated by a box (peptide sequence in
dark blue). T cell epitopes common to M1 and M23 isoforms of AQP4 are underlined. Asterisks indicate sequence identity at the corresponding
sequence position.
doi:10.1371/journal.pone.0016083.g002
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Figure 3. Functional characterization of AQP422–36 peptide specific TCL8.2. Representative T cell line (TCL) reactive to AQP422–36. (A) TCL8.2
cells were restimulated with irradiated syngeneic splenocytes in the presence of increasing concentrations of AQP422–36. The proliferative response
was determined by 3[H] thymidine incorporation. Mean c.p.m. of triplicate cultures + SD. (B) Cytokine production of TCL8.2 cells in response to
increasing concentrations of AQP422–36 as measured by cytometric bead array in the cell culture supernatant collected at 48 h after initiation of
restimulation. Mean cytokine concentrations + SD of triplicate cultures. (C) Intracellular cytokine staining of TCL8.2 after 6 restimulation cycles.
doi:10.1371/journal.pone.0016083.g003
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we determined the I-Ab restricted T cell epitopes. While AQP422–36

is the dominant T cell epitope, there are other immunogenic regions

in the AQP4 sequence. With the exception of the isoleucine at

position 22 of AQP422–36, all T cell epitopes are contained in both

M1 and M23 translational isoforms of AQP4. The AQP4 specific T

cell response likely accounts for the T cell supported class switch

recombination of AQP4 specific B cells and the production of anti-

AQP4 IgG type antibodies.

Recent attempts to prove the pathogenic relevance of NMO-

IgG have focused on rats as recipients of purified IgG fractions

from NMO-patients because rat but not mouse complement binds

to purified human NMO-IgG [23] and thus, NMO-IgG

dependent CNS damage can easier be shown in recipient rats

than in mice receiving human serum IgG. Indeed, passive transfer

of NMO-IgG or engineered monoclonal antibodies against AQP4

resulted in extinction of AQP4 in astrocytic endfeet and perhaps in

astrocyte loss [21,22]. Myelin specific T cell blasts but not non-

inflammatory stimuli were able to promote the pathogenic

potential of NMO-IgG presumably by disrupting the blood brain

barrier. In contrast, a recent report suggested that upon

immunization with CFA alone, i. e. in the absence of a CNS-

antigen specific T cell response, astrocyte damage could be

induced by transfer of IgG fractions from NMO patients [28].

However, in all these transfer experiments, the CNS lesions

induced by NMO-IgG were distinct from lesions found in human

Devic’s patients and in particular, failed to recapitulate a vast

extent of demyelination [17].

We believe that the identification of the AQP4 determinants that

evoke I-Ab restricted T cell responses is a further step towards the

development of an animal model for Devic’s disease that would

incorporate both T cell and B cell mediated anti-AQP4 responses.

The current concept of neuromyelitis optica is based on the idea

that this disease might be an astrocyte disease with astrocytic AQP4

as a major molecular target of the adaptive immune response. We

proposed that there must be an anti-AQP4 T cell response to

account for the induction of class switched antibodies to AQP4.

Here, we identified T cell epitopes of AQP4 in the context of I-Ab.

AQP4 specific T cell responses were elicited in wild type mice.

Thus, our data suggest that - similar to other autoantigens - thymic

deletional tolerance against AQP4 is incomplete. T cell lines raised

against AQP422–36, the major immunogenic epitope of AQP4,

produced IFN-c but were consistently also characterized by

simultaneous secretion of Th2 associated cytokines. Accordingly,

immunization with full length AQP4 protein induced a T cell

dependent AQP4 specific antibody response whose Ig class and

subclass pattern was reminiscent of a mixed Th1/Th2 reaction.

Although T cell tolerance against AQP4 is broken upon

immunization with AQP4/CFA, it is likely that AQP4 directed

immunopathology is limited due to T cell derived IL-10. We are

currently testing this hypothesis in further experiments.

Excellent animal models that include both CNS antigen specific

T and B cell responses have recently been developed for MOG as

target autoantigen. Transgenic mice that harbor both MOG

specific T cells and MOG specific B cells develop a severe

opticospinal syndrome and were proposed to mimic certain

aspects of Devic’s disease [29,30]. Many aspects of the cooperation

between T and B cells, namely the capacity of antigen specific B

cells to function as APCs for T cells of the same specificity, were

extensively investigated in these animal models. In addition, MOG

specific T cell driven immunopathology in the CNS appears to

recruit MOG specific B cells from the natural repertoire to

develop into antibody producing cells and contribute to lesion

development by MOG specific antibodies [31]. These data

highlight the pathogenic importance of a CD4+ T helper cell

response to an autoantigen that is identical or locally linked to the

respective B cell autoantigen. However, with the discovery and

validation of NMO-IgG in reductionist in vitro and in vivo models, it

has become evident that astrocytic AQP4 may be the relevant

target autoantigen in neuromyelitis optica instead of MOG which

is expressed by oligodendrocytes [32].

The characterization of the I-Ab restricted AQP4 T cell

epitopes, will now allow us to investigate the mechanisms that

result in the breach of immunological tolerance against AQP4 and

also why immunopathology develops in the CNS while other

AQP4 expressing tissues are relatively spared. Based on the

current results, we may be able to construct animal models in mice

that may give us insight in the pathogenic cascade of autoimmune

inflammatory astrocyte diseases and perhaps help us to understand

how astrocyte targeted T and B cell responses ultimately lead to

extensive CNS lesions.

Materials and Methods

Aquaporin-4 protein expression and purification
The human M1 variant of AQP4 protein was stably

overexpressed in LN18 cells (LN18AQP4) by lentiviral transfection

as described previously [26]. In order to generate AQP4 protein,

cells were grown at large scale and proteins were extracted from

LN18AQP4 cells by using mammalian protein extraction reagent

buffer (Thermo Scientific) according to the manufacturer’s

recommendations. AQP4 protein was isolated by column-based

affinity purification using a polyclonal rabbit anti human-AQP4

antibody (Sigma) coupled to cyanogen bromide-activated sephar-

ose 4B according to the manufacturer’s instructions (Amersham

pharmaci). Yield and purity of the protein preparation was tested

by coomassie staining and western blot of SDS-PAGE gels.

Peptide antigens
Mouse MOG35–55 (MEVGWYRSPFSRVVHLYRNGK) and

human AQP422–36 (IMVAFKGVWTQAFWK) as well as human

AQP4289–303 (TDDLILKPGVVHVID) were synthesized by

Auspep Pty Ltd (Parkville, Victoria, Australia) and JPT Peptide

Technology (Berlin, Germany), respectively. Overlapping peptides

(15-mers) of full length human AQP4 protein (M1 isoform) were

synthesized by JPT Peptide Technology according to Table 1.

Mice and immunization procedures
Wild type C57BL/6 mice (H-2Kb, H-2Db, I-Ab) at 8 weeks of

age were immunized subcutaneously with an emulsion of antigen

in complete Freund’s adjuvant (CFA) with a final concentration of

Figure 4. Immunization of C57BL/6 mice with AQP422–36 or AQP4289–303 does not induce signs of spinal cord disease or optic neuritis.
Groups of wild type C57BL/6 mice (n = 4 per group) were immunized with PBS/CFA, MOG35–55/CFA, AQP422–36 (peptide 8)/CFA, or AQP4289–303 (peptide
97)/CFA. (A) EAE scores. Note that AQP4 peptide immunized mice did not develop signs of disease while MOG35–55/CFA immunized animals showed
classical paraparesis. (B, C) Mice that had been immunized with MOG35–55/CFA, AQP422–36 (peptide 8)/CFA, or AQP4289–303 (peptide 97)/CFA were
analysed by histology. Representative sections of spinal cords (B) and optic nerves (C) are shown. Paraffin sections were stained with luxol fast blue (LFB)-
PAS to illustrate demyelination or with antibodies to CD3 or Mac-3 to visualize T cell or macrophage infiltrates, respectively. Spinal cord areas that are
shown at higher magnification are marked by frames. Scale bars are 500 mm and 200 mm for the spinal cord sections and 100 mm for the optic nerve
sections as indicated.
doi:10.1371/journal.pone.0016083.g004
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2.5 mg/ml mycobacterium extract H37Ra. Individual emulsions

contained final antigen concentrations of 1 mg/ml for MOG35–55

peptide, AQP422–36 peptide, AQP4289–303 peptide, or AQP4

protein, respectively. Each mouse received a total volume of

100 ml of immunization inoculum corresponding to 100 mg of

antigen as subcutaneous injections at the base of the tail. In

addition, mice were administered 200 ng pertussis toxin in PBS i.

p. on days 0 and 2 after immunization. When immunized with full

length AQP4 protein, mice received a booster immunization with

AQP4 protein/CFA (in the absence of additional pertussis toxin)

after 4 weeks. Where indicated, clinical signs of EAE were assessed

according to following score: 0, no sings of disease; 1, loss of tone

Figure 5. Antibody response to AQP4. Wild type C57BL/6 mice were immunized with full length AQP4/CFA as described in Materials and
Methods. Unimmunized mice or mice immunized with MOG35–55/CFA were used as controls. Sera of mice from each group were collected and tested
for AQP4 specific antibodies in a cell based flow cytometry analysis. Subclass specification was performed by using fluorochrome labeled anti-mouse
Ig antibodies specific for IgM, IgA, IgE, IgG1, IgG2a, IgG2b, and IgG3 (FITC labeled) or total IgG H+L (AlexaFluor488 labeled). (A) Representative
histogram plots illustrating the MFIs for AQP4 specific IgG H+L in the various test groups. (B) Representative histogram plots of AQP4 specific Ig
classes and IgG subclasses in AQP4 immunized animals. (C) DMFIs + SEM (n = 4) for AQP4 specific IgG H+L in naive control mice, MOG35–55 immunized
mice, or full length AQP4 immunized mice. (D) DMFIs + SEM (n = 4) for individual anti-AQP4 Ig classes and IgG subclasses in full length AQP4
immunized mice.
doi:10.1371/journal.pone.0016083.g005
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in the tail; 2, hind limb paresis; 3, hind limb paralysis; 4,

tetraplegia; 5, moribund. Mice were kept in a pathogen free facility

at the Neurological Department of the Technical University

Munich. The animal protocol was approved by the animal welfare

committee of the Bavarian state authorities (Tierschutzkommission

der Regierung von Oberbayern, Munich, Germany, License

number: 55.2-1-54-2531-88-08). All experiments were carried out

in accordance with the guidelines prescribed by the Bavarian state

authorities.

AQP4 peptide pool screening, antigen specific
restimulation and proliferation assays

Draining lymph node cells and splenocytes were isolated from

full length AQP4/CFA-immunized mice on day 6 after the

booster immunization. Peptide pools were generated according to

Table 2 with each peptide at a final concentration of 10 mg/ml. In

a 96 well format, suspensions of 400,000 in vivo sensitized mixed

lymph node and spleen cells were re-stimulated for 72 h in vitro

with individual peptide pools in DMEM/10% FCS supplemented

with 561025 M b-mercaptoethanol, 1 mM sodium pyruvate,

non-essential amino acids, L-glutamine, and 100 U penicillin/

100 mg streptomycin per ml (clone medium). During the last 16 h,

cells were pulsed with 1 mCi of 3[H]thymidine (PerkinElmer)

followed by harvesting on glass fiber filters and analysis of

incorporated 3[H]thymidine in a b-counter (1450 Microbeta,

Trilux, PerkinElmer). In a parallel set-up, peptide pool restimu-

lations were supplementated with recombinant mouse IL-2 at

2 ng/ml (R&D systems). After 14 days, cells from each peptide

pool were divided in aliquots and each aliquot was restimulated in

clone medium with a single peptide out of the parental pool at a

concentration of 10 mg/ml in clone medium in the presence of

irradiated (3000 rad) splenic APCs isolated from naive C57BL/6

mice. After 48 h, supernatants were collected for cytokine

measurement and proliferation was determined by 3[H]thymidine

incorporation as described.

T cell lines specific for immunogenic determinants of AQP4

were generated from draining lymph node cells isolated 2 weeks

after immunization from mice immunized with AQP422–36/CFA

or AQP4289–303/CFA. In cyclic recall stimulations, draining

lymph node cells were stimulated with AQP422–36 or AQP4289–303

in clone medium in the presence of irradiated syngeneic splenic

APCs. Restimulation cycles with irradiated splenic APCs were

repeated every 10 to 12 days to obtain antigen specific T cell lines.

In order to propagate the T cell lines, recombinant mouse IL-2

was added at a concentration of 2 ng/ml 72 h after set-up of

antigen specific recall cultures.

Cytokine profiling of AQP4 peptide specific T cell lines
Supernatants of antigen specific T cell lines were assessed for

cytokine concentrations with standard ELISA technique (R&D

systems) or cytometric bead array (Bender systems) according to

the manufacturers’ recommendations. For intracellular cytokine

staining, AQP4 peptide specific T cell lines were stimulated in

clone medium containing phorbol 12-myristate 13-acetate (PMA,

50 ng/ml, Sigma), ionomycin (1 mg/ml, Sigma), and monensin

(GolgiStop 1 ml/ml, BD Biosciences) at 37uC/10% CO2 for 4 h.

After staining of surface markers, cells were fixed and permeabi-

lized (Cytofix/Cytoperm and Perm/Wash buffer, BD Biosciences)

followed by staining with monoclonal antibodies to mouse IL-4,

IL-5, IL-10, IL-17, and IFN-c, (all obtained from BD Biosciences)

and fluorocytometric analysis (CYAN, Beckmann/Coulter).

Determination of anti-AQP4 antibody subtypes in mouse
sera of immunized mice

To determine antibody titres and Ig subtypes against AQP4,

sera were collected from PBS/CFA-, MOG35–55/CFA-, or AQP4

protein/CFA-immunized mice. Serum samples were taken 3

months after initial sensitization of mice. Sera were diluted in 1: 50

in PBS 1% FCS and applied for detection of conformational

antibodies to AQP4 in a cell based assay previously described [26].

Briefly, AQP4 transduced LN18 cells (LN18AQP4) or control

transduced LN18 cells (LN18CTR) were exposed to the diluted

sera. Ig subclasses were identified by using AlexaFluor488 labelled

secondary antibodies to mouse IgG H+L (Invitrogen) or FITC

labeled anti-IgM, -IgA, -IgE, -IgG1, -IgG2a, -IgG2b, or -IgG3,

(Serotec). Staining of LN18AQP4 or control cells was analysed by

flow cytometry. Antibody titres were calculated based on delta

mean fluorescence intensity (DMFI) of LN18AQP4 vs LN18CTR.

Histology
Mice were sacrificed using CO2. Histology was performed as

described recently [33,34]. Spinal cords including spinal canal and

optic nerves were removed and fixed in 4% buffered formalin.

Then, spinal cords were dissected and embedded in paraffin

before staining with luxol fast blue (LFB) to assess the degree of

demyelination, anti-MAC-3 (BD Biosciences) for assessment of

macrophages/microglia infiltrates, and anti-CD3 for assessment of

T cell infiltrates (Serotec).

Statistical analysis
Statistical evaluations of cell frequency measurements and

proliferation data were performed using the unpaired Student’s t-

test. For comparison of clinical EAE scores, the Mann-Whitney U

rank sum test was used. P values,0.05 were considered significant.
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