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Abstract

Background: Notch signalling regulates neuronal differentiation in the vertebrate nervous system. In addition to a
widespread function in maintaining neural progenitors, Notch signalling has also been involved in specific neuronal fate
decisions. These functions are likely mediated by distinct Notch ligands, which show restricted expression patterns in the
developing nervous system. Two ligands, in particular, are expressed in non-overlapping complementary domains of the
embryonic spinal cord, with Jag1 being restricted to the V1 and dI6 progenitor domains, while Dll1 is expressed in the
remaining domains. However, the specific contribution of different ligands to regulate neurogenesis in vertebrate embryos
is still poorly understood.

Methodology/Principal Findings: In this work, we investigated the role of Jag1 and Dll1 during spinal cord neurogenesis,
using conditional knockout mice where the two genes are deleted in the neuroepithelium, singly or in combination. Our
analysis showed that Jag1 deletion leads to a modest increase in V1 interneurons, while dI6 neurogenesis was unaltered.
This mild Jag1 phenotype contrasts with the strong neurogenic phenotype detected in Dll1 mutants and led us to
hypothesize that neighbouring Dll1-expressing cells signal to V1 and dI6 progenitors and restore neurogenesis in the
absence of Jag1. Analysis of double Dll1;Jag1 mutant embryos revealed a stronger increase in V1-derived interneurons and
overproduction of dI6 interneurons. In the presence of a functional Dll1 allele, V1 neurogenesis is restored to the levels
detected in single Jag1 mutants, while dI6 neurogenesis returns to normal, thereby confirming that Dll1-mediated signalling
compensates for Jag1 deletion in V1 and dI6 domains.

Conclusions/Significance: Our results reveal that Dll1 and Jag1 are functionally equivalent in controlling the rate of
neurogenesis within their expression domains. However, Jag1 can only activate Notch signalling within the V1 and dI6
domains, whereas Dll1 can signal to neural progenitors both inside and outside its domains of expression.
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Introduction

The vertebrate central nervous system is composed by a variety

of neuronal and glial cell types, whose production has to follow

three fundamental rules: i) to be generated in the correct

proportion; ii) to migrate to the right position and iii) to be

functionally distinct.

During embryonic spinal cord neurogenesis, neural progenitor

cells are exposed to different concentrations of secreted TGFb,

Sonic hedgehog (Shh) and Wnt proteins that act in a graded

manner to establish a pattern of progenitor identities along the

dorso-ventral (DV) axis. This results in the generation of distinct

neural progenitor domains in the spinal cord, each expressing

specific combinations of transcription factors (TFs) from the

homeodomain (HD) and basic-helix-loop-helix (bHLH) families,

which confer specific identities to each progenitor population

(reviewed in [1,2]).

In the ventral spinal cord, five progenitor domains have been

defined, four that give rise to different classes of ventral

interneurons, named V0, V1, V2, and V3, and a domain from

which all motoneurons (MN) arise. Similarly, neural progenitors in

the dorsal spinal cord are organized into six domains that generate

six early forming (dI1-6) and two late developing (dILA and dILB)

classes of interneurons. Differentiating neurons arising from each

progenitor domain express unique sets of TFs that regulate their

final differentiation programs and their integration into the spinal

cord circuitry. In the ventral spinal cord, for instance, V0 INs are

characterized by the expression of Evx1, V1 INs express En1, V2a

INs express Chx10, MNs express Hb9 and Isl1/2, and V3 cells

express Sim1 [3].
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Notch signalling is another mechanism that has been shown to

be essential for appropriate neuronal production in the embryonic

spinal cord, controlling the rate of neurogenesis [4,5]. Deletion of

Notch1, which is exclusively expressed in the ventricular zone of the

neuroepithelium where neurogenesis occurs results in a neuro-

genic phenotype that is characterized by premature and excessive

neuronal differentiation in the spinal cord [6,7]. Two other Notch

genes, Notch2 and Notch3, are also expressed in the embryonic

neuroepithelium [8]. Complete elimination of Notch activity could

be achieved through the generation of mutant mice with

simultaneous deletion of the three bHLH-O genes hes1, hes3 and

hes5, which encode the main effectors of Notch signalling in the

embryonic spinal cord [6,9]. Analysis of these triple-mutant mice

showed that all neural progenitors in the spinal cord are

dependent on Notch signalling to maintain their neurogenic

potential. In the absence of Notch activity, progenitors enter

differentiation prematurely and neurogenesis collapses due to

progenitor depletion.

In addition to its essential role in progenitor maintenance,

Notch signalling has also been shown to regulate specific neuronal

fate decisions in the spinal cord, controlling for instance the

generation of excitatory V2a and inhibitory V2b interneurons

from the V2 domain [4,5]. These diverse Notch functions are

likely mediated by different Notch ligands, all of which are

expressed in the embryonic vertebrate spinal cord in unique

spatio-temporal patterns. The Dll3 and Jag2 genes are expressed in

differentiating neurons [10,11], with Jag2 being expressed

exclusively in differentiating motoneurons [11]. The other ligands

are specifically expressed in the ventricular region of the

neuroepithelium: Dll1 and Jag1 are expressed in a strikingly

complementary pattern [8,12], with Jag1 expression restricted to

the V1 and dI6 progenitor domains [13–15] and Dll1 expression

present in the remaining DV progenitor domains of the embryonic

spinal cord, coinciding with Dll4 in the V2 domain [12,14].

We have previously shown that Dll1 inactivation leads to

premature neuronal differentiation in all domains where the gene

is expressed [14]. Similarly, it has been recently reported that Jag1

mutants reveal accelerated neurogenesis within its domains of

expression, resulting in the overproduction of V1-derived

interneurons [15]. The finding that two ligands share a common

role in progenitor maintenance in adjacent domains of the

embryonic spinal cord raises the question of whether one ligand

could compensate for the absence of the other in regulating

neuronal production. A functional equivalence between different

Notch ligands has been reported in the Drosophila embryo, where

complete phenocopy of Notch mutations in wing veins and sensory

lineages can only be achieved after deletion of both Delta and

Serrate [16]. In addition, ectopic expression of Serrate was shown to

partially rescue the severe neuronal hyperplasia observed in Delta-

deficient embryos [17], reinforcing the notion of functional

redundancy between different ligands. This is further supported

by our analysis of mouse Dll1 mutants, where Dll4 can partially

compensate lack of Dll1 in the spinal cord V2 domain, attenuating

the overproduction of V2 INs due to Dll1 deletion [14].

To investigate whether Jag1 and Dll1 have differential roles in

the control of neuronal production, we have used conditional

mouse models to delete one or both genes specifically in the

progenitor domains of the embryonic spinal cord. Analysis of

neuronal production in these mutants supports a model where

both ligands regulate neurogenesis in similar ways within their

own domains of expression. However, Dll1 and Jag1 show

different signalling capacities to adjacent domains: while Dll1 is

able to signal to Jag1-expressing domains, regulating neuronal

production in the absence of Jag1, the latter is unable to sustain

neurogenesis in adjacent Dll1-expressing domains, when Dll1 is

inactivated. Thus, Dll1 is able to compensate for the loss of Jag1

function, while Jag1 fails to do the same in the absence of Dll1.

Materials and Methods

Ethics Statement
Animal experiments were approved by the Animal Ethics

Committee of Instituto de Medicina Molecular (AEC_027_2010_

DH_Rdt_general_IMM) and according to National Regulations.

Mouse Strains and Sample Collection
Nestin-Cre [18] and Rosa26-YFP [19] strains were a kind gift from

Rüdiger Klein (Max Planck Institute, Munich, Germany) and

Nicoletta Kessaris (Wolfson Institute for Biomedical Research,

London, UK), respectively. Floxed Dll1 [20] and floxed Jag1 [21]

mice were kindly provided by Julian Lewis (Cancer Research UK,

London, UK).

Mice carrying the conditional floxed Dll1 allele (Dll1f/f) or the

floxed Jag1 allele (Jag1f/f) were crossed with Nestin-Cre mice (NesCre)

and double heterozygous progeny was identified by PCR. Double

heterozygous mice were crossed with mice homozygous for the

conditional allele, to produce litters containing conditional single

knockout mice (Dll1f/f;NesCre or Jag1f/f;NesCre) and littermate

controls. While Dll1f/f;NesCre embryos are embryonic lethal,

Jag1f/f;NesCre mice are viable and fertile.

To obtain double mutant embryos, with different allelic doses of

Dll1 and Jag1, double floxed mice (Dll1f/f;Jag1f/f) were crossed to

triple heterozygous mice (Dll1f/+;Jag1f/+;NesCre). From these

crosses, we obtained embryos with the following genotypes:

Dll1f/f;Jag1f/f;NesCre/Dll1f/f;Jag1f/+;NesCre/Dll1f/+;Jag1f/f;NesCre/

Dll1f/+;Jag1f/+;NesCre. Embryos were collected at E11.5, 13.5 and

15.5.

To identify cells where Cre-mediated recombination occurred,

Jag1f/f mice were made homozygous for the Rosa26-YFP transgene

(Jag1f/f;Rosa26YFP/YFP). The progeny was crossed with Jag1f/f;

NesCre mice to generate Jag1f/f;Rosa26YFP/+;NesCre and control

littermates.

All animals were fed ad-libitum and housed in SPF facilities.

Immunofluorescence and in situ hybridization
Embryos were fixed in 4% paraformaldehyde at 4uC (2 h for

immunofluorescence (IF) and O/N for in situ hybridization (ISH)),

cryoprotected in 30% sucrose and embedded in 7.5% gelatin:15%

sucrose and 12 mm sections were used in the analysis.

For IF, sections were degelatinized at 37uC for 15 min, followed

by a pre-treatment with 3%H2O2: Methanol for 30 min at room

temperature (RT), except for the antibodies against Jag1 and GFP.

Permeabilization was performed using Triton 6100 (0.5%) for

15 min, followed by blocking (10% Normal Goat Serum, 0.1%

Triton 6100) for 1 h at RT. Primary antibodies were incubated

O/N at 4uC. The following antibodies were used in this study:

rabbit anti-Bhlhb5 (1:10000; kind gift of Michael Greenberg),

mouse anti-Calbindin (1:500, Swant), sheep anti-Chx10 (1:100,

Exalpha), rabbit anti-En1 (1:100, kind gift of Alex Joyner), mouse

anti-Evx1 (1:100, Developmental Studies Hybridoma Bank),

rabbit anti-Foxd3 (1:25, kind gift of Thomas Muller), rabbit

anti-Foxp2 (1:200, Abcam), rat anti-GFP (1:1000, Nacalai

Tesque), mouse anti-Islet1 (1:1000; Developmental Studies

Hybridoma Bank), rabbit anti-Jag1 (1:50, Santa Cruz) and rabbit

anti-Pax2 (1:200, Covance). Sections were subsequently washed

and incubated with appropriate Alexa Fluor (488 or 594)-

conjugated secondary antibodies (1:400, Molecular Probes) for

1 h at RT.
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Double in situ hybridizations using Dll1 and Hes5 mRNA probes

were performed as previously described [12], with modifications.

Dll1 DIG-labelled probe was first detected with AP-conjugated

anti-DIG antibody (1:2000; Roche) and signal was developed

using Fast-Red substract (Roche). To detect the second Hes5

Fluorescein-labelled probe, sections were incubated with HRP-

conjugated anti-Fluorescein antibody (1:1000, Roche), and signal

developed by TSA-Plus Fluorescein System (Perkin-Elmer),

according to manufacturer’s instructions.

Cell counts and Imaging
Cell counts were performed for eight cryostat sections from at

least three spinal cords (i.e. twenty four sections for each genotype).

For the described antibodies, quantification of neuronal types was

done by counting the number of immunopositive cells, which were

normalized to the total number of cells (DAPI) in images taken

with either a 206 or 406 objective on a Leica DM5000B

fluorescence microscope. Statistical significance was determined

using Student’s t- test. Confocal images were captured with Zeiss

LSM510 META confocal microscope.

Results

Jag1 mutants exhibit a milder neurogenic phenotype
than Dll1 mutants

To investigate the role of Jag1 and Dll1 in regulating neuronal

production within and outside their domains of expression in the

embryonic spinal cord, we have analysed in parallel the

phenotypes of mutant embryos where either Jag1 or Dll1 were

specifically inactivated in the neuroepithelium. These embryos

were obtained by crossing floxed Jag1 and floxed Dll1 mice [20,21]

with mice carrying a Cre recombinase under the control of the rat

Nestin promoter, which drives Cre expression in all neural

progenitors [18]. Jag1 single mutant (Jag1f/f;NesCre) and Dll1 single

mutant embryos (Dll1f/f;NesCre) were compared between them and

with control littermates.

Comparison of Jag1f/f;NesCre with control embryos at E10.5 and

E11.5 showed no differences in the general morphology of the

spinal cord, whereas E11.5 Dll1f/f;NesCre spinal cords were severely

affected as an enlargement of the floor plate, accompanied by the

disappearance of the central lumen could be observed [14]. A

similar morphology has been reported in a conditional Notch1

mutant [7].

In order to monitor the production of the distinct INs arising

from the Jag1-expressing V1 and dI6 domains of the embryonic

spinal cord, as well as the Dll1-expressing V2 and V0 domains, we

have used various markers, individually or in combinations, as

depicted in Figure 1. For V1-derived interneurons (INs), we

followed the expression of En1, a homeobox- containing TF, and

Foxd3, a winged-helix TF, which are both expressed in all post-

mitotic V1 INs [13,22]. To detect specific subsets of V1-derived

neurons at later stages, we used Calbindin expression to label

Renshaw cells [23,24] and Foxp2 expression to mark non-

Renshaw cells [25]. To identify dI6 INs, we have analysed the

expression of bHLHb5, a TF present in dI6 INs and also in more

ventral V1 and V2 INs, but not in V0 INs [26]. Combined analysis

with Evx1, which is selectively expressed by a more ventral subset

of V0 INs (V0v) [27,28], allows the unequivocal identification of

dI6 INs. In addition, we have evaluated the expression of Pax2, a

TF common to multiple spinal cord INs, including the dI6 INs, as

well as the V0 and V1 INs, but not to dI5 INs [29]. Finally, the

expression of the homeodomain TF Chx10 was used to identify

V2a INs arising from the Dll1-expressing V2 domain [30].

Quantification of Foxd3+ V1 INs in Jag1f/f;NesCre embryonic

spinal cord at E11.5 revealed that lack of Jag1 function results in a

mild, but statistically significant, increase of V1 IN production,

when compared to control embryos (Fig. 2 A,C,D). On the

contrary, Dll1f/f;NesCre embryos showed similar numbers of

Foxd3+ V1 INs to that in control embryos (Fig. 2 A,B,D). This

Jag1-specific V1 phenotype was further confirmed by a modest

increase of En1+ INs found in Jag1 mutants at E11.5, when

compared to control embryos (Fig. S1). A recently published work

has also reported an increase in V1 INs on a different Jag1 mutant

mouse [15], although the V1 neurogenic phenotype we observed

in Jag1f/f;NesCre embryos is not as striking.

We next quantified the number of Chx10+ V2a INs in Jag1f/f;

NesCre embryos (Fig. 2 C,E), and no significant alteration was

observed, in contrast with the marked increase of V2a INs detected

in Dll1f/f;NesCre mutants, (Fig. 2 B,E). Noticeably, the increase of V1

Figure 1. Markers used to identify different domains in the
embryonic spinal cord. The mutually exclusive expression pattern of
Jag1 and Dll1 in relation to the transcription factor code used to
identify different types of INs arising from each progenitor domain. At
E11.5, V1 INs are identified through the expression of Foxd3 and En1
[13,22]. A subpopulation of V2 INs (the excitatory V2a INs) expresses
Chx10 and a subpopulation of V0 INs (the V0V) expresses Evx1 [27,28].
dI6 INs were characterized through the combined expression of Pax2,
Bhlhb5 and Evx1. Pax2 is a TF common to multiple INs, such as dI6, V0
and V1 INs but not to V2 or dI5 INs. Pax2+ cells dorsally located to Evx1+

V0V INs and ventrally to Pax22 dI5 INs, are either dI6 or Evx12 V0D INs.
To detect only dI6 INs, we analysed the expression of Bhlhb5 combined
with Evx1. All Bhlhb5+ INs, located dorsally to Evx1+ V0V INs, are dI6 INs
[26].
doi:10.1371/journal.pone.0015515.g001
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INs in Jag1f/f;NesCre mutants is less pronounced than the increase in

V2a INs found in Dll1f/f;NesCre mutants, being also statistically less

significant (t-test, p,0.05 versus p,0.005) (Fig. 2 D, E). Our findings

show that Jag1 is necessary to maintain the normal pace of

neurogenesis within the V1 domain, but is not controlling progenitor

maintenance in the adjacent Dll1-expressing V2 domain. In

addition, the relatively mild Jag1 phenotype in the V1 domain

suggests that not all V1 neural progenitors are affected by the lack of

Jag1-mediated Notch signalling. This is further supported by our

finding that the number of later V1-derived IN sub-types

(Calbindin+ and Foxp2+) is not altered in Jag1f/f;NesCre spinal cords

(E15.5), when compared to control embryos (Fig. S2). Together,

these results raise the hypothesis that control of V1 neurogenesis in

the absence of Jag1 may be, at least partially, rescued by Dll1

signalling from the V0 and V2 neighbouring domains.

To further test this hypothesis, we analysed neuronal production

in the other Jag1-expressing domain of the spinal cord, the dI6

domain. Our results show that the number of Bhlhb5+ dI6 INs in

Jag1f/f;NesCre (E11.5) embryos is indistinguishable from that

detected in control and in Dll1f/f;NesCre embryos (Fig. 3 A–

C,G). Similarly, quantification with Pax2 confirmed that dI6

neurogenesis is not affected in Jag1 mutants, when compared to

control (Fig. 3 D,F,H). The normal production of dI6 INs in Jag1

mutants offers further support to the hypothesis that Dll1

signalling from adjacent domains can compensate the absence of

Jag1 and restore the control of neurogenesis. The increase in the

number of Pax2+ INs detected in Dll1 mutants (Fig. 3 E,H) results

from the overproduction of Pax2+/Evx12 V0D INs, and is not due

to an excess of Pax2+/Bhlhb5+ dI6 INs (Fig. 3 D–F, H). In parallel,

we confirmed that Dll1 is necessary and sufficient for the control of

V0 neurogenesis, as an increase of Evx1+ V0V INs could only be

detected in Dll1, and not in Jag1, mutants (Fig. 3 A–F, I).

Nestin-Cre driver effectively inactivates Jag1 in V1 and
dI6 spinal cord progenitors

To exclude that the mild neurogenic phenotype found in Jag1f/f;

NesCre embryos was due to poor Cre recombinase activity driven

by the Nestin-Cre driver, we evaluated the extent of Nestin Cre-

mediated recombination in the embryonic spinal cord of Jag1

mutants. To assess this, a Rosa26-derived reporter line that

Figure 2. Dll1 and Jag1 deletion leads to domain-specific neurogenic phenotypes. (A–C) Inactivation of Dll1 does not alter Foxd3+ V1
neurogenesis but results in Chx10+ V2a INs overproduction. Inactivation of Jag1 leads to a modest increase in Foxd3+ V1 INs but Chx10+ V2a
neurogenesis remains unaffected. Scale bar 100 mm. (D, E) Cell counts of Foxd3+ cells at E11.5 show a 23% increase of V1 INs in Jag1 mutants, while
quantification of Chx10+ V2a INs shows an increase of 51% when compared to control littermates. Error bars represent s.d. for biological triplicates.
Student’s t-test: *p,0.05; **p,0.005.
doi:10.1371/journal.pone.0015515.g002
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conditionally expresses the YFP gene (Rosa26-YFP) was bred into

the Jag1f/f;NesCre line, allowing us to identify cells where Cre-

mediated recombination is active [19]. E11.5 Jag1f/f;R26-YFP/+;

NesCre embryos were collected and exhibited an intense YFP

immunofluorescence along the whole DV axis of the developing

spinal cord, indicating widespread Cre-mediated recombination in

the neuroepithelium (Fig. 4 A,B and A0,B0). In addition, we have

used immunofluorescence to detect the presence of the Jag1

protein in control and Jag1 mutant embryos. Our results show that

Jag1 is completely absent from the dI6 and V1 domains of Jag1

mutants, demonstrating that the Nestin-Cre driver effectively

deletes Jag1 in the embryonic spinal cord (Fig. 4 A9,B9 and A0,B0).

Notch signalling is still active in the V1 domain of Jag1
mutants

Given the mild V1 phenotype detected in Jag1 mutant embryos,

we next asked whether Notch signalling continues to be active in

the V1 domain, even in the complete absence of Jag1 protein in

the mutant neuroepithelium. To address this, we analysed the

expression of Hes5, the main target and effector of Notch activity

in the developing spinal cord [9]. In situ hybridization with a Hes5

probe in Jag1f/f;NesCre and control embryos revealed that Hes5

mRNA expression is slightly diminished in the V1 domain of Jag1

mutants, but is still broadly detected in V1 progenitors (Fig. 5 A,B).

Simultaneous detection of Dll1 mRNA expression shows that Dll1

transcription continues to be excluded from the V1 domain of

Jag1f/f;NesCre embryos (Fig. 5). These findings confirm the absence

of cross-inhibition between the two genes in the developing spinal

cord, as previously suggested by studies in the chick embryo,

where missexpression of Dll1 or Jag1 did not alter the endogenous

expression domains of Jag1 and Dll1, respectively [15].

The observed Notch activity in the V1 domain of Jag1 mutant

embryos favours the hypothesis that Dll1-expressing cells located

at the boundary between the V0/V1 and V1/V2 domains are

capable of signalling to neural progenitors in the adjacent V1

Figure 3. Ligand inactivation does not affect dI6 neurogenesis. (A–F and I) Dll1 mutants show a 78% increase of Evx1+ V0V INs (indicated with
asterisk), whereas V0 neurogenesis in Jag1 mutants is indistinguishable from that of control littermates. Scale bar 50 mm. Student’s t-test: ** p,0.005.
(A–C and G) Inactivation of either Dll1 or Jag1 does not alter Bhlhb5+ dI6 INs neurogenesis. Quantification was restricted to Bhlhb5+ INs, dorsally
located to Evx1+ V0V INs. Scale bar 50 mm. (D–F and H) When compared to control embryos, Dll1 mutants show a 38% increase in Pax2+ dI6 and V0D

INs, located between Evx1+ V0V INs and Pax22 dI5 INs. This increase is due to Pax2+/Bhlhb52/Evx12 V0D INs overproduction and not an increase in
Pax2+/Bhlhb5+/Evx12 dI6 neurogenesis. Number of Pax2+ dI6 and V0D INs is similar in Jag1 mutants and control littermates. Error bars represent s.d.
for biological triplicates. Student’s t-test: * p,0.05.
doi:10.1371/journal.pone.0015515.g003
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domain, preventing massive differentiation of V1 INs. Consistent

with this observation, high-resolution confocal analysis of the

spinal cord neuroepithelium in Jag1f/f;NesCre and control embryos

after Dll1/Hes5 double in situ hybridization shows the presence of

Dll1-expressing cells flanking Hes5+ V1 progenitors, suggesting that

cells from neighbouring domains are indeed able to laterally signal

to V1 progenitors and mediate Notch-driven Hes5 expression in

these cells (Fig. 5 C,D).

Dll1-mediated signalling from adjacent domains can
compensate absence of Jag1 in V1 and dI6 domains

To definitively confirm our hypothesis that Jag1 absence is

compensated by Dll1 from adjacent domains, we generated

mutant embryos where both Dll1 and Jag1 were conditionally

deleted in the neuroepithelium. For this purpose, we crossed

double-floxed Dll1;Jag1 female mice (Dll1f/f;Jag1f/f) with males

carrying one floxed allele of Dll1, one floxed allele of Jag1 and one

allele of the Nestin-Cre driver (Dll1f/+;Jag1f/+;NesCre). This strategy

allowed us to generate an allelic series for phenotypic analysis.

Neuronal production was monitored in these embryos using the

previously described markers (Fig. 1). For all neuronal types

assessed, double heterozygote embryos (Dll1f/+;Jag1f/+;NesCre) were

indistinguishable from control embryos and were therefore used as

controls (data not shown).

If Dll1 signalling from adjacent domains is able to control

neurogenesis in the V1 domain of Jag1 mutants, the prediction is

that the mild V1 phenotype detected in Jag1f/f;NesCre embryos

would become more pronounced in the absence of the two ligands.

Indeed, quantification of Foxd3+ V1 INs in E11.5 full conditional

Dll1;Jag1 double mutants (Dll1f/f;Jag1f/f;NesCre) revealed the

highest increase, when compared to all other genotypes. For

instance, single Jag1 mutants displayed a 23% increase in Foxd3+

V1 INs (p,0.05), while Dll1f/f;Jag1f/f;NesCre mutants exhibited a

49% increase (p,0.005) (Fig. 6 A,J). This excess in V1

neurogenesis was further confirmed by the analysis of En1+ V1

INs in Dll1f/f;Jag1f/f;NesCre mutants (Fig. S3). In addition, Dll1f/f;

Figure 4. Nestin-Cre driver efficiently inactivates Jag1 in V1 and dI6 domains. (A, B) Immunofluorescence in Jag1f/f;Rosa26YFP/+;NesCre E11.5
embryos shows widespread YFP expression, indicating that most of the cells had undergone Cre-mediated recombination. Since YFP signal fades
away during longer fixations, IF with an anti-GFP antibody was used to detect YFP expression. (A9, B9) The two characteristic stripes of Jag1-protein
expression are absent in Jag1f/f;Rosa26YFP/+;NesCre embryos. (A0, B0) Merge of YFP and Jag1 expression. Scale bar 50 mm. Strong red signal in B9, B0 is
due to erythrocytes.
doi:10.1371/journal.pone.0015515.g004
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Jag1f/f;NesCre mutants showed a marked increase in V1-derived

Calbindin+ Renshaw cells and FoxP2+ non-Renshaw cells (Fig.

S4), in contrast to single Jag1f/f;NesCre mutant embryos (Fig. S2).

Analysis of the dI6 domain shows also a clear increase in the

number of Pax2+ and Bhlhb5+ dI6 INs in full double mutant

embryos (Dll1f/f;Jag1f/f;NesCre) when compared to control or to

single mutant Jag1f/f;NesCre embryos (Fig. 6 D,G,K).

Together, these results indicate that the absence of Jag1 activity

in the V1 and dI6 domains of the developing spinal cord can be

compensated by Dll1-mediated signalling from adjacent domains.

This is further supported by the finding that one functional copy of

Dll1 (Dll1f/+;Jag1f/f;NesCre) is sufficient to partially compensate for

the lack of Jag1 in the V1 domain, reverting the stronger V1

phenotype observed in Dll1f/f;Jag1f/f;NesCre embryos into a mild

phenotype, similar to that observed in Jag1 single mutants (Fig. 6

B,J). Moreover, an identical trend is detected in the dI6 domain,

where the presence of one functional copy of Dll1 results in normal

numbers of dI6 INs (Fig. 6 E,M). These embryos, with just one

copy of Dll1, show also a full rescue of the excessive differentiation

of Chx10+ V2a (Fig. 6 B,K), and of Evx1+ V0 INs (Fig. 6 E,H,L),

confirming the functional activity of the Dll1 allele.

To test gene dosage dependence of the Jag1 phenotype, we

analysed embryos where only one functional copy of Jag1 is

present, in the complete absence of Dll1 (Dll1f/f;Jag1f/+;NesCre). In

these embryos, the number of Foxd3+ V1 INs is similar to that

detected in control embryos, revealing that one functional copy of

Jag1 is sufficient to ensure normal control of V1 neurogenesis

(Fig. 6 C,J). The same applies to the dI6 domain, where the

number of Bhlhb5+ dI6 INs detected in E11.5 Dll1f/f;Jag1f/+;NesCre

embryos is comparable to that found in control littermates (Fig. 6

E,I). Quantification of Pax2+ INs in Dll1f/f;Jag1f/+;NesCre embryos

shows similar numbers to those in single Dll1 and Dll1f/f;Jag1f/f;

NesCre mutants (Fig. 6 I,N). From these results we could confirm

that the excess of Pax2+ INs located dorsally to Evx1+ is not due to

the overproduction of dI6 INs, but rather of V0D INs.

The finding that one functional copy of either Jag1 or Dll1 is

able to rescue the dI6 phenotype detected in Dll1f/f;Jag1f/f;NesCre

embryos, together with our data showing that dI6 neurogenesis is

not affected in either Dll1 or Jag1 single mutants, imply that both

ligands are able to control the rate of dI6 neurogenesis.

Finally, we evaluated V2 and V0 neurogenesis in Dll1f/f;Jag1f/+;

NesCre embryos at E11.5 and found that the functional copy of

Jag1 present in these embryos is unable to rescue the increases in

Chx10+ V2a (Fig. 6 C,K) and Evx1+ V0 INs (Fig. 6 F,I,L) due to

Dll1 deletion. These results confirm that Jag1 does not signal to

adjacent Dll1-expressing domains and that neurogenesis in these

domains is exclusively regulated by Dll1. (A schematic summary of

the above results is presented in Fig. S5).

Discussion

Although Notch signalling is widely used during several

developmental processes, it is not yet clear how different Notch

ligands are employed to control a multitude of distinct cellular

Figure 5. Notch signalling activity is maintained in the V1 domain of Jag1 single mutants. (A, B) At E11.5, expression of Hes5 mRNA can
still be detected in the V1 domain (between dashed white lines) of Jag1 mutants, although levels seem reduced when compared to control spinal
cords. (A9, B9) The gap of Dll1 mRNA expression, corresponding to Jag1+ V1 domain (between dashed white lines), is present in both control and Jag1
mutants. (A0, B0) Merge of double in situ hybridization for Dll1 and Hes5 showing that Hes5 mRNA is still present within Dll12 V1 cells of Jag1 mutants.
Scale bar 20 mm. (C, D) High-resolution confocal images of double in situ hybridization for Dll1 and Hes5 confirm that inactivation of Jag1 does not
abolish Notch signalling in the V1 domain (between dashed white lines). Images show the presence of Dll1+ cells in the V0 (dorsally to white dashed
lines) and V2 (ventrally to white dashed lines) domains flanking Hes5+ V1 progenitors in the neuroepithelium of both control and Jag1 mutants. Scale
bar 20 mm.
doi:10.1371/journal.pone.0015515.g005
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decisions. Here, we address the function of two different ligands,

Dll1 and Jag1, during spinal cord neurogenesis. These ligands are

expressed in non-overlapping complementary domains of the

embryonic spinal cord, and analysis of mouse embryos carrying

mutations in Dll1 and Jag1, singly or in combination, reveals that

the two ligands play equivalent roles in controlling the rate of

neuronal production within their domains of expression. However,

while Jag1 signalling is restricted to cells within its domains of

expression, our results reveal that Dll1 is able to signal to neural

progenitors in the adjacent Jag1-expressing domains and prevent

their untimely differentiation in the absence of Jag1 function.

These results imply that Dll1- or Jag1-mediated activation of

Notch in the spinal cord neuroepithelium is not qualitatively

different, with both ligands contributing to regulate neural

progenitor maintenance but not neuronal cell type diversity.

Dll1 and Jag1 are functionally equivalent in controlling
the rate of neurogenesis within their expression domains

In mammals, four Notch receptors (Notch1–4) can bind five

different ligands, named Delta-like (Dll) 1, 3 and 4, and Jagged (Jag)

1 and 2 [31]. All ligands exhibit different expression patterns during

embryonic spinal cord neurogenesis. While Jag1 and Dll1 are

expressed transiently in non-overlapping complementary domains

along the DV axis, in cells committed to differentiation [32], Dll3 is

expressed later in differentiated neurons, across all DV domains

[10]. A more restricted expression pattern is shown by Dll4, that is

exclusively expressed by V2 differentiating neurons [14,33], and by

Jag2, which is expressed in differentiated MNs [32].

Our previous work showed that Dll1 signalling is necessary to

regulate neurogenesis and that Dll1 deletion causes a neurogenic

phenotype characterized by premature and excessive neuronal

differentiation in the spinal cord domains where the gene is

normally expressed [14]. A recent paper reported that deletion of

Jag1 causes an acceleration of neurogenesis in the V1 domain

where this gene is expressed, suggesting that Dll1 and Jag1 play

similar functions within their expression domains, controlling the

rate of neuronal differentiation [34].

Here, we have analysed a conditional Jag1 mutation in the

developing spinal cord and confirmed that Jag1 is necessary in the

V1 domain to regulate neurogenesis. However, when compared to

the excessive neuronal differentiation caused by Dll1 mutation in the

V0 and V2 domains, the V1 neurogenic phenotype due to Jag1

deletion is milder and seems to be rescued at later stages, as two V1-

derived subtypes of INs are produced in normal numbers in Jag1

mutants. This milder phenotype correlates with our finding that

Notch activity is still present in the V1 domain of Jag1 mutants, as

detected by the expression of the Notch target and effector Hes5.

These results led us to consider the hypothesis that deletion of

Jag1 in the V1 and dI6 domains can be compensated by Dll1

signalling from adjacent domains. Since there is no evidence for any

physical boundary separating the various progenitor domains along

the D-V axis of the embryonic spinal cord, it is conceivable that

Dll1-expressing cells, in direct contact with V1 and dI6 progenitors,

may activate Notch in these cells, enabling neurogenesis to proceed

at normal pace in the absence of Jag1. Neuroepithelial cells

expressing Dll1 might even reach progenitors located further away

inside the V1 and dI6 domains, as suggested by the recent findings

that the Drosophila Delta protein is present in filopodi of signalling

cells within the fly wing and notum epithelium, being able to

mediate lateral inhibition over several cell diameters during

specification of sensory organ precursors [35,36].

Given the difference in width of the two Jag1-expressing

domains, with the V1 domain being 2–3 times wider than the dI6

domain (see Fig. 3), the predicted long-range signalling ability of

Dll1-expressing cells could account for our findings that dI6

neurogenesis is normal in Jag1-mutant embryos and that only a

milder neurogenic phenotype could be detected in the V1 domain.

In this scenario, neural progenitors at the centre of the wider V1

domain may be too far to be reached by neighbouring Dll1-

expressing cells, and will commit to differentiation in the absence

of Jag1 signalling, while all progenitors in the thinner dI6 domain

receive Dll1-mediated signalling.

In Jag1-expressing domains, control of neurogenesis can
be achieved by either Jag1- or Dll1-mediated Notch
signalling

To test whether Jag1 inactivation can be compensated by Dll1-

signalling from adjacent domains, we have generated an allelic

series of Dll1;Jag1 double mutants and analysed neuronal

production in the spinal cord of the various mutant combinations.

Our results show that simultaneous deletion of both copies of Dll1

and of Jag1 causes an extensive differentiation of various subtypes of

INs produced from the DV domains where each ligand is expressed.

In the V1 domain, we could observe that absence of both Jag1 and

Dll1 causes a stronger and more significant increase in the number

of INs than that observed in Jag1 single mutants. In the case of the

dI6 domain, a neurogenic phenotype can only be detected when

both Jag1 and Dll1 are deleted. Thus, clear disruption of V1 and dI6

neurogenesis only occurs when the two ligands are deleted, showing

that Dll1-signalling is indeed able to compensate for lack of Jag1.

This conclusion is further supported by the finding that a single copy

of Dll1 (in Dll1f/+;Jag1f/f;NesCre embryos) is enough to restore dI6

neurogenesis and revert the strong V1 neurogenic phenotype to a

milder one, similar to that detected in Jag1 single mutants. In

addition, the fact that the identity of dI6 and V1 INs is not altered

when Jag1-mediated signalling is replaced by Dll1-mediated

signalling from adjacent domains reveals that these Notch ligands

do not regulate neuronal type specification within each DV domain.

Figure 6. Jag1 deletion can be compensated by Dll1-signalling from adjacent domains. In double mutant Dll1f/f;Jag1f/f;NesCre embryos
(A), both Foxd3+ V1 INs and Chx10+ V2a INs are strongly increased, while one functional copy of Dll1 (B) rescues the V2a phenotype completely and
the V1 phenotype partially. On the contrary, one functional copy of Jag1, in the absence of Dll1 (C), rescues the V1 phenotype but fails to revert the
excess of V2a INs. (D–I) A neurogenic phenotype in the dI6 domain can only be observed in the absence of both ligands, using either bHLHb5 (D–F)
or Pax2 (G–I) to identify dI6 neurons, located dorsally to the Evx1+ V0V INs (indicated with asterisk). The presence of one functional copy of Dll1 (E,H)
or of Jag1 (F,I) is enough to prevent excessive dI6 neurogenesis. The number of Evx1+ V0V INs is only increased in the complete absence of Dll1
(D,F,G,I) as one functional copy of Dll1 is enough to revert the V0V neurogenic phenotype, even in the absence of Jag1 (E,H). Although one functional
copy of Jag1 (F) is enough to revert the excess of Bhlhb5+ dI6 INs detected in Dll1f/f;Jag1f/f;NesCre embryos (D), an excess of Pax2+ INs located dorsally
to Evx1+ V0V INs (indicated with asterisk) can still be detected in Dll1f/f;Jag1f/+;NesCre embryos (I), when compared to Dll1f/f;Jag1f/f;NesCre (G). The
excess of Pax2+ INs arises from the Dll1-dependent V0D domain (Pax2+/Evx12) and not from the Jag1-expressing dI6 domain (Pax2+/Evx12/Bhlhb5+).
On the contrary, one functional copy of Dll1 is enough to rescue both the V0D and dI6 neurogenic phenotypes (E,H). Scale bar 50 mm. (J–N) Graphics
depicting the quantification of various types of INs in different allelic combinations of Dll1 and Jag1. The percentage of positive cells for each marker
is relative to the total number of cells, detected by DAPI staining of the entire spinal cord sections where the counts were done. Error bars represent
s.d. for at least three biological replicates. Student’s t-test * p,0.05; ** p,0.05; *** p,0.001.
doi:10.1371/journal.pone.0015515.g006
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Dll1 and Jag1 are differently restricted in their range of
action to control neurogenesis in the developing spinal
cord

While our results show that Dll1 can signal outside its own

domains of expression and compensate for the absence of Jag1 in

the dI6 and V1 domains, Jag1 can only control neurogenesis inside

these domains, failing to compensate Dll1 deletion in adjacent

domains. This is particularly evident in our analysis of dI6

neurogenesis: while double mutant embryos (Dll1f/f; Jag1f/f; NesCre

embryos) show a marked increase in Pax2+ INs derived from the

neighbouring dI6 and V0 domains, the presence of one functional

copy of Jag1 (Dll1f/f;Jag1f/+;NesCre) is able to restore the normal

number of dI6 INs (identified as Pax2+/Bhlhb5+) but not the

number of the immediately adjacent dorsal V0D INs (also Pax2+
but negative for bHLHb5 and Evx1).

The described incapacity of Jag1 to signal to neighbouring cells

within Dll1-expressing domains might be due to the presence of

Lunatic Fringe (LFng), which is known to modulate the response

of Notch receptors to different ligands [37–40]. Actually, LFng is

expressed in the same domains as Dll1 and is excluded from the

dI6 and V1 domains, where Jag1 is expressed [41]. Studies in both

Drosophila and vertebrates have shown that the o-fucosyltransferase

activity of Fng proteins leads to a modification in Notch receptors

that blocks activation of the pathway by the Serrate/Jagged class

of ligands [37]. This offers a simple explanation for the finding that

Jag1 is unable to compensate the absence of Dll1 in neighbouring

progenitors, as Notch receptors in these cells have been modified

by LFng and are therefore unable to be activated by Jag1.

On the contrary, several reports have shown that modification of

Notch by Fringe enhances Delta-mediated activation [37,39,42].

This suggests that the overlapping LFng and Dll1 expression in the

developing spinal cord results in high levels of Notch activity, which

are necessary for the proper control of neurogenesis. However, our

results indicate that Fringe activity is not absolutely needed for the

ability of Notch to respond to Dll1-signalling during neurogenesis:

in the absence of Jag1, a functional copy of Dll1 is sufficient to

regulate neural progenitor differentiation in the Fringe-negative dI6

and V1 domains, thereby implying that the levels of Notch activity

elicited by Dll1 binding are still sufficient to control neurogenesis.

This is in agreement with biochemical data reported by Yang et al.,

who showed that, in the absence of Fringe, the levels of Notch

activity elicited by Dll1 or Jag1 are identical [40]. These findings

also suggest that levels of Notch activity are not uniform along the

DV axis of the developing spinal cord, being higher in Dll1+/LFng+

domains than in Jag1+/LFng2 domains. Nonetheless, our results do

not support the model proposed by Marklund et al., in which both

Dll1 and Jag1 are prohibited from signalling across domain

boundaries [15]. This model is based on the finding that ectopic

Dll1 expression in the chick spinal cord was unable to inhibit

neuronal differentiation in the Jag1-expressing V1 domain.

However, this data does not rule out that Dll1-signalling from cells

located in adjacent domains can activate Notch in V1 and dI6

progenitors, as the endogenous expression of Jag1 in electroporated

cells can result in cis-inhibition of the ectopically expressed Dll1. A

similar cis-inhibition of Dll4 signalling by Jag1 has been described in

stalk cells during retina angiogenesis [43] and might explain the lack

of Dll1 activity in the chick gain-of-function experiments [34].

In summary, Dll1 and Jag1 can similarly activate Notch signalling

in neural progenitors of the embryonic spinal cord to regulate their

commitment to differentiation, although the two ligands are

differently restricted in their range of action: while Jag1 is effectively

prevented from signalling to progenitors located in adjacent Dll1-

expressing domains, Dll1 can efficiently signal to progenitors in

Jag1-expressing domains and regulate their differentiation.

Supporting Information

Figure S1 Inactivation of Jag1 leads to a modest
increase of En1+ V1 INs. (A, B) Immunofluorescence analysis

of MNs (Islet1+) and V1 INs (En1+) in control and Jag1 mutants at

E11.5 shows that inactivation of Jag1 does not alter MN

neurogenesis and confirms the modest increase in the production

of V1 INs. Scale bar 50 mm.

(TIF)

Figure S2 Generation of later V1-derived neuron sub-
types is not affected in Jag1 mutants. At E15.5, generation

of Foxp2+ non-Renshaw cells (A, B), and Calbindin+ Renshaw

cells (C, D) is similar in control and Jag1 mutant spinal cords. Scale

bar 100 mm.

(TIF)

Figure S3 Simultaneous inactivation of Dll1 and Jag1
results in a marked increase of En1+ V1 INs. (A, B)

Immunofluorescence analysis of V1 INs (En1+) in control and

Dll1f/f;Jag1f/f;NesCre embryos at E11.5 showing that inactivation of

both ligands leads to a marked overproduction of V1 INs. Scale

bar 100 mm.

(TIF)

Figure S4 Simultaneous inactivation of Dll1 and Jag1
results in overproduction of two later V1-derived neuron
subtypes. An excess of Foxp2+ non-Renshaw cells (A, B), and of

Calbindin+ Renshaw cells (C, D) is only detected in Dll1f/f;Jag1f/f;

NesCre embryos, when compared to control littermates. Scale bar

100 mm.

(TIF)

Figure S5 Schematic representation of the domain-
specific neurogenic phenotypes detected in Dll1 and
Jag1 mutants. Summary of the results obtained from the

analysis of spinal cord neurogenesis in Dll1 and Jag1 mutants.

(TIF)
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