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Abstract

The hemodynamic response measured by Near Infrared Spectroscopy (NIRS) is temporally delayed from the onset of the
underlying neural activity. As a consequence, NIRS based brain-computer-interfaces (BCIs) and neurofeedback learning
systems, may have a latency of several seconds in responding to a change in participants’ behavioral or mental states,
severely limiting the practical use of such systems. To explore the possibility of reducing this delay, we used a multivariate
pattern classification technique (linear support vector machine, SVM) to decode the true behavioral state from the
measured neural signal and systematically evaluated the performance of different feature spaces (signal history, history
gradient, oxygenated or deoxygenated hemoglobin signal and spatial pattern). We found that the latency to decode a
change in behavioral state can be reduced by 50% (from 4.8 s to 2.4 s), which will enhance the feasibility of NIRS for real-
time applications.
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Introduction

Brain computer interface (BCI) technologies aim to interpret

neural commands and translate them into communicative signals

or actions, through a computer interface. These systems are

particularly useful for patient populations who have lost limbs or

the ability to communicate. Several technologies have been

studied for recording neural activity in BCI systems, including

direct electrophysiological recordings [1–4], electroencephalogra-

phy (EEG) [5,6], functional magnetic resonance imaging (fMRI)

[7,8] and near infrared spectroscopy (NIRS) [9–12]. These

technologies each present their own advantages and disadvantag-

es, and can be roughly divided according to whether they measure

electrical signals, or hemodynamic signals which are an indirect

measure of neural activity.

Electrophysiological recordings of neural activity have been

explored for use with BCIs, and are the most direct method for

measuring the spiking activity of neurons [1–4]. However,

implanted electrodes are invasive, and developing bio-compatible

devices that are stable over long periods of time is an ongoing

challenge. EEG measures electrical potentials from the scalp, and

has been successfully applied in several BCI applications [5,6], but

the spatial resolution of this technology is relatively poor.

FMRI has much higher spatial resolution than EEG, and

several proof-of-concept studies have demonstrated that subjects

can learn to issue commands using their thoughts in an MRI

scanner [7,8,13–16]. With fMRI based BCI systems, participants

were able to play a simple pong game [8], and navigate through a

simple maze [7], by using their thoughts. However, due to the

constraint that participants must lie in a scanner, fMRI is not

practical for chronic BCI usage.

NIRS overcomes many of the challenges associated with the

aforementioned technologies: it is non-invasive, has moderate

spatial resolution and is highly portable. NIRS has been studied

for use with BCIs [9–12]. Recently, investigators [12] demon-

strated that with a NIRS based BCI, participants were able to

control the movement of a toy train by performing mental

arithmetic.

NIRS measures changes in local concentration of oxygenated

and deoxygenated hemoglobin (oxy-Hb and deoxy-Hb) in the

cerebral blood. This signal is strongly related to the BOLD signal

measured with fMRI, and shows similar temporal dynamics

[17–20]. The hemodynamic response typically peaks about 6s

following stimulus onset. This delay presents an important

challenge for BCI systems using hemodynamic signals: it would

be prohibitively inconvenient to wait .6s following a mental

command for a BCI to respond. However, for BCIs and other

real-time neurofeedback applications, the raw neural signal per se

is not important; what is important is how this neural signal is

translated to context relevant commands or feedback. The

translation algorithm plays a critical role in accurately representing

or decoding the participant’s true intention. While we cannot

change the hemodynamic signal itself, we can in principle improve

this translation algorithm to reduce the delay between the onset of

mental actions, and the onset of BCI commands or feedback.

Compared to fMRI, two unique properties of NIRS make this

improvement possible: higher temporal resolution and the measure-

ment of concentration changes in both oxy- and deoxy-Hb. Typical
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NIRS studies measure hemodynamic changes at a rate of ,10 Hz,

thus providing a more detailed picture of the hemodynamic

response than fMRI, which typically measures at 0.5–1 Hz. In

principle this improved temporal resolution can be used to detect

the onset of a change in brain state well before the peak of the

hemodynamic response. The second advantage of NIRS is that it

simultaneously measures changes in both oxy- and deoxy-Hb

concentrations. This extra dimension has already been shown to be

useful in motion artifact removal [20], and it might also be helpful

for faster and more accurate classification of mental states.

Multivariate pattern classification techniques have been applied

to BCI systems across many modalities [1,7]. These methods are

based on training a classifier to recognize which features of the

data most strongly discriminate between states. Thus, these

methods are useful for identifying which aspects of a signal carry

the most information about the parameter of interest, in this case

mental state. In the present study, we systematically explore the

importance of different features of the NIRS signal to achieve the

fastest and most accurate classification of mental states, using

linear support vector machines (SVM). Participants in this study

performed several blocks of a manual finger tapping task in order

to engage a robust hemodynamic response in motor cortex. We

used these data to train and test classifier performance over a

range of feature spaces, including varying amounts of temporal

signal history, gradient history, Hb concentrations, and spatial

patterns.

Methods

Participants
Six healthy young adults (mean age 30.3, age range 23–37, 3

males) participated in this study. Written informed consent was

obtained from all subjects, and the study protocol was approved by

the Stanford University Institutional Review Board.

Experimental procedure
We used finger tapping as an experimental task because it is

known to elicit a robust hemodynamic response in motor cortex

[20,21]. The task consisted of 10s of finger tapping alternating

with 20s rest periods. The first participant completed 20 periods of

tapping and the remaining five participants completed 10. Before

the experiment, participants were asked to sit relaxed and let their

right hand rest naturally on their right knee. When the word

‘‘Tap’’ appeared on the screen, they began tapping the fingers on

their right hand at a rate of 3–4 taps per second. When ‘‘xxx’’

appeared on the screen, they stopped tapping.

NIRS data acquisition and processing
We used an ETG-4000 (Hitachi Medical, Japan) Optical

Topography system to measure the concentration change of

oxy-Hb and deoxy-Hb. We used the two ‘‘464’’ measurement

patches provided by Hitachi. The two patches were held against

participants’ heads using a regular swimming cap. In each patch, 8

emitters and 8 detectors are alternatingly positioned, for a total of

32 probes, resulting in 48 measurement channels. The sampling

frequency was 10Hz. The measurement area covered bilateral

motor cortex, as we expected the left motor cortex to be activated

by the right hand finger tapping task.

Support Vector Machine (SVM)
We used the MatLab version of libsvm [22] (http://www.csie.

ntu.edu.tw/,cjlin/libsvm/, version 2.89) to perform support

vector machine classification at each time point. We compared

linear and nonlinear SVM performance and found that the

nonlinear SVM tended to overfit; we therefore used linear SVM in

this study. In linear SVM there is one free parameter (C) which

controls the penalty on the error term. In order to find the optimal

value of C, we systematically investigated the performance (in

terms of classification accuracy) for different values and found that

C = 128 gave a stable result; we therefore used this value

throughout the study.

For each participant, we trained the SVM with the first half of

trials and tested on the second half. Each time point was treated as

an instance, and labeled as tapping (+1) or rest (21).

Feature space
The main objective of this study was to find what features of the

measured data are most informative for accurately classifying the

mental state. Assuming the number of data points in time is N, and

the number of features is m, then the feature space is of dimension

N-by-m. We investigated the performance of several features:

Signal amplitude. Signal amplitude is simply the measured

concentration change of hemoglobin. All signals were filtered

using the exponential moving average (EMA) method (see below)

prior to inclusion in the feature space. If only oxy-Hb is included

in the feature space, the feature space is of dimension N-by-1. If

both oxy- and deoxy-Hb signals are included, the feature space is

N-by-2.

Signal history. If we include y data points from the

immediate history into the feature space, then the feature space

is of dimension N-by-(y+1). If both oxy- and deoxy-Hb are

included, then the number of features doubles (i.e. the feature

space is of dimension N-by-2 (y+1)).

History gradient: The gradient of the signal at time t is

calculated as the difference between the signal amplitude at time t

and that at time t21, i.e. xt{xt{1 (where xt is the signal

amplitude at time t).

2nd order gradient. The second order gradient at time t is

defined as xtz1zxt{1{2xt, which is the gradient of the first

order gradient.

Spatial pattern. We included the signal from multiple

channels into the feature space. Channels were entered in

decreasing order of the contrast-to-noise ratio (CNR, see below).

Full feature space. Based on the results of this investigation,

the ‘‘full’’ feature space includes: 1s of signal amplitude history, and

both oxy- and deoxy-Hb, in multiple channels (the number of

channels is determined for each individual to maximize the accuracy).

Exponential moving average (EMA)
All signals were preprocessed using an exponential moving

average (EMA) [12] filter. EMA is an efficient real-time method to

remove high frequency instrument noise and low frequency drift

from the signal. It can be viewed as an online version of a

frequency pass filtering method. EMA computes the long-term (L)

and short-term (S) moving average of a time series and returns the

difference between them. EMA effectively eliminates the low- and

high-frequency components from the original signal with low

computational cost [12]. Specifically, assume the original signal is

f(t) and the filtered signal is g(t), then

L(t)~
1

aL

f (t)z(1{
1

aL

)L(t{1)

S(t)~
1

aS

XaS

k~0

f (t{k)

g(t)~S(t){L(t)
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where L(1) = f(1), aL = 100 and aS = 20. The sampling frequency is

10Hz and that means our short term moving average has a

window of 2s.

Contrast-to-noise-ratio (CNR)
We used CNR to quantify the signal to noise ratio (Zhang et al.,

2005). Basically, CNR calculates the amplitude difference between

the averaged signals during task (finger tapping) and rest, divided

by the pooled standard deviation. Larger CNR indicates that the

ratio of finger tapping related signal to noise is larger.

CNR~
mean(task){mean(rest)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(task)zvar(rest)
p

where‘‘task’’ refers to the period of finger tapping, and ‘‘rest’’

means the rest period before finger tapping. To account for the

hemodynamic delay, we chose a time window between 6–12s after

the beginning of tapping as ‘‘task’’ and 0–5s before finger tapping

as ‘‘rest’’.

Calculating delay
We calculated both onset and offset delay for each trial in the

test set. The onset delay is the time between the onset of finger

tapping and the first time point classified as ‘‘active’’. The offset

delay is the time between the offset of finger tapping, and the first

time point classified as ‘‘inactive’’.

Results

We systematically evaluated the addition of features to improve

classification delay, and present the results in the following order:

1) we show the result of a baseline classifier on a single participant

to demonstrate that there is a long delay between the predicted

and actual onset of finger tapping; 2) we test the effect of including

amplitude history, and demonstrate that the classification delay

can be significantly reduced; 3) we also show that including the

history gradient or second order gradient does not improve the

classification onset or offset delay; 4) we show that including both

oxy- and deoxy-Hb improves accuracy; and 5) we find that

including signals from additional channels improves accuracy and

reduces delay. Finally we present the classification results using the

different feature spaces for all six participants, to demonstrate that

our findings generalize.

Baseline classifier
We use SVM with a single feature, oxy-Hb signal in the left

motor cortex, as our baseline classifier. As the feature space is one

dimensional, this method simply classifies based on a single

threshold. Figure 1A and B shows the classification results for

participant 1 where channel 13 has the highest CNR among the

measured channels, and corresponds to left motor cortex. The

classified active state is delayed from the true active state by about

5s. Such a delay is a consequence of the intrinsic dynamics of the

hemodynamic response. In this study, we seek to reduce this delay

by using a more sophisticated classifier.

Including signal history in the feature space
From the raw time course in Figure 1A and B we can see that if

the measured signal at a certain time point is increasing, those time

points are likely in the active state (finger tapping) even though the

absolute signal value might not be high enough to reach the

threshold. Thus, including signal history into the feature space is

likely to improve classification accuracy, and reduce the delay.

NIRS sampling rates are typically on the order of 10 Hz, making it

possible to include fine-grained temporal information in the

classifier. We incorporated 2s of signal history (20 data points)

from channel 13 in participant 1 into our feature space, and used

this 21 dimensional (including the signal at the current time point)

feature space to classify each point of the signal. Figure 1C and D

shows the classification results. Compared to Figure 1A, the

classified active states are temporally more closely aligned to the

true active periods. For trial 11, comparing Figure 1D to 1B, the

onset delay is reduced by 2s. This demonstrates that incorporating

2s of past data points can reduce classification delay.

If we incorporate a longer history into the feature space, will the

accuracy and delay reduction improve further? We investigated

the effect of history length on classification performance by

changing the amount of history incorporated into the feature

space. Figure 2 shows the classification results (accuracy, onset

delay and offset delay) for different amounts of history, in

participant 1. While the inclusion of data points in the history

significantly increases accuracy and reduces the delay, this

improvement plateaus after 1s.

History gradient
In the previous section we used the original signal amplitude as

the feature space. It is possible that, if we use the gradient (slope) in

the feature space, we may further improve the performance. Here

we compare three cases: using the original signal amplitude, using

the gradient, and using the second order gradient. In the latter two

cases (gradient and second order gradient feature spaces), we still

include the amplitude at current time point as one dimension. We

found the classification results are nearly identical (Figure 3) for the

three cases, indicating that slope and second order gradient

doesn’t improve classification performance in this participant.

oxy-Hb and deoxy-Hb
NIRS is unique among neuroimaging technologies in that it

measures both oxy-Hb and deoxy-Hb simultaneously at each

location (channel). Here we investigated the feature space with

different combinations of the two signals: (1) oxy-Hb only, (2)

deoxy-Hb only, (3) both oxy- and deoxy-Hb, (4) correlation based

signal improvement (CBSI) corrected oxy-Hb [20] , (5) total-Hb,

i.e. the sum of oxy-Hb and deoxy-Hb. For each of these 5

combinations, we also investigated the performance as a function

of the length of history included. Figure 4 shows the classification

results using these feature spaces.

We found that oxy-Hb and deoxy-Hb perform similarly (blue

and green traces) in terms of accuracy. Using both oxy-Hb and

deoxy-Hb reduces the onset delay and improves the accuracy by

2.4% compared to using oxy-Hb (or deoxy-Hb) alone. Total-Hb

gave the worst classification results, likely due to the negative

correlation between oxy-Hb and deoxy-Hb [20] . The CBSI

corrected signal performs similarly to oxy-Hb; however in data sets

contaminated with motion artifact (not present in these data),

CBSI may have an advantage.

Spatial patterns
In the previous sections we only used the signal from the

channel showing the largest CNR. In this section, we test whether

the inclusion of more channels in the feature space improves

performance. We first ranked all channels by CNR and then

entered channels one by one into the feature space, by decreasing

CNR. For each channel, we also included 1s of history (11 data

points for each of oxy-Hb and deoxy-Hb). Figure 5 shows the

effect of including more channels in the feature space.

Speeded NIRS Response Detection
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Generalization of the feature set to other participants
We demonstrated in the previous sections that including history

and multiple channels can improve the classification performance

for a single participant. Here, we show that this is generally true

for all participants (Figure 6). The average increase in accuracy,

from the baseline classifier to the full-featured classifier, is 7.7%.

The onset delay is reduced on average by 2.4s and the offset delay

is reduced by 1.3s. The resultant average onset and offset delays

are 2.4s and 0.5s, respectively. We performed a repeated measures

ANOVA to quantify the improvement yielded by the expanded

feature spaces. We found a significant effect of feature space on

accuracy (F(3,15) = 17.2; p,0.005), onset delay (F(3,15) = 9.8;

p,0.005), and offset delay (F(3,15) = 22.4; p,0.005).

Discussion

In this study, we used linear SVM to classify the behavioral state

of participants (finger tapping vs. rest) based on the measured

NIRS signal. Specifically, we explored the usefulness of including

different features, such as temporal history, temporal gradient,

NIRS signals (oxy-Hb, deoxy-Hb, total-Hb and CBSI corrected

signal), and spatial information, for reducing classification delay

and thereby improving accuracy. We identified a specific set of

features, including 1s of history information, oxy- and deoxy-Hb,

and signals from multiple spatial locations, which maximally

reduced the delay in a single participant. We applied the same

feature space to 5 additional participants, and found that

classification delays were similarly reduced across the group.

The full feature space established here was optimized for a

specific participant. Although this set of features was also useful for

reducing classification delays in a larger group of participants, this

is by no means a one-size fits all feature space. It is also worth

noting that the individual channels contributing to the feature

space vary from subject to subject, depending on the CNR for

each channel. Our aim here was to provide an example of the

kinds of features that may be useful for reducing classification

delays. Individual data sets will vary widely in terms of signal-to-

noise ratio, and spatial and temporal properties. The features that

provide the best classification for one data set may not be optimal

for all NIRS data sets, and should ideally be optimized for

individual participants.

The most important feature identified here was the signal

amplitude, followed by the amplitude temporal history. For this

particular data set, the points classified as ‘active’ were for the most

part on an increasing slope. It is therefore quite natural that the

slope would be an important feature for classifying the ‘active’ state.

Including the gradient history produced similar results as including

the amplitude history. This may at first seem surprising, but the

gradient is just a linear function of signal at pairs of time points, and

the linear classifier can also represent slope information.

NIRS measures concentration changes in both oxy- and deoxy-

Hb. This paired information has already been shown to be useful

Figure 1. Classification results for the baseline classifier (top row) and a classifier with signal history included in the feature space
(bottom row). The rectangular blue waveform indicates the onset and offset of finger tapping. A,C) The time series of oxy-Hb concentration change
in channel 13 in participant 1 is plotted. The time points which are classified as active are plotted in red, and inactive in black. B,D) The time series and
classification result of trial 11 is shown in more detail. The feature space of the baseline classifier is simply the amplitude of oxy-Hb in channel 13 (i.e.
one dimensional), which essentially classifies based on a single threshold. It’s evident from panels A and B that the classified active state (red) is
delayed from the true active state (between the vertical blue lines). The onset classification delay in trial 11 is about 6s, and the offset delay is 1.6s.
With 2s history of the oxy-Hb signal in channel 13 incorporated into the feature space (C and D, 21-dimensional feature space), the delay is reduced
to 4s (onset) and 0.2s (offset).
doi:10.1371/journal.pone.0015474.g001
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for reducing motion-induced noise [20]. In two out of six

participants, including both oxy- and deoxy-Hb helped to increase

classification accuracy. Oxy and deoxy-Hb are typically strongly

anti-correlated [20,23–25], and may therefore provide some

redundancy that improves classification in the presence of noise.

Figure 2. Classification accuracy, onset delay and offset delay
as a function of the length of history incorporated into the
feature space. A) Classification accuracy improves up to 1s, and then
plateaus. B) Onset delay is reduced from 6s to 3.5s when 0.5s history is
incorporated. Longer history doesn’t reduce the onset delay further. C)
Offset delay is reduced by 1s. Error bars indicate standard error across
trials.
doi:10.1371/journal.pone.0015474.g002

Figure 3. Including first and second order gradients doesn’t
improve classification performance. A) accuracy, B) onset delay,
and C) offset delay are nearly identical with classifiers based on
amplitude, and first or second order gradients.
doi:10.1371/journal.pone.0015474.g003

Figure 4. Classification results with feature spaces including
oxy-Hb only (blue), deoxy-Hb only (green), both oxy-Hb and
deoxy-Hb (red), CBSI corrected oxy-Hb (cyan), and total (oxy-
Hb+deoxy-Hb, pink). A) accuracy, B) onset delay, and C) offset delay.
Compared to the oxy-Hb only feature space, incorporating both oxy-Hb
and deoxy-Hb improves the accuracy by 2.4% and reduces the onset
delay by 0.3s. The total Hb signal gave the worst classification results;
due to poor accuracy, we did not calculate the onset and offset delay
for total-Hb.
doi:10.1371/journal.pone.0015474.g004

Figure 5. Including signals from multiple channels into the
feature space improves accuracy and reduces delay in
participant 1. A) accuracy, B) onset delay, and C) offset delay. We
ordered all 48 channels by decreasing CNR, and then included one
additional channel in each round in that order. For this participant the
accuracy peaked at 9 channels and then declined due to overfitting.
With 9 channels, the onset delay is reduced to 1.2s and the offset delay
is reduced to 0.7s.
doi:10.1371/journal.pone.0015474.g005
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The usefulness of including deoxy-Hb in addition to oxy-Hb may

depend on the noise level, and seems to vary between individuals.

The temporal proximity of action and feedback is a key factor

for associative learning [26,27]. For example, in a rat running

maze experiment, a delay of just half a second between action and

reward increased the number of trials required to reach learning

criteria by 56, relative to no delay [28]. In recent years, real-time

analysis of brain signals with fMRI [15,29], and EEG [5], have

made it possible to perform neurofeedback based learning studies.

It has been shown that with real-time feedback of neural signals,

individuals can learn to modulate regional brain activity, and

reduce symptoms [15]. However, the long delay of hemodynamic

responses measured by fMRI and NIRS is a potential drawback

for learning efficiency. The method described here permits a

shorter delay between action and neural feedback which can

increase efficiency. The importance of reducing feedback delay

applies equally to BCI systems; with BCIs, not only does the

translation algorithm need to learn to decode the participant’s true

intention, the participant also needs to learn how to better control

the external device. With shortened delays between mental actions

and BCI response, participants should learn more quickly.

NIRS has a high sampling rate relative to the dynamics of the

hemodynamic response that it measures, and it is thus arguable

whether the high sampling rate of NIRS is actually useful. However,

in this study we demonstrated that we can take advantage of this

high sampling rate for earlier detection of brain responses. Based on

our finding that the signal history is an important feature for delay

reduction, it’s unlikely that a similar reduction could be achieved

using real-time analysis of fMRI data, due to lower temporal

resolution (typically,0.5Hz). However, fMRI has much better

spatial resolution, and it’s possible that the spatial information could

also contribute to reducing classification delay [30].

This study demonstrates that with the judicious selection of

feature space we can improve the delay to classification of a

change in behavioral state. The features we have chosen here are

necessarily dependent on the type of classifier we used, in this case

linear SVM. The classifier extracted information about the slope

that was characteristic of data points in the ‘active’ state. However,

it remains to be explored whether non-linear classifiers would rely

on similar feature sets.

It is also unclear whether the features chosen in this study will

generalize to tasks other than finger tapping, and cortical regions

other than motor cortex. For this reason we would recommend

that investigators developing BCI systems should use a similar

methodology to systematically choose the features that result in the

most accurate classification.

To summarize, in this study we demonstrated that by including

specific features, such as the history of signal amplitude, we can

reduce the delay to correctly classifying a change in behavioral

state using NIRS recordings. This work also emphasizes the

usefulness of higher sampling rates, even for the measurement of

signals that are inherently slow, and has important implications for

the development of NIRS based BCIs, and neurofeedback

techniques.

Figure 6. Classification results for all participants. A) accuracy, B) onset delay C) offset delay. The largest boost in accuracy and drop in delay
occurs when history is included in the feature space. For some participants (#1 and #6), including deoxy-Hb or including signals from other channels
also improved the performance. Comparing the classifier with the full feature space (history of oxy-Hb and deoxy-Hb, and other channels) to the
baseline classifier, the average increase in accuracy is 7.7% (p = 0.004, one sample T test, degree of freedom = 5), the average reduction in onset delay
is 2.4s (p = 0.02), and the average reduction in offset delay is 1.3s (p = 0.003).
doi:10.1371/journal.pone.0015474.g006
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