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Abstract

The time of initiation of antiretroviral therapy in HIV-1 infected patients has a determinant effect on the viral dynamics. The
question is, how far can the therapy be delayed? Is sooner always better? We resort to clinical data and to microsimulations
to forecast the dynamics of the viral load at therapy interruption after prolonged antiretroviral treatment. A computational
model previously evaluated, produces results that are statistically adherent to clinical data. In addition, it allows a finer grain
analysis of the impact of the therapy initiation point to the disease course. We find a swift increase of the viral density as a
function of the time of initiation of the therapy measured when the therapy is stopped. In particular there is a critical time
delay with respect to the infection instant beyond which the therapy does not affect the viral rebound. Initiation of the
treatment is beneficial because it can down-regulate the immune activation, hence limiting viral replication and spread.
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Introduction

According to an estimation, the AIDS pandemic has killed

about 2.1 million people, including 330,000 children and about

33.2 million people lived with the disease worldwide [1].

Notwithstanding the exceptional scientific effort to find a ultimate

cure to this immune deficiency disease, there is no definite

treatment to eradicate the virus from infected people to date. What

has been achieved up to date is a prolonged life expectancy by

using antiretroviral cocktails (highly active antiretroviral therapy,

shortly HAART) that, unfortunately, have to be administrated

throughout the life of the patients. Since the uptake of these

therapeutic agents in forms of pills is a significant burden both in

terms of patients commitment and health care costs, there is a

huge interest in understanding when is the golden moment to

initiate the therapy. The question is whether it is possible to delay

the initiation of the therapy while the potency of the immune

response remains unaffected or, conversely, is sooner always better for

anti retro-viral therapy? This issue still remains a challenge although

recent studies agree that an early initiation of the therapy can

influence positively the course of the disease [2]. Hereafter we

show that this is indeed our same conclusion by comparing clinical

data with computer simulations. Moreover, while current

antiretroviral therapy is efficacious only if applied with continuity,

it is of utter interest to study its effect on the dynamics of the virus;

by simulating on a computer the infection, before, during and after

the therapy, we can get insights otherwise difficult or even

impossible to be deduced in vivo.

The early immune response to HIV-1 infection looks likely to be

an important factor in determining the clinical course of disease. If

we watch the first weeks following HIV-1 invasion we find that

they are extremely dynamic. We learn that they are associated

with a hasty damage to the generative immune cell micro-

environment and with an immune response that is only partially

able to control the virus. Once inside the host body, the virus first

replicates locally in the mucosa and then is transported to draining

lymph nodes. There, further viral amplification occurs. In this

initial phase the plasma viremia increases exponentially and

reaches a peak. It terminates when systemic viral dissemination

begins [2]. This phase is associated with significant depletion of

mucosal CD4zT cells. At around the peak time, the disease may

become symptomatic and, more importantly, reservoirs of latent

virus are established [3]. Following this initial ‘‘acute phase’’,

lasting approximatively 100 days after the infection, the beginning

of the chronic phase is characterized by a plateau in the plasma

viral load.

The acute phase is generally divided in the very-early and early

phases. The very-early is asymptomatic, whereas the early is

characterized by the appearance of clinical symptoms [4].

Unsurprisingly, quite a number of researchers has pointed to the

early infection period around the peaking of viremia, prior to

massive CD4z T cell destruction and the establishment of viral

reservoirs, as a narrow but crucial period in which the

antiretroviral therapy can secure a certain advantage on the virus,

controlling its replication, preventing extensive CD4z T cell

depletion from occurring, and curbing generalized immune

activation [2,3]. Hence, there is a ‘‘window of opportunity’’ to

identify. Animal models of AIDS would provide a workbench to

study this issue. However, the only animals susceptible to

experimental HIV-1 (or HIV-2) infection are the chimpanzee,

macaques, gibbon apes and rabbit but unfortunately for us (not

them), AIDS-like disease has not yet been reported in these

species. For what concerns the HIV-infected SCID-hu mice, it is

not yet clear how suitable will it be as a model for AIDS. Another

possibility is to study one of the several subfamilies of naturally

occurring retroviruses that cause immune suppression. For

example the feline immunodeficiency virus (FIV) infecting cats

and the lentivirus simian immunodeficiency virus (SIV) infecting

macaques appear to bear the closest similarity in their pathogen-

esis to HIV infection and AIDS [5]. In either case, leaving out
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ethical arguments, an important drawback of animal experimen-

tation is its cost, both in terms of time and money. Here is where

computational models come handy. They try to resemble, in the

most realistic yet parsimonious way, the events taking place during

the infection of a virus.

In the present work we check out whether the effect of a timely

HAART initiation can prevent the virus to damage the host

defenses and to lodge in cellular and anatomical reservoirs thus

assuring the patient a nearly regular life. We do this by analyzing

clinical data and simulations performed with a model of HIV-1

infection that has previously shown to be a valuable tool for the

study of the AIDS progression and treatment [6,7]. The computer

simulation allows a finer grain study than clinical data does.

Results and Discussion

For the current study we analyze virological data from HIV

patients treated during the very-early, early and late phase of infection

and compare them with computer simulations. Clinical data were

collected at the National Institute for Infectious Disease ‘‘L.

Spallanzani’’. We classify a total of 54 patients in three groups

according to the time they initiated the therapy. Eleven patients

initiated HAART within 20 days from diagnosis, during the very-

early phase of infection, before symptoms begin. Twenty-two

patients underwent HAART during the early phase of HIV-1

infection. Twenty-one patients started HAART during the chronic

phase of infection thus in the late phase. All patients underwent a

therapy cycle for about a year.

Statistical analysis of the clinical data of the three groups reveals

that there is no difference in viral rebound between early and late

patients (P§0.05, Mann-Whitney U two-tailed test) whereas we

find a difference between very-early and late (Pv0.05, Mann-

Whitney U two-tailed test). Simulations are in line with this

finding. This is shown in Figure 1 that compares a single

simulation of the untreated case with respectively a very-early, early

and late settings. As a first observation, in agreement with clinical

data, we note that as soon as the therapy stops the simulated

viremia readily increases and peaks very much like in the acute

phase of the untreated case. Even more interesting is to notice the

swift viral rebound at therapy discontinuation in the early and late

cases. Instead, there is quite a long delay (*8 weeks) in the very-

early case (cyan area in Figure 1). The gist of the message is that a

delay in the initiation of therapy may give the virus the chance to

damage to the generative immune cell micro-environment and

establish latent virus reservoirs [2,3]. Therefore, despite the fact

that the virus emerges again at therapy discontinuation regardless

of when the therapy started, its early control influences positively

the clinical course of the disease.

Since there is no statistical difference between the early and late

groups, from now on, we concentrate on the analysis of the gap

between the very-early and late groups only. To this purpose we can

safely focus on the time point of 4 weeks after therapy

discontinuation, hereafter indicated by V4~V tizTz4ð Þ, where

ti is the time of initiation of the therapy in weeks and T is its

duration.

Before using the simulation to predict the relationship between

the initiation of the therapy and the viremia at its discontinuation,

we have to assess its adherence to clinical data. To this purpose we

carry out a statistical test (chi-square goodness of fit test [23]) and find

that with a significance level of more than 90% the simulations are

adherent to clinical data. Furthermore, in Figure 2, panels A, B

and C, graphically compare the clinical and simulated V4 for both

very-early and late settings. In particular, in panel B the ‘‘whiskers’’

indicate that the median of simulated and real values are pretty

close, whereas panel C shows that the cumulative distribution

functions for the two groups overlap quite well.

The use of the statistical parametric test to evaluate the

relationship between the initiation of the therapy and the

virological rebound V4 urges to check whether the distribution

of the simulated V4 in very-early and late, can be fitted by a normal

distribution. To this purpose panel D of Figure 2 shows the

quantile-quantile plots of the four data sets; data aligned on a line

demonstrates adherence to the normal distribution. Besides, we

perform a chi-square goodness of fit test [23] and find that with a

P{value§0:05 both simulated very-early and late V4 data are

normally distributed. Finally we use a chi-square test for independence

Figure 1. Simulations of treated and untreated case. Comparing simulations of the treated and untreated cases. All simulations share the same
parameter settings with the only difference that therapy starts at day 0 in the very-early, at day 40 in the early and at day 200 in the late settings. The
duration of simulated therapy is one year.
doi:10.1371/journal.pone.0015294.g001
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[23] to demonstrate that within a reasonable significance level the

viral rebound at discontinuation V4 strongly correlates with the

therapy initiation instant ti (x2~191:2).

All the above statistical analysis allow to use the simulation as a

surrogate of reality and therefore to investigate whether there is a

significant association between ti and the viral rebound. The sample

data is summarized in the contingency Table 1. Performing the test we

find x2~191:2. The high value of the statistics leads to the conclusion

that, within a reasonable significance level, the viral rebound at

discontinuation strongly correlates with the therapy initiation instant.

We aim at providing a more precise estimate of the time ‘‘limit’’

beyond which the benefit of an early initiation of therapy vanishes.

The results are shown in Figure 3. The virological rebound at one,

two, four and eight weeks after therapy interruption (called

respectively V1,V2,V4 and V8) as a function of ti are presented.

The points in Figure 3 are fitted pretty well a generalized

(Richards’, [24]) logistic function describing the growth of viremia

as a function of ti,

V tið Þ~az
k{a

1ze{d ti{tcð Þ , ð1Þ

where the parameter k is the carrying capacity or the upper

asymptote, a is the lower asymptote, d is the growth rate, and tc is

the time of maximum growth.

We observe that there are two regimes, one for tivtc days and

one for tiwtc corresponding to what clinicians call respectively best

controllers (with undetectable HIV RNA levels) and rebounders (whose

Figure 2. Clinical and simulated data. Statistical summary of clinical and simulated V4 for both very-early and late settings. Panel A shows how
the data is distributed. In panel B the ‘‘whiskers’’ indicate the lower, median and upper quartile while largest and smaller values are shown by dashed
lines. Outliers are shown as small circles. Panel C shows the cumulative distribution functions for the two groups. Panel D reports the normal
probability plots (or quantile-quantile plots) for comparison to normal distributions. Legend: SVE = simulated very early, PzVE = patients very early;
SL = simulated late, PzL = patients late.
doi:10.1371/journal.pone.0015294.g002
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HIV viremia load returns, approximately, to the pre-HAART

level). Therefore tc can be seen as a critical time point beyond

which the benefit of an early initiation of therapy vanishes.

By moving the time of the measurements beyond one week after

therapy interruption (i.e., V2?V4?V8), the resulting fit

corresponds to a greater a, a smaller d and a lower tc. Note in

particular that the limit

lim
d?0

V tið Þ~ azkð Þ=2

may lead to the deceiving conclusion that there is no window of

opportunity because the viral rebound is independent from ti.

However, from the test performed on V4 we know that this is not

the case. Along the same line, we note that tc depends on when the

viremia is measured: the estimated tc is equal to about 24, 22, 18

and 9 days respectively for V1,V2,V4 and V8.

Conclusions
HAART is costly, it is demanding for both patient and health

care provider, and it brings quite frequently to adverse effects. The

clinical benefit of treatment must therefore be weighed against the

burden imposed by therapy and its side-effects. In the present

study, we resort to a computer model to forecast the dynamics of

the plasma viral load after prolonged treatment interruption and

compare the results with clinical data. Our conclusion, in line with

literature data, is that very early initiation of the treatment is

beneficial because it can down-regulate the immune activation,

hence limiting viral replication and spread. Interestingly, this view

is supported by the observation that HIV triggers the immune

activation directly (e.g., HIV gene products can induce the

activation of lymphocytes and macrophages as well as the

production of pro-inflammatory cytokines and chemokines [3])

or indirectly (e.g., sustained antigen-mediated immune activation

occurs in HIV-1-infected patients due also to other viruses like the

cytomegalovirus or the Epstein-Barr virus [3]). In both case, the

result is a high level of pro-inflammatory cytokines, such as tumor

necrosis factor alpha, interleukin 6 and interleukin 1 beta, right

from the early stages of HIV-1 infection [3].

Simulations and statistical analysis allow to dig into clinical data

to provide a clear cut evidence of the impact of the therapy

initiation point to the disease course.

Methods

The computational model
The microscopic simulation model we employ has a long

history. It is perhaps one of the oldest computational models of the

immune system, dating back to the early nineties [8]. The current

version [9] we use derives from that early model and has been

specialized to simulate the HIV-1 infection some time ago [6]. In

[10] we have described how the HIV evades immune surveillance

by mutation; in [7] we have shown that early application of

HAART is more likely to be beneficial than the deferred one. We

have also used this model coupled with genetic algorithms to

determine the best therapy interruption protocol [11]. This same

model has also been used to describe other disease courses: in [12]

we have shown that the Epstein-Barr virus cannot be cleared by

the immune system because it exploits reservoirs; in [13,14] we

have modeled the effects of a cancer immunoprevention vaccine.

The utility of this model is that with the greatest fidelity possible,

yet avoiding to end up with an unmanageable model, it represents

the basic facts of the immune action solicited by an infectious

agent. For this reason, every lesson learned in previous studies

including parameter tunings, has become an integral part of the

model itself. Mechanisms like hypermutation, affinity maturation

Table 1. Contingency table.

Viral Late Very early Total

rebound (pz) (pz) (pz)

ƒ3 6 98 104

3–4 19 98 117

§4 74 2 76

Total 99 198 297

Contingency table for simulated data where the expected frequency count for
each cell of the table is at least 5. The rows represent the average viremia after 4
weeks from treatment interruption in logarithmic scale. The columns represent
the two groups in which HAART starts during chronic phase (late) or within the
first 20 days (very-early). The null hypothesis states that knowing the start
timing does not help to predict V4. That is, the events are independent.
Support for the alternative hypothesis suggests that the two events are related.
The value found x2~191:2 rejects the null hypothesis.
doi:10.1371/journal.pone.0015294.t001

Figure 3. Virological rebound after stopping HAART. Virological rebound at 1, 2, 4 and 8 weeks after therapy interruption for different starting
time points of HAART (ti). Dots represent the results of thousands simulations. The fitting lines are given by the Richards’ curve in equation 1.
Standard deviation is about 0.1 log10 copies=mlð Þ for all points.
doi:10.1371/journal.pone.0015294.g003
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and so on, have already been investigated and their implemen-

tations have now ‘‘crystallized’’ into the core model.

The simulator represents immunological cells and molecules as

discrete entities residing and interacting on a three-dimensional

regular lattice. Each lattice point represents a unit of volume, that

is, a voxel. The simulated total volume corresponds to a fraction of

a lymph node (see Figure 4). As in cellular automata models, time

is discrete and the state of a lattice point at time t is a function of a

finite number of variables, namely the biological entities residing

on that voxel. Agents are cells and molecules with specific

characteristics (i.e., molecular receptors, half life, etc.). At any time

each agent can be in one of a set of possible states (naı̈ve, active,

resting, duplicating, etc.). Probabilistic rules define the biological

processes by modifying the state of the entities. We can write

s x; tz1ð Þ~f s x; tð Þð Þ where s x; tð Þ is the state of the voxel x given

as the union of the microstates of all entities in x, that is,

s x; tð Þ~
S

z ez tð Þ, with the index z running on all entity types and

ez tð Þ representing the value at time t of the attributes of entity type

z. The function f x; tð Þ embeds many biological processes like cell

differentiation, cell interaction and movement. Another charac-

teristic of this model is that all molecules and cells’ binding sites (e.g.,

cell receptors) are modeled as binary strings of finite length.

Models of this kind are called binary-string models [15]. Each

interaction requires cell entities to be in a specific state. Once this

condition is fulfilled, the interaction probability is computed as a

function of the distance between receptors. Small molecules (i.e.,

molecules with small molecular weight like interleukins or chemokines

that are carriers of physiological signals, are represented as

concentrations and thus their dynamics can be described by partial

differential equations of the parabolic type

Lc

Lt
~D+2c{lczs x,tð Þ

where c~c x,tð Þ is the concentration of chemokines, s x,tð Þ is the

source term (e.g., activated macrophages), D is the diffusion

Figure 4. Simulation space. The ellipsoid lattice resemble the typical shape of a lymph node. Entities interact within voxels. Typical simulations
consist of 5 ml of volume discretized on 27 voxels and populated by about 2:104 cells.
doi:10.1371/journal.pone.0015294.g004
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coefficient and l is the half-life [16,17]. Instead, the differences in

the mobility of the cells is taken into account by implementing a

biased random walk that considers experimentally estimated

diffusion coefficients [18,19]. These are the main features. The

interested reader may look at more comprehensive publications for

further details [6,7,20] and in the supplementary materials.

Clinical studies
We analyze the results of clinical studies performed at the

Clinical Department of the National Institute for Infectious

Disease ‘‘L. Spallanzani’’ in Rome.

A first group of eleven patients (9 male and 2 female) were

diagnosed HIV-1 positive between year 1998 and 2006. All

patients initiated HAART within 18 days from diagnosis, during

the very early phase of infection. The very early phase was defined

as having a negative or indeterminate western blot for HIV-1

antibodies in combination with a positive test for either p24

antigen or a detectable HIV-1 RNA concentration. Those patients

were treated with zidovudine/lamivudine (CBV) in combination

with either the reverse transcriptase inhibitor efavirenz (EFZ) or

one protease inhibitor lopinavir/ritonavir (KAL) or indinavir

(IDV). Because of anaemia and neutropenia were diagnosed, in

two cases CBV has been substituted with lamivudine (3TC) and

staduvine (D4T).

The second group consists of twenty-one patients (12 male, 9

female) enrolled in the program between year 1990 and 2004.

They started HAART during the chronic phase of infection

defined as suggested by the guidelines [21].

The third group is made up by twenty-two patients (21 male

and 1 female) enrolled in the program between year 1998 and

2005. Patients in this group underwent HAART during the early

phase of HIV-1 infection. Early patients were defined as having

documented seronegative HIV-1 antibody test within the previous

6 months; acute symptomatic seroconversion illness; evolving

HIV-specific antibody response by ELISA; positive HIV-DNA

PCR in PBMC. Those patients were treated with three different

drugs (in the majority of cases zidovudine (AZT) plus 3TC plus a

protease inhibitor. Further details can be found in table 1 of [22].

All patients underwent a therapy cycle for about a year.

All clinical investigation have been conducted according to the

principles expressed in the Declaration of Helsinki. The Ethical

Committee of the ‘‘L. Spallanzani’’ Institute approved the study

and the patients gave a written informed consent.

Plasma HIV-1 determination
Plasma HIV-1 RNA levels were determined by a second-

generation assay based on nucleic acid sequence based amplifica-

tion (NASBA), for samples collected until 2001 and by the

branched-chain DNA assay (Versant HIV RNA test, Version 3.0,

lower limit of quantification 50 copies/ml; Bayer Diagnostics,

Milan, Italy) from 2001 until 2008.
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