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Abstract

Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin
signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR)
signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we
present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH) regulates
cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval
tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a
negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via
rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size
reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from
predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels
of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin
or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is
suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target
gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of
FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and
target gene induction caused by low TOR signaling levels.
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Introduction

Transcription factors belonging to the winged helix/forkhead box

(Fox) family are implicated in a variety of biological processes

ranging from embryonic development to the regulation of

metabolism, growth, cell death and organismal lifespan [1].

Members of this transcription factor family share a conserved 110-

residue DNA binding domain first discovered in the Drosophila

Fork Head protein, which therefore and because of structural

reasons is referred to as the forkhead or winged helix domain. The

family is divided into subclasses labeled with the letters A to S, and

this categorization is based on amino acid sequence similarity in

the forkhead domain [2]. For most Fox proteins, knowledge is

scarce about how they are interfaced with upstream signaling

pathways. A well characterized group is the FoxO subfamily

which, among input from other pathways, is regulated by the

insulin signaling module in a way that is conserved between the

nematode Caenorhabditis elegans and humans. This involves direct

phosphorylation by insulin-induced kinases, binding to 14-3-3

proteins and nucleocytoplasmic shuttling [3]. The insulin-forkhead

connection was first described in C. elegans, where mutations in the

insulin receptor gene daf-2 are completely suppressed by mutations

in the FoxO transcription factor gene daf-16 [4,5]. Members of the

FoxA subfamily are also important players in metabolism and

regulated by insulin, but whether the exact mechanism also

involves nuclear exclusion is still a matter of debate and less clear

than for FoxO proteins [6]. Once again, pioneering research in C.

elegans started to uncover a link between a growth control pathway

and a forkhead transcription factor, this time between the worm

Target of rapamycin (TOR) homolog LET-363 and the FoxA

protein PHA-4. The first study in this line of evidence described

the longevity of worms with reduced levels of TOR signaling. In

contrast to the daf-16-dependent lifespan increase of insulin

receptor mutant worms, long life conferred by low levels of

TOR is not affected by daf-16 mutations [7]. This suggested that

insulin and TOR signaling regulate lifespan through distinct

downstream transcriptional regulators. Another condition which,

similar to reduced TOR signaling, can prolong life in nematodes

in a DAF-16-independent fashion is dietary restriction. LET-363 is

involved in the dietary restriction response induced by mutations
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in either eat-2 which lead to reduced food intake by impaired

pharyngeal pumping [8], or in pep-2 mutants which display

compromised intestinal uptake of dietary peptides [9]. PHA-4 was

recently identified as the forkhead transcription factor which is

necessary to increase lifespan under multiple conditions of dietary

restriction, such as lowering the concentration of bacteria fed to

the worms in culture or eat-2 mutations, but not under conditions

of lowered insulin signaling [10], making it a candidate for a

transcriptional effector downstream of TOR signaling. This

working hypothesis was confirmed by the finding that PHA4 is

required for the lifespan extension elicited by reduced LET-363/

TOR or RSKS-1/S6 kinase levels, both of which are independent

of DAF-16 function [11]. These observations prompted us to

investigate a possible link between TOR signaling and the

transcription factor Fork head (FKH), which among the 18

Drosophila forkhead proteins is the only one belonging to the FoxA

subfamily [12]. Here we present evidence that in addition to its

established role in embryonic development and regulation of

salivary gland cell death in the larva, FKH controls cell and

organismal size, that its subcellular localization is regulated by

TOR signaling and that it is necessary for the expression of

rapamycin- and starvation-responsive genes as well as for

rapamycin-induced inhibition of growth. For the first time in

Drosophila, we describe an interaction between TOR and a FoxA

protein, which is in agreement with the observations made in C.

elegans. In addition, our findings yield novel insights about the

regulation of growth by FKH, and how FKH and dFOXO are

partially redundant in the regulation of d4E-BP expression.

Results

Alteration of FKH levels elicits organism and cell size
phenotypes which are sensitive to nutrient conditions
and TOR signaling

As in other organisms, TOR signaling in Drosophila is involved in

the nutrient-dependent regulation of cellular and organismal

growth [13,14]. We therefore first asked whether an alteration of

FKH levels in vivo would have an effect on growth. As homozygous

fkh mutants are embryonic lethal [15], we applied the GAL4/UAS

system to either knock down FKH in larval tissues by RNA

interference or to raise FKH levels by ectopic overexpression, each

under different nutrient conditions. As shown in Figure 1,

overexpression of FKH in the larval fatbody induced by the

pumpless driver causes a severe reduction in body size (Figure 1I

and K), similar to the one resulting from TOR inhibition induced

by rearing the larvae on rapamycin-containing food (Figure 1B).

Rapamycin does not significantly further reduce the size of FKH-

overexpressing animals (Figure 1J). Moderate ubiquitous RNAi

knockdown of FKH with the armadillo driver leads to a slight

decrease in larval size under fed conditions (Figure 1E). Rapamy-

cin feeding causes a reduction in larval size via inhibition of TOR

signaling. However, this phenotype is less strong in animals with

repressed FKH levels (Figure 1F and K), suggesting that FKH is

required for rapamycin-induced growth inhibition. Expression of a

negative control inverted repeat directed against lacZ had no

significant impact on larval size under both conditions (Figure 1C,

D and K), ruling out unspecific effects of double-stranded RNA

expression. Likewise, ectopic expression of b-galactosidase in

UAS-lacZ control animals had no effect on larval size (Figure 1G,

H and K). Quantitative realtime PCR was performed to measure

the efficiency of fkh knockdown by RNAi in this experimental

setup, and fkh transcript levels were found to be reduced by 60%

compared to wildtype larvae (Figure S1).

In a second set of experiments, we analyzed the effect of FKH

overexpression or knockdown on cell size. The ‘FLP-out’ system

[16] was used to overexpress or silence FKH in cell clones in the

larval fatbody. The effects on cell size were similar to those on

organismal size and are displayed in Figure 2, the quantitative and

statistical analysis of cell size phenotypes is shown in Figure 3. For

each genotype and condition, we compared the size of transgene-

expressing cells which are marked by the co-expression of nuclear

green fluorescent protein (GFP) to the size of the non-fluorescent

wild-type cells within the same tissue sample. Cells overexpressing

FKH are significantly smaller than wild-type cells in fed animals

(Figure 2J and 3B) but not in starved larvae (Figure 2K and 3B). In

rapamycin-fed larvae, clonal FKH expression slightly reduced cell

size, but to a much lesser extent compared to yeast-fed animals

(Figure 2L and 3B). This indicates that cells are most susceptibe to

growth inhibition by ectopic FKH expression under conditions of

dietary protein abundance and active TOR signaling. Conversely,

RNAi-induced silencing of FKH expression in cell clones had no

significant effect on cell size in fatbodies of fed larvae (Figure 2D

and 3A), but under conditions of starvation or rapamycin feeding,

FKH knockdown elicited increased cell growth compared to

control cells within the same tissue (Figure 2E, F and 3A). The

observation that cells with low FKH levels are larger than the

neighboring wild-type cells in tissues subjected to starvation or

TOR inhibition supports the model that FKH is required for the

inhibition of growth in response to these conditions. As in the

larval body size experiments described above, fat body cell size was

unaffected by clonal expression of the negative control constructs

UAS-lacZ-RNAi (Figure 2D–F and 3A) or UAS-lacZ (Figure 2J–L

and 3B). In this experimental setup, the FKH phenotypes observed

correspond qualitatively to those of negatively regulating TOR

signaling components. As shown in Figure S4, co-expression of

TSC1 and TSC2 [17], negative upstream regulators of TOR,

strongly reduces cell size in feeding larvae, while the size reduction

is much less pronounced in starved animals. Conversely,

expression of the small GTPase Rheb, which activates TOR

signaling, leads to a mild cell size increase under conditions of

nutrient abundance and to a stronger one under starvation, as has

been reported previously [18,19].

Subcellular localization of FKH depends on nutrient and
TOR signaling levels

In the next step, we sought to investigate whether nutrient or

TOR signaling levels have an influence on the subcellular

localization of FKH protein. To monitor localization of the

endogenous protein in tissues, we generated an affinity-purified

polyclonal antibody against FKH. To ascertain the specificity of

the new tool, western blot and immunohistochemical control

experiments were performed which showed that the antibody

could be used to detect endogenous as well as transgenically

encoded FKH protein in larval extracts with very little unspecific

background (Figure S2A). Furthermore, immunostainings visual-

ized endogenous and overexpressed epitope-tagged FKH protein,

and it could be observed that the main nuclear signal recognized

by the antibody is indeed FKH (Figure S2B–E). Based on these

control experiments, we then analyzed endogenous FKH

localization in the larval fatbody under conditions of different

nutrient and TOR signaling levels. When larvae were fed yeast

paste, which contains a higher fraction of dietary proteins and

amino acids compared to sugar-cornmeal-based fly food [20,21],

FKH was found to be localized in the cytoplasm of fatbody cells

and almost completely excluded from the nuclei (Figure 4A, B and

4E, F). In larvae starved on PBS, nuclear exclusion was not

observed, and the contours of the nuclei were not visible due to the

Regulation of Drosophila FKH/FOXA by TOR
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absence of nuclear signal as in the tissue from animals reared on a

high-protein diet (Figure 4I, J). Significant nuclear accumulation

did not occur either, but the protein was rather evenly distributed

within the cells. It should be noted that under this starvation

condition, dFOXO shows a strong nuclear localization (Figure 4K,

L). In contrast to the condition of complete starvation, in fatbodies

from rapamycin-fed (Figure 4C, D) or heterozygous TOR mutant

larvae (Figure 4G, H), FKH was localized predominantly nuclear,

although a prominent cytoplasmic signal remained detectable.

This suggests that TOR activity is required to keep FKH protein

sequestered in the cytoplasm under conditions of dietary protein

abundance. Importantly, this effect of TOR signaling on FKH

localization was only observed on the endogenous protein. In

contrast, overexpressed FKH was found to be constitutively

nuclear in the larval fatbody (Figure S2B–E) as well as in cultured

S2R+ cells (Figure S2F–K) even under conditions of nutrient

abundance and high insulin/TOR signaling levels.

The expression of cabut and CG6770 is regulated by FKH
and TOR signaling

In an attempt to establish quantitative molecular readouts

which may be used to monitor FKH activity under conditions of

normal or impaired TOR signaling, we screened published

transcriptomic datasets for Drosophila genes which are regulated

by nutrient availability, rapamycin or forkhead transcription

factors in several independent experiments. The gene cabut

encodes a C2H2 zinc finger transcription factor which is

conserved between species (the yeast ortholog is FZF1, human

ortholog is KLF11), plays a role in JNK-dependent dorsal closure

in the Drosophila embryo [22] and was previously identified in

screens for genes involved in axon guidance and synaptogenesis

[23] as well as autophagic cell death [24]. cabut caught our interest

because it was found to be transcriptionally upregulated by

rapamycin in S2 cells, and RNAi knockdown of the gene lead to

increased cell size and proliferation [25]. It therefore is a

Figure 1. FKH levels influence larval body size. Pictures show 72 h old larvae (62h) which were treated at 24 h after egg deposition (AED) with
0 (A, C, E, G, I) or 50 mM (B, D, F, H, J) rapamycin for 48 h. A, B: OregonR wildtype control. C, D: y w UAS-LacZ-RNAi; arm-Gal4/+. Treating control
larvae with 50 mM rapamycin leads to severe reduction of growth. E, F: w; arm-Gal4/+; UAS-FKH-RNAi/+. Untreated larvae are slightly smaller than
controls, but size reduction by rapamycin feeding is less pronounced in larvae with low FKH levels. G, H: w;; ppl-Gal4/UAS-LacZ. I, J: w;; ppl-Gal4/UAS-
FKH. Overexpression of FKH leads to a severe reduction in body size similar to that resulting from rapamycin feeding. At 25uC, overexpression
furthermore leads to larval lethality in the 2nd instar. Rapamycin feeding of FKH-overexpressing larvae has almost no additive effect to the reduction
in body size. (K) Quantitation of larval body size shows that rapamycin-treated larvae with low FKH levels are significantly larger than control larvae
and that untreated larvae with high FKH levels are significantly smaller than control larvae. Significance was tested using an unpaired 2-tailed
Student’s t-test. *** = p,0.001. Error bars represent standard error of the mean (SEM).
doi:10.1371/journal.pone.0015171.g001
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promising candidate growth suppressor gene downstream of TOR

complex 1. It was also identified as being transcriptionally

repressed by a hs-fkh transgene in late prepupae [26] and strongly

induced by sugar condition (protein deprivation) in feeding larvae,

but not by complete starvation [27]. Expression of an active

dFOXO mutant in S2 cells leads to a moderate induction of cabut

expression, while refeeding in adult flies has a weak repressing

effect [28]. The CG6770 gene was first identified as a

transcriptional target of starvation in Drosophila larvae, encoding

a protein with vague similarity to the pancreatic P8 transcriptional

regulator from mouse and human. Expression was induced by

both sugar condition and complete starvation, similar to the

dFOXO target gene d4E-BP [27]. In agreement with these results,

CG6770 was found to be transcriptionally repressed by refeeding

after starvation in adult Drosophila flies and moderately induced by

expression of activated dFOXO in S2 cells [28]. It was

furthermore identified as a negative regulator of cell size in a

genome-wide RNAi screen [29]. We first tested whether the

transcription of cabut and CG6770 is dependent on FKH levels.

The driver lines used were the same as in the larval size

experiments (Figure 1), that is armadillo-GAL4 for targeted RNAi

and pumpless-GAL4 for ectopic expression. RNAi knockdown of

FKH caused a significant decrease of cabut and CG6770 mRNA in

larval extracts, while FKH overexpression induced the transcrip-

tion of both genes (Figure 5A). The induction of CG6770 was

several fold higher than that of cabut. We further validated the

Figure 2. FKH levels influence cell size in the larval fatbody. Pictures show confocal sections of larval fatbodies, using the fly line y w hs-flp;;
Act.CD2.Gal4 UAS-GFP to drive UAS-FKH-RNAi, overexpression and control responder lines. Cells expressing the transgene are marked by the co-
expression of GFP, whereas the non-fluorescent serve as wild-type controls within the same tissue sample. Larvae were reared on yeast for 64 h AED,
or starved on PBS for 24 h after growing on yeast for 64 h, or treated with rapamycin for 24 h after growing on yeast for 48 h. Tissue was stained with
a-GFP (green), a-CD2 (red) and DAPI (blue). (A–C, G–I) Controls show no obvious phenotype in the GFP-positive cells. (D–F) Cells expressing FKH
RNAi have no growth phenotype under fed conditions, but are larger than the surrounding tissue in starved and rapamycin-treated larvae. (J–L) Cells
overexpressing FKH are smaller than the surrounding tissue under fed conditions.
doi:10.1371/journal.pone.0015171.g002
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regulation of CG6770 by FKH with a cell culture-based reporter

gene experiment. When a 880 bp PCR product encompassing the

CG6770 promoter was cloned upstream of a luciferase ORF,

reporter gene induction could be achieved from the resulting

plasmid by co-expression of FKH to a greater extent than by

dFOXO (Figure S3). We are aware of the fact that these

observations do not exclude the possibility that cabut and CG6770

are indirect FKH target genes, however we consider this of little

relevance for their use as indicators for FKH activity. In a next

step following the demonstration that both genes are induced by

FKH, we addressed whether cabut and CG6770 transcription was

also responsive to TOR signaling levels, and could thus be used as

a readout to confirm the interaction between the TOR module

and FKH. Rapamycin feeding elicited a robust induction of cabut

Figure 3. Quantitation of the cell size phenotypes shown in figure 2. Cell size was analyzed by measuring the cell perimeter with the
software ImageJ. Blue bars represent the GFP-negative wild-type cells, red bars represent the cells expressing the transgene. Larvae were fed with
yeast paste, starved on PBS or treated with 50 mM rapamycin. (A) Effect of FKH knockdown on cell size. Larvae were of the genotype y w hs-flp;;
Act.CD2.Gal4 UAS-GFP/UAS-FKH-RNAi (bars labeled ‘‘FKH-RNAi’’) or y w hs-flp;; Act.CD2.Gal4 UAS-GFP/UAS-LacZ-RNAi (bars labeled ‘‘LacZ-RNAi’’)
as an unspecific control. Cells expressing FKH dsRNA are significantly larger than the surrounding tissue in larvae which were starved on PBS or
treated with rapamycin. (B) Effect of FKH overexpression on cell size. Larvae were of the genotype y w hs-flp;; Act.CD2.Gal4 UAS-GFP/UAS-FKH (bars
labeled ‘‘UAS-FKH’’) or y w hs-flp;; Act.CD2.Gal4 UAS-GFP/UAS-LacZ (bars labeled ‘‘UAS-LacZ’’) as an unspecific control. Cells which overexpress FKH
are significantly smaller than the surrounding tissue in fed larvae, but not in larvae starved on PBS. They are also significantly smaller than wild-type
cells in larvae treated with rapamycin. Significance was tested using an unpaired 2-tailed Student’s t-test. * = p,0.05; ** = p,0.01; *** = p,0.001.
Error bars represent SEM. Because the larvae are not age-matched across the different conditions (see Materials and Methods), we base our
statements on the comparison of transgene-expressing cells to the wild-type control cells within the same sample, and not on the comparison of
absolute cell sizes across different conditions.
doi:10.1371/journal.pone.0015171.g003
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as well as CG6770 expression in larvae (Figure 5B). Transcription

of both genes was likewise elevated in heterozygous and

homozygous TOR mutant larvae (Figure 6B). The highest levels

of CG6770 expression, which apparently is more sensitive to TOR

signaling levels than cabut expression, were measured in rapamy-

cin-fed larvae which also expressed transgenic FKH (Figure 5C),

although the difference in CG6770 transcript levels to the FKH-

expressing larvae without rapamycin is not significant.

FKH is required for the response to rapamycin and
lowered TOR levels

Based on the observations described above, we addressed

whether FKH plays a functional role of physiological relevance

downstream of TOR. Several lines of evidence indicate that FKH

is required for the induction of cabut and CG6770 as well as for

growth inhibition under conditions of low TOR signaling. First,

target gene mRNA levels in FKH-RNAi larvae fed with

rapamycin were lower than in wild-type or lacZ-RNAi control

animals subjected to the same treatment (Figure 6A), indicating

that FKH function is required for full expression of both genes

upon TOR inhibition. However, both genes still appear to be

induced by rapamycin in FKH-RNAi larvae, because FKH

knockdown also reduces basal cabut and CG6770 transcript levels

in the absence of rapamycin. Second, larvae with reduced FKH

levels were less susceptible to growth inhibition by rapamycin

(Figure 1B and F). Likewise, individual cells in which FKH

expression was silenced had a growth advantage over the

neighboring wildtype cells under conditions of starvation or

TOR inhibition (Figures 2 and 3). Third, the augmented

transcription of CG6770 and cabut in heterozygous TOR mutant

larvae was reversed to wild-type levels in double mutant animals

carrying a single copy of the fkh1 or the fkh6 loss-of-function allele

[15] in addition to the TOR mutation (Figure 6B). Fourth,

presence of the fkh1 allele significantly increased the body weight of

adult flies heterozygous for a TOR mutation (Figure 6C). Taken

together, these results demonstrate that FKH function is required

in vivo for the inhibition of organismal and cellular growth and the

induction of target gene transcription under conditions of low

TOR pathway activity.

Impact of FKH and TOR on the expression of the dFOXO
target d4E-BP

Finally, we investigated the convergence of transcriptional

regulation downstream of the insulin and TOR signaling modules.

More specifically, we measured the impact of FKH and TOR

signaling on the expression of the dFOXO target gene d4E-BP/

Thor. The O subfamily forkhead transcription factor dFOXO is

negatively regulated by insulin signaling and activates transcription

Figure 4. Subcellular localization of FKH is modulated by nutrient availability and TOR signaling. Confocal sections of larval fatbody are
shown. For each section, one panel shows only the signal derived from the FKH or dFOXO antibody in green, and a second panel an additional
nuclear counterstain with DAPI pseudo-colored in red. (A, B) FKH is excluded from the nucleus in fatbodies of wildtype 2nd instar larvae fed on yeast.
(C, D) FKH accumulates in the nucleus in fatbodies of wildtype larvae treated with 50 mM rapamycin. (E, F) Closeup of A, B. (G, H) FKH is nuclear in
heterozygous TOR mutants (y w; dTORDP/+). (I, J) Nuclear exclusion of FKH is not observed in larvae subjected to starvation on PBS. (K, L) In contrast
to FKH, dFOXO shows a clear nuclear localization in wildtype larvae starved on PBS. Scale bar is 20 mm.
doi:10.1371/journal.pone.0015171.g004

Regulation of Drosophila FKH/FOXA by TOR

PLoS ONE | www.plosone.org 6 December 2010 | Volume 5 | Issue 12 | e15171



of d4E-BP, which in turn represses cap-dependent translation under

conditions of nutrient scarcity [30,31]. Rapamycin was found to

induce transcription of d4E-BP in larvae, whereas RNAi-knock-

down of FKH lead to a significant decrease of expression under both

conditions. Conversely, overexpression of FKH elicited a strong

elevation of d4E-BP mRNA levels (Figure 7A). Similar to the effect

on CG6770 and cabut, TOR-mutant larvae displayed increased d4E-

BP transcription, which was completely suppressed by the fkh1 or the

fkh6 mutation (Figure 7B). These results suggest that induction of

d4E-BP transcription is not only mediated by dFOXO under

conditions of starvation and low insulin signaling, but also by FKH

when TOR signaling levels are low.

Discussion

In C. elegans, the FoxA transcription factor PHA-4 has been

identified as a mediator of TOR signaling in the regulation of

lifespan. In this study, we present a characterization of the fly

FoxA protein FKH in the biological context of TOR-regulated

growth and gene transcription. Figure 8 shows a simplified

schematic representation of the working model which we propose

based on our experimental results, describing FKH as a mediator

of the cellular response to protein deprivation.

As FKH has been previously uncharacterized in terms of

growth control, we first established that alterations of FKH levels

lead to changes in cellular and organismal size. Ectopic expression

of FKH reduced growth of feeding larvae and of fatbody cells

under conditions of nutrient abundance, and induced expression

of the rapamycin-sensitive genes CG6770 and cabut. The

observation that FKH overexpression phenotypes are strongest

under conditions of dietary protein abundance and active TOR

signaling might reflect a scenario in which the abundance of

upstream negative regulators of FKH is limiting under these

conditions. Thus an experimental elevation of FKH protein levels

would override the endogenous upstream signaling systems and

elicit an inhibition of growth. As discussed below, the same

argumentation could explain the finding that in contrast to the

endogenous protein, overexpressed FKH accumulates in the

nucleus even on a high-protein diet. The same three readouts

were used to demonstrate that FKH function is required for

growth inhibition downstream of TORC1. Targeted knockdown

of FKH by RNAi diminished the decrease in larval size, fatbody

cell size as well as the induction of rapamycin target gene

expression when TOR signaling activity was lowered. The

elevated transcription of CG6770, cabut and d4E-BP in heterozy-

gous TOR mutants was likewise suppressed by fkh loss-of-function

Figure 5. Transcription of CG6770 and cabut is regulated by FKH and rapamycin. Realtime qPCR was performed to quantify mRNAs in larval
extracts. (A) Compared to wildtype animals, the putative FKH targets CG6770 and cabut are downregulated in yeast-fed larvae with low FKH levels (w;
arm-Gal4/+; UAS-FKH-RNAi/+) and upregulated in larvae overexpressing FKH (w;; ppl-Gal4/UAS-FKH). (B) CG6770 and cabut transcription is induced in
wildtype larvae fed with 50 mM rapamycin. (C) CG6770 and cabut mRNA levels are significantly elevated upon rapamycin treatment and in larvae with
high FKH levels in comparison to the wildtype and unspecific controls (w;; ppl-Gal4/UAS-LacZ). Rapamycin treatment of larvae with high FKH levels
has no significant additive effect on target gene expression. Significance was tested using an unpaired 2-tailed Student’s t-test. * = p,0.05;
** = p,0.01; *** = p,0.001. Error bars represent SEM.
doi:10.1371/journal.pone.0015171.g005
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alleles, corroborating the findings obtained from our RNA inter-

ference experiments.

In addition to its function in the regulation of TOR-dependent

growth and gene expression, we investigated the impact of nutrient

levels and TOR signaling on the subcellular localization of FKH. On

a protein-rich-diet, FKH was excluded from the nucleus in larval

fatbody tissue, and inhibition of TOR signaling by pharmacological

or genetic means elicited a robust nuclear translocation of the

transcription factor. Starvation induced by complete nutrient

deprivation on PBS only had a weak effect on FKH localization,

diminishing nuclear exclusion to the point that the contours of the

nuclei, which were visible due to the absence of nuclear signal in the

yeast feeding condition, were no longer discernible. Albeit weak, we

believe that this increase in nuclear localization is biologically

relevant, as FKH function is required for the starvation-induced

attenuation of cell growth in the larval fatbody (Figures 2 and 3). As

described above, the subcellular distribution of FKH in starved

animals is in stark contrast to the one of dFOXO, which is

predominantly nuclear in this nutritional state. Another apparent

difference between the shuttling of FKH and dFOXO is that in the

case of dFOXO, both the overexpressed and endogenous protein

translocates to the cytoplasm upon insulin stimulation of cells. This

likewise holds true for the mammalian FOXO proteins. The situation

for FOXA proteins appears to be somewhat less uniform. We report

for the fly FOXA/FKH that the endogenous protein is excluded from

the nuclei in the larval fatbody under conditions of highly abundant

dietary protein and amino acids, which translates into high TOR

signaling activity. In contrast, overexpressed FKH protein is

constitutively nuclear even on a high protein diet. The cause for

this may be that the abundance of one or several upstream regulators

is limiting and tuned to endogenous FKH concentrations. If the copy

number of FKH protein is elevated beyond physiological levels, it

may escape negative regulation and nuclear export induced by the

endogenous signaling components, and thus accumulate in the

Figure 6. FKH is required for the response to rapamycin and lowered TOR levels. Realtime qPCR was performed to quantify mRNAs in
larval extracts. (A) Transcription of CG6770 and cabut is induced upon rapamycin treatment (Rapa) and downregulated in larvae with low FKH levels
(w; arm-Gal4/+; UAS-FKH-RNAi/+). Compared to rapamycin-fed wildtype and unspecific control animals (w; arm-Gal4/+; UAS-LacZ-RNAi/+), expression
of CG6770 and cabut is significantly lower in rapamycin-fed FKH-RNAi larvae. (B) Consistent with the high expression of CG6770 and cabut in
rapamycin-treated larvae, these genes are transcriptionally upregulated in dTOR mutants (y w; dTORDP/+ and y w; dTORDP/dTORDP). The elevated
expression is suppressed in larvae transheterozygous for dTOR and FKH (y w; dTORDP/+; fkh1/+ and y w; dTORDP/+; fkh6/+), indicating that FKH function
is required for target gene induction by low TOR signaling. (C) The body weight of adult flies heterozygous for dTORDP is increased by the presence of
one copy of the fkh1 allele. Both male and female transheterozygous flies are slightly but significantly heavier than dTORDP/+ flies. Significance was
tested using an unpaired 2-tailed Student’s t-test. * = p,0.05; ** = p,0.01; *** = p,0.001. Error bars represent SEM.
doi:10.1371/journal.pone.0015171.g006
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nuclei. In the field of mammalian forkhead transcription factors, the

insulin-dependent nucleocytoplasmic shuttling of FOXO proteins is

well established [3]. Also mouse Foxa2 has been shown to translocate

to the cytoplasm under conditions of high insulin signaling in cultured

cells as well as in tissues such as liver and hypothalamus [32,33,34],

but there have been conflicting reports arguing that hepatic Foxa2 is

constitutively nuclear, irrespective of metabolic state or insulin levels

[35,36]. It remains to be investigated whether the regulation of

Drosophila FKH localization and activity by TORC1 described here is

conserved in mammalian orthologs such as Foxa2. Conversely, it

remains to be investigated whether the TOR-dependent nuclear

exclusion of FKH is a consequence of protein phosphorylation.

Cytoplasmic sequestration of mouse Foxa2 is linked to phosphory-

lation of T156 by AKT, a residue within a sequence motif that is

conserved in Drosophila FKH [34]. In the light of our study and the

interaction of FoxA/PHA-4 with TOR and S6K in C. elegans [11], it is

also tempting to speculate that FoxA proteins may be regulated

through phosphorylation by TOR or S6K.

d4E-BP has been previously described as a target of dFOXO

[30,31]. We have demonstrated that d4E-BP expression is silenced

Figure 7. FKH and TOR impact on the expression of the dFOXO target d4E-BP. Realtime qPCR was applied to quantify mRNAs in larval extracts.
(A) Compared to wildtype and unspecific control animals, transcript levels of d4E-BP are low in larvae expressing FKH dsRNA (w; arm-Gal4/+; UAS-FKH-
RNAi/+) and high in larvae overexpressing FKH (w;; ppl-Gal4/UAS-FKH). d4E-BP is upregulated in larvae treated with rapamycin, and the elevated d4E-BP
transcription resulting from rapamycin feeding is completely suppressed by FKH RNAi. (B) d4E-BP is upregulated in dTOR mutants (y w; dTORDP/+ and y w;
dTORDP/dTORDP) and the expression is suppressed in larvae transheterozygous for dTOR and FKH mutations (y w; dTORDP/+; fkh1/+ and y w; dTORDP/+;
fkh6/+). This suggests that d4E-BP is a transcriptional target not only of the insulin pathway and dFOXO, but also of the TOR pathway and FKH.
Significance was tested using an unpaired 2-tailed Student’s t-test. * = p,0,05 ** = p,0,01 *** = p,0,001. Error bars represent SEM.
doi:10.1371/journal.pone.0015171.g007

Figure 8. A simplified working model of nutrient-dependent gene expression by TOR and FKH. (A) Under conditions of dietary protein
abundance, the TOR signaling module is active and exerts a negative regulation on FKH, which is consequently sequestered in the cytoplasm and
unable to modulate gene transcription. (B) When TOR complex 1 activity is inhibited by rapamycin or protein deprivation, the repression of FKH
activity is diminished. A significant fraction of the cellular FKH pool accumulates in the nucleus and activates expression of the growth-inhibiting
genes CG6770, cabut and d4E-BP.
doi:10.1371/journal.pone.0015171.g008
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by low FKH levels and elevated upon FKH overexpression.

Moreover, 4E-BP transcript levels are elevated upon pharmaco-

logical or genetic inactivation of TOR. As with the FKH target

genes cabut and CG6770, the positive effect of rapamycin or TOR

mutation on 4E-BP expression is suppressed by FKH knockdown

or FKH loss-of-function mutations. We therefore argue that d4E-

BP is most likely a common transcriptional target of both dFOXO

and FKH and thus constitutes an additional point of crosstalk

between the insulin and TOR signaling modules. The fact that

FKH and dFOXO share the conserved forkhead DNA binding

domain may suggest at least partially overlapping target gene

populations. Regarding the growth-suppressive action of FKH

under conditions of nutrient deprivation, it is currently unclear

whether growth inhibition is mainly achieved through the induction

of CG6770, cabut and d4E-BP or if other, yet unidentified FKH

targets also contribute to this phenotype. d4E-BP mutants have no

overgrowth phenotype under normal conditions [37], but it remains

to be investigated whether they display impaired growth inhibition

under starvation conditions. The observation that the Thor1 allele

partially suppresses the Akt1 cell number phenotype in the eye

provides evidence that d4E-BP function is required when insulin

signaling levels are lowered [30]. In cultured cells, knockdown of

CG6770 [29] or cabut [25] leads to increased cell size, raising the

possibility that they also act as negative regulators of growth

downstream of FKH. Further studies are required to assess the

relative relevance of the individual target genes in this context.

In summary, we present the first evidence that the interaction

between TOR signaling and FoxA proteins is conserved in

Drosophila. Our study supports a model in which FKH is regulated

by the TOR pathway and dFOXO by the insulin/PI3K pathway,

two signaling systems that are already interwoven at several points

such as TSC2 and 4E-BP. On the level of transcription factors, there

seems to be differential regulation: FKH is activated under

conditions of protein deprivation and low TOR signaling, while

dFOXO is activated by complete starvation and low insulin

signaling. However, there is also a downstream node of conver-

gence. The expression of the translational inhibitor d4E-BP, which

has been established as a dFOXO target and is transcriptionally

induced by protein deprivation as well as complete starvation [27],

is induced under conditions of low TOR signaling by FKH. This

emerging molecular scenario outlined by these observations would

allow cells and organisms to react specifically to different conditions

of nutrient availability and food composition.

Materials and Methods

Constructs, antibodies and fly lines
The open reading frames (ORFs) encoding FKH (a protein

comprising 510 amino acid residues) and dFOXO (a protein

comprising 613 amino acid residues) were PCR-amplified from

genomic DNA (fkh is a single-exon gene) isolated from adult flies

and from a pUAST-dFOXO plasmid template [30], respectively.

The amplicons were cloned into pENTR/D-TOPO (Invitrogen)

to generate gateway entry constructs, which were fully sequenced

to ensure sequence integrity. Cell culture expression constructs

were then created by transferring the ORFs via LR recombination

into the modified gateway destination vector pAHW-Blast, which

corresponds to the pAHW plasmid from Terence Murphy’s

Drosophila Gateway Vector Collection [38] with a blasticidin

resistance cassette cloned into the backbone, and allows expression

of N-terminally 3xHA-tagged proteins under control of the

Actin5C promoter. Furthermore, a pAGW-FKH construct was

generated to allow expression of a green fluorescent EGFP-FKH

fusion protein. P-element based expression constructs for trans-

genic flies were created by transferring the fkh ORF into pTHW

and pTRW from the same vector collection. The resulting

plasmids pTHW-FKH and pTRW-FKH allow GAL4-induced

expression of 3xHA-FKH and red fluorescent mRFP1-FKH,

respectively. An inverted repeat construct for the targeted in vivo

knockdown of FKH by RNAi was created by first PCR-amplifying

the first 701 bp of the fkh ORF with a XhoI linker added to the

forward and a BglII linker to the reverse primer. The resulting

amplicon was digested with XhoI and then self-ligated with T4

DNA ligase. The correct 1.4 kb ligation product was gel purified,

digested with BglII and cloned into the BglII site of pMF3 [39].

The cloning step was performed in SURE bacteria (Stratagene).

The CG6770 reporter plasmid pGL3-CG6770 was constructed by

cloning a 880 bp PCR amplicon covering the CG6770 regulatory

region up to the translation start codon into the pGL3-Basic vector

containing the gene encoding Photinus pyralis (firefly) luciferase

(Promega) as a BglII/blunt fragment. pGL3-Basic was first

digested with NcoI, the resulting 59 overhangs were then blunted

with T4 DNA polymerase before proceeding with BglII digestion

as the second step. The PCR was performed with a 59-

phosphorylated reverse primer to ensure efficient ligation by T4

DNA ligase. The control construct for expressing Renilla reniformis

luciferase under control of the RpIII128 promoter, polIII-RL [40],

was a kind gift of Norbert Perrimon. Phusion DNA polymerase

(Finnzymes) was used for all PCR steps in this study. All primer

sequences are provided as supporting information in Text S1. A

polyclonal antibody against FKH was generated by Coring

Systems Diagnostix (Gernsheim, D). aFKH1 was raised in rabbit

against the peptide SHSSLEATSPGKKD, and purified by

immunoaffinity chromatography. The location of the peptide in

the FKH protein sequence is provided as supporting information

in Text S3. Two independent transgenic UAS-FKH-RNAi lines

were mainly used. One was established with our pMF3-FKH

construct described above, and one was obtained from the

Transgenic RNAi Project (TRiP) at Harvard Medical School

(TRiP stock JF02417) [41]. A third construct which was generated

by cloning a 913 bp amplicon spanning part of the fkh ORF and

part of the fkh 39-UTR into the Sym-pUAST-w vector [42] was

found to be less effective in inducing in vivo knockdown compared

to the other two constructs (data not shown), and was therefore not

further used in most experiments. The regions in the fkh mRNA

which are targeted by the three individual RNAi constructs are

provided as supporting information in Text S2. All in vivo RNAi

experiments which involved knockdown of FKH expression were

performed in parallel with transgenics carrying the pMF3

construct or the TRiP construct, and identical phenotypes were

observed for both. The loss-of-function allele dTORDP, which is a

deletion generated by imprecise P-element excision and removes

the dTOR translation start site as well as the amino-terminal 902

codons [14], was a gift of Tom Neufeld. The fkh loss-of-function

alleles fkh1 (stock nr. 3331) and fkh6 (stock nr. 545) were obtained

from the Bloomington Drosophila Stock Center. fkh1 contains an

ethyl methanesulfonate (EMS)-induced point mutation changing

the codon for W254, a residue in the forkhead DNA-binding

domain, into a stop codon, while the X-ray-induced allele fkh6

carries an 11 bp deletion which produces a frameshift after the

codon for residue E7 [15]. FKH overexpression in vivo was

achieved by use of transgenic UAS-3xHA-FKH or UAS-mRFP1-

FKH lines which were established with our pTHW-FKH and

pTRW-FKH constructs.

Larval starvation and rapamycin feeding
If not stated otherwise, embryos were collected for 4 h on PBS-

agar plates with yeast paste (prepared by suspending one cube of
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42 g fresh yeast in 6.5 ml PBS). The fatbody samples shown in

Figure 2 are derived from larvae that were treated as follows: for

the ‘‘yeast’’ condition, larvae were kept on yeast paste until 64 h

AED. For the ‘‘PBS’’ condition, larvae were kept on yeast paste

until 64 h AED, washed out of the yeast paste, rinsed with water

and transferred to a petri dish with PBS-soaked filter paper for

another 24 h. For the ‘‘rapamycin’’ condition, larvae were kept on

yeast paste until 48 h AED, before 200 ml of a 50 mM rapamycin

(LC Laboratories) solution was added to the yeast paste and the

plates were further incubated for 24 h at 25uC.

Immunohistochemistry
Antibody stainings were performed as described before [43]. In

brief, larval tissues were dissected in Drosophila Ringer’s solution

and fixed for 309 in 4% formaldehyde in PBS+0.5% Tween-20

(PBT). Tissue was blocked with 5% Goat Serum in PBT for 309,

and washed before and after incubation with primary antibody in

PBS+0,5% Tween-20 or PBS+0.1% Tween-20, respectively, for

5/5/15/309. Incubation with primary antibodies diluted in

blocking solution was performed over night at 4uC. Fluores-

cence-coupled secondary antibodies were applied for 1 h at RT.

DAPI (1 mg/ml) was included in the last washing step before

samples were mounted in Mowiol (Roth). Primary antibodies used

were rabbit aFKH1 (dilution 1:200), mouse anti-GFP (Sigma,

dilution 1:500), guinea pig anti-ppl (a gift of Ingo Zinke, dilution

1:500) and mouse anti-CD2 (Serotec, dilution 1:200). Secondary

antibodies (all diluted 1:200 in PBS+0.1% Tween-20+5% Goat

Serum) used were Alexa Fluor 488 goat anti-mouse IgG and Alexa

Fluor 546 goat anti-rabbit IgG (Invitrogen) and Cy5 anti-guinea

pig (Jackson ImmunoResearch). Mounted tissue was analyzed

using a Zeiss LSM 710 confocal microscope and images were

further processed with the Zeiss LSM Image Software. The size of

cell clones in fatbody samples was measured using the ImageJ

software.

Cell culture and luciferase assays
Drosophila S2R+ cells were obtained from the Drosophila

Genomics Resource Center (DGRC stock nr. 150), cultured at

25uC in Schneider’s Drosophila medium (Invitrogen) containing

10% heat-inactivated FCS (Sigma). Cells were split and diluted to

a density of 16106 per ml once per week. For reporter gene assays,

S2R+ cells were transfected with the FuGene HD reagent (Roche)

in 24 well-plates (Greiner). Per well, 50 ng of the reporter

construct pGL3-CG6770 and 5 ng polIII-RL were used. Where

indicated, 200 ng of expression plasmids pAHW-FKH-Blast or

pAHW-dFOXO-Blast were co-transfected with the reporter gene

constructs. After the cells had grown in the multiwell plates to a

density of ca. 80%, transfection was performed for 8 h, after which

cells were allowed to recover on serum-containing medium for

12 h and subsequently subjected to serum deprivation over night.

Cells were lysed in Passive Lysis Buffer before measuring firefly

and Renilla luciferase activities subsequently in each sample

according to the Dual Luciferase System protocol (Promega) in a

Wallac luminometer (PerkinElmer). The firefly luciferase values

were normalized to the Renilla values to account for variations in

transient transfection efficiency.

Realtime PCR
Quantitative realtime PCR to measure transcript levels was

done as described previously [20]. Briefly, total RNA was

extracted from Drosophila larvae with TriFast (peqlab)/chloroform

in a Precellys homogenisator (peqlab), following the manufactur-

er’s protocol. Extracted RNA was dissolved in DEPC-treated

water. To minimize RNA degradation, RNA was stored at 280uC

and used as a template for cDNA synthesis within 24 h. 1 mg of

total RNA was used for cDNA synthesis with the QuantiTect kit

(Qiagen). cDNA integrity and absence of contamination by

genomic DNA was assessed by a PCR amplification of Actin5C

from + and 2 reverse transcriptase reactions. Realtime qPCR was

performed with a CFX96 instrument (Bio-Rad). Primers were

designed with the GC-content recommended for qPCR (between

40% and 60%) and low self-complementarity using the software

tool Primer3. Prior to quantitation experiments, primer efficiency

and NTC (No Template Control) was tested for each primer pair

to ensure an efficiency of at least 80% and rule out primer dimer

formation. PCR reactions consisted of first-strand cDNA template

and iQ SYBR Green Supermix (Biorad). Actin5C and rp49

transcript levels were used for normalization. All primer sequences

are provided as supporting information in Text S1. For every

mRNA quantitation, the minimal number of replicates consisted

of biological triplicates, with each triplicate measured twice as

technical replicates for a total of six measurements.

Statistics
Error bars represent the standard error of the mean (SEM) if not

stated otherwise. Statistical significance was assessed using an

unpaired two-tailed Student’s t-test, comparing the experimental

data with the respective controls. For comparisons between one

experimental value and two control values (such as wildtype and

unspecific RNAi controls), analysis of variance (ANOVA) was used

in addition to confirm the significance values derived from the

pairwise t-tests. If not stated otherwise, all experiments were

carried out at least twice independently. Asterisks indicate a p-

value of ,0.05 (*), ,0.01 (**) or ,0.001 (***). Significance was

tested with the software InStat 3 from GraphPad Software.

Supporting Information

Figure S1 Efficiency of RNAi-mediated knockdown. fkh mRNA

levels were quantified in larval extracts by quantitative realtime

PCR to control RNAi-mediated knockdown. Compared to wild-

type larvae, expression of fkh dsRNA (pMF3-fkh construct) under

control of the armadillo driver lead to a reduction of fkh transcript

levels by 60%. Heterozygosity for the fkh1 allele reduced larval

transcript levels by 70% compared to wildtype animals.

(TIF)

Figure S2 Control of antibody specificity and localization of

overexpressed FKH. FKH is the main protein recognized by the

newly generated aFKH1 antibody in western blots and immuno-

stainings, and overexpressed FKH is constitutively nuclear. (A)

Western blot analysis of larval extracts probed with the aFKH1

antibody. Lane 1: in an extract from wild-type larvae, the antibody

detects a single protein band of approximately 54 kDa, which is the

predicted molecular weight of FKH and therefore most likely

corresponds to endogenous FKH. Lane 2: in an extract from w;

UAS-mRFP1-FKH; ppl-GAL4 larvae, the 54 kDa protein is detected

as well. In addition, a band of higher molecular weight is visible

which corresponds to the transgenically encoded mRFP1-FKH

fusion protein. (B–E) Immunofluorescent double staining of fatbody

from y w hs-FLP;; Act.CD2.Gal4 UAS-GFPnls/UAS-3xHA-FKH

larvae. The GFP-marked cell clones express transgenically encoded

3xHA-tagged FKH protein, which is recognized by a mouse

monoclonal anti-HA antibody (B) as well as the rabbit polyclonal

aFKH1 antibody (D). Secondary antibodies used were anti-mouse-

Cy3 and anti-rabbit-Cy5. For both antibodies, one panel shows the

only the signal of the actual immunostaining (B and D), panel C

shows the merged signals of the clone marker GFP and and the
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nuclear DAPI stain, and panel E a merged picture with all four

channels. Also when both stainings are performed separately on

different batches of tissue from larvae of the indicated genotype, the

nuclear 3xHA-FKH is detected by aFKH1 as well as anti-HA (data

not shown). This demonstrates that aFKH1 is a suitable tool to

visualize FKH in immunostainings, and that the main nuclear signal

detected by the antibody corresponds to FKH protein and not an

unspecific protein recognized by the antibody. In contrast to the

endogenous protein (see figure 4), overexpressed FKH is localized in

the nucleus also under conditions of high TOR and insulin

signaling. The fatbody shown in panels B–E is from a population of

larvae which had been reared on protein-rich yeast paste,

nevertheless the overexpressed 3xHA-FKH protein is nuclear. We

also investigated the subcellular localization of overexpressed

fluorescent FKH fusion proteins in cultured cells. (F–H) In S2R+
cells that had been transiently co-transfected with pAct5C-GAL4

and pTRW-FKH and were growing in serum-containing medium,

the red fluorescent mRFP1-FKH protein is localized in the cell

nuclei. (I–K) Likewise, in S2R+ cells that had been transiently

transfected with pAGW-FKH, were growing in serum-containing

medium and had been furthermore stimulated with 100 nM bovine

insulin for 20 min., the green fluorescent EGFP-FKH is nuclear.

Panels F and I show the signal of the respective fluorescent FKH

fusion proteins, panels G and J the DAPI DNA stainings of the same

confocal sections, and H and K the merged pictures containing

signals from both channels. The same nuclear localization was

observed in cells that had either been treated with 20 nM

rapamycin for 30 min. or serum-deprived over night and

subsequently subjected to PI3K inhibition with 50 mM LY294002

for 1 h (data not shown).

(TIF)

Figure S3 Induction of CG6770 promoter activity by FKH.

Over-expressed FKH protein activates transcription from the

CG6770 promoter in cultured cells. S2R+ cells were transiently

tranfected with a reporter plasmid containing the firefly luciferase

gene under control of the CG6770 regulatory region. The Renilla

luciferase construct polIII-RL was co-transfected as an internal

control to compensate for well-to-well variation in transfection

efficiency. Before lysis and luciferase measurements, cells were

incubated in serum-free medium over night to lower growth factor

signaling levels. Compared to cells transfected with the luciferase

vectors only, co-transfection of the dFOXO expression plasmid

pAHW-dFOXO-Blast lead to a several fold induction of luciferase

expression from the CG6770 promoter. Expression of FKH by co-

transfection with pAHW-FKH-Blast elicited a much stronger

induction of the reporter construct, leading to luciferase levels that

were 5 fold higher than in the dFOXO-expressing cells and 20 fold

higher compared to the control cells without expression vector.

(TIF)

Figure S4 Correlation with TSC1/2 and Rheb gain-of-function

phenotypes. Inhibition or activation of TOR signaling leads to

similar phenotypes as FKH overexpression and knockdown,

respectively. (A and C) On a protein-rich yeast paste diet, co-

expression of TSC1 and TSC2 in cell clones in the larval fatbody

leads to a strong reduction in cell size. (B) The growth-inhibiting

effect of TSC1/2 expression is much less pronounced in starved

animals. (D) Conversely, activation of TOR signaling by

expression of the small GTPase Rheb (Saucedo et al., 2003;

Stocker et al., 2003) has a very mild growth-promoting effect on a

protein-rich diet and (E and F) a stronger one under conditions of

starvation. The same driver line was used as in the experiments

shown in figure 2. A similar correlation was observed when using

the expression of FKH target gene candidates as a readout. (G)

Like FKH knockdown, expression of Rheb (driven by arm-Gal4)

silences transcription of CG6770 and d4E-BP. Inhibition of TOR

signaling by TSC1/2 expression (driven by ppl-Gal4) leads to a

strong elevation of mRNA levels of both genes, as does FKH

expression. These observations further strengthen our model that

FKH is functionally linked to the TOR signaling module.

(TIF)

Text S1 Sequences of primers used in this study.

(PDF)

Text S2 Regions in the fkh mRNA sequence targeted by the

individual RNAi constructs used.

(PDF)

Text S3 Location of the peptide used for antibody generation

within the FKH protein sequence.

(PDF)

Acknowledgments

We thank Thomas Neufeld (University of Minnesota), Ernst Hafen and
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