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Abstract

Background: There is a growing interest in the study of signal processing and machine learning methods, which may make
the brain computer interface (BCI) a new communication channel. A variety of classification methods have been utilized to
convert the brain information into control commands. However, most of the methods only produce uncalibrated values and
uncertain results.

Methodology/Principal Findings: In this study, we presented a probabilistic method ‘‘enhanced BLDA’’ (EBLDA) for multi-
class motor imagery BCI, which utilized Bayesian linear discriminant analysis (BLDA) with probabilistic output to improve the
classification performance. EBLDA builds a new classifier that enlarges training dataset by adding test samples with high
probability. EBLDA is based on the hypothesis that unlabeled samples with high probability provide valuable information to
enhance learning process and generate a classifier with refined decision boundaries. To investigate the performance of
EBLDA, we first used carefully designed simulated datasets to study how EBLDA works. Then, we adopted a real BCI dataset
for further evaluation. The current study shows that: 1) Probabilistic information can improve the performance of BCI for
subjects with high kappa coefficient; 2) With supplementary training samples from the test samples of high probability,
EBLDA is significantly better than BLDA in classification, especially for small training datasets, in which EBLDA can obtain a
refined decision boundary by a shift of BLDA decision boundary with the support of the information from test samples.

Conclusions/Significance: The proposed EBLDA could potentially reduce training effort. Therefore, it is valuable for us to
realize an effective online BCI system, especially for multi-class BCI systems.
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Introduction

Brain computer interface (BCI) is a new communication

channel that directly translates brain activities into control

commands or messages for peripheral equipments. BCI may

enable the disabled to control a computer application or a neuro-

prosthesis [1,2]. For both laboratory study and practical

application, accuracy and information transfer rates (ITR) [3]

are two important factors for BCI performance evaluation. At

present, BCI applicability is severely limited by its unsatisfactory

ITR and accuracy. A feasible way to increase ITR of a BCI system

is to change the usual binary decision to a more diverse decision

[4,5].

However, when the number of brain patterns increases, both

signal processing (feature extraction) and machine learning (pattern

classification) will encounter difficulties. For example, the classifi-

cation accuracy may decrease due to the interference of the new

patterns. Currently, some classifiers (e.g., the linear discriminant

analysis (LDA), multilayer perception, nearest neighbor classifier,

and combined algorithms [6]) have been introduced for a multi-

class BCI. However, most of the classifiers only use the information

in training set without considering the possible change of the statistic

properties between training and test sets.

Recently, certain probabilistic methods (e.g., Gaussian processes

[7], Bayesian learning [8,9]) have been introduced to improve the

robustness and generalization of a BCI. In recent studies, because

of its low computational complexity and immunity to overfit, LDA

classifier is often preferred over its nonlinear counterparts in BCI,

especially when a small number of samples are available for

training [10]. Motivated by the success of LDA in BCI, Hoffman

et al. developed an evidence framework based Bayesian LDA

(BLDA), and verified its usefulness in a P300 based BCI [11].

Although probabilistic methods may provide confidence level of

the output that is meaningful for further post-processing (e.g.,

classifiers combination [11,12]), these algorithms have not been

discussed in terms of solving multi-class problem in BCI.

By focusing on the application of BLDA in multi-class motor

imagery task, this paper proposed an enhanced BLDA (EBLDA),

which could increase the performance of BCI by using the

information mined from test samples (i.e., adding reliable tested

samples with high classification probability to the training set to

further improve the classifier performance).
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The paper is organized as follows. Section Materials and Methods

provides a detailed description of BLDA and EBLDA, and the

simulated dataset, the BCI experimental dataset, and the pre-

processing techniques (e.g., selection of filters, time interval, and

feature extraction) are included in this section too. Results are

provided in Section Results. Section Discussion is a general

discussion for the results.

Materials and Methods

1. BLDA
BLDA is based on the evidence framework for Bayesian

regression and has been certified very useful in a P300 based BCI

[11]. BLDA is a Bayesian version of regularized LDA, in which

regularization parameters are estimated with Bayesian regression.

Previous studies have revealed that compared with LDA, BLDA is

more competitive for the conditions with a small number of train

sets or strong noise contamination [9,11].

Assuming that the target y and feature vector X are linearly

related, and bias z has Gaussian form, the linear classifier should

have a form as follows,

y~wT Xzz ð1Þ

Let SXY ~f(x1,y1),:::,(xL,yL)g be the training set composed of

feature vector xi and the corresponding binary states yi [Y~f1,2g.
From (1) we can obtain the likelihood function for the weights w as,

p(SXY jb,w)~(
b

2p
)L=2exp({

b

2
X̂X T w{Y
�� ��) ð2Þ

Where Y denotes a vector containing all the training targets, X̂X
denotes the matrix that is obtained from the horizontal stacking of

the training feature vectors, b denotes the inverse variance of the

noise, and L denotes the number of training samples. In BLDA,

combing the bias z into the weights w, by expanding the dimension

of w, i.e., the last entry of w is the bias term, the prior distribution of

the weights w is assumed as,

p(wja)~(
a

2p
)n=2(

e

2p
)1=2 exp ({

1

2
wT I

0
(a)w) ð3Þ

where w is extended to n+1 dimension with last entry being the bias

term, and I
0
(a) is a diagonal matrix with n+1 dimension having

form as

I
0
(a)~

a 0 � � � 0

0 a � � � 0

..

. ..
.

P
..
.

0 0 � � � e

2
66664

3
77775 ð4Þ

The prior for the weights is thus an isotropic, zero-mean Gaussian

distribution with variance 1=a, and the prior for the bias being the

last entry in w, is a zero-mean univariate Gaussian process with

variance 1=e, where e is a small bias value for overcoming the

danger of overfitting. n is the dimension of a feature vector. From

the likelihood function and prior distribution, the posterior

distribution can be computed by using Bayes rule as,

p(wjb,a,SXY )~
p(SXY jb,w)p(wja)Ð
p(SXY jb,w)p(wja)dw

ð5Þ

Since the prior distribution and likelihood distribution are

Gaussian, the posterior distribution also has Gaussian form and

the distribution can be determined by the mean (m) of w and

covariance (C ) as follows,

m~b(bX̂XX̂X TzI
0
(a)){1XY ð6Þ

C~(bX̂XX̂X TzI
0
(a)){1 ð7Þ

From the posterior distribution and likelihood function, the

predictive distribution can be obtained by inserting a new test

feature vector ~XX as,

p(~yyjb,a, ~XX ,SXY )~

ð
p(~yyjb, ~XX ,w)p(wjb,a,SXY )dw ð8Þ

where p(~yyjb, ~XX ,w) denotes a normal distribution. The predictive

distribution can be characterized by its means (u) and variance (s2) as,

u~mT ~XX

s2~1=bz ~XX T C ~XX
ð9Þ

Accordingly, we can calculate the probability of feature ~XX belonging

to class label y = 1(similar to class label y = 21) as,

p(~yy§0jb,a, ~XX ,SXY )~W(
u

s
) ð10Þ

where W denotes the standard normal cumulative distribution

function.

Obviously, the probabilistic output (10) depends on the mean u
and variance s2 calculated from equation (9). Therefore, both the

posterior distribution (5) of w and the predictive distribution (10) of

~yy depend on the parameters a and b. In BLDA, the parameter

selection problem is solved efficiently by maximum-likelihood

estimates [11]:

a~
nPn

i~1 ciizm2
i

ð11Þ

b~
L

tr(X̂XX̂X T C)zjjX̂X T m{Y jj2
ð12Þ

where n denotes the dimension of a feature vector and L denotes

the number of training samples. BLDA uses an iterative scheme to

estimate the parameters as : 1) C and m are computed for an initial

value of a and b; 2) the hyperparameters are updated according to

(11) and (12); 3) Equations (6), (7), and (11), (12) are iterated to

obtain the predictive distribution until the values for the

hyperparameters converged; 4) the probability that feature ~XX
belongs to class 1 by standard normal cumulative distribution

function is calculated by (9) and (10).

At last, the linear decision boundary for binary problems is,

mT ~XX~0 ð13Þ

2. EBLDA
In order to release the training effort and improve the

performance of a BCI system, this paper proposed a post-

processing algorithm by rebuilding a new classifier through adding

Probabilistic LDA
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additional test samples with high probability to training sets. We

refer to the new algorithm as enhanced Bayesian LDA (EBLDA).

Generally, the size of training sets can influence the performance

of classifiers in two ways. On one hand, a large training set may

contain more outliers and artifacts, which may reduce classifica-

tion accuracy for learning machine because the classifier may

overfit the training data. On the other hand, a small training set

may not provide enough information for classification. Therefore,

the classification accuracy cannot be guaranteed either.

We supposed that unlabeled samples with high classification

probability may provide valuable information to enhance the

learning process and generate a classifier with refined decision

boundaries. Hence, in our study, probabilistic information from

BLDA was regarded as a confident evaluation criterion to select

reliable test samples, which could enlarge the training set. For

example, in a binary class problem that contained a positive and

negative class, we obtained the probability from BLDA classifier

for a test sample. When the probability of a sample was lager than

a relatively strict threshold (such as 0.9), this test sample would be

added to the training set for classifier calibration.

3. Simulation and real data tests
In this paper, based on the finding that that BLDA is more

robust in the BCI application compared with other approaches

like LDA, MD, SVM [9,11], BLDA serves as the baseline for

performance comparison.

3.1 The Simulated Data Sets
To explore when and why BLDA and EBLDA are effective in

practice, we first constructed a simulated data set, whose exact

decision boundaries were known. Based on this simulated dataset,

we estimated the parameters of BLDA and EBLDA to obtain their

corresponding decision boundaries.

Figure 1. Activated regions of different imaging tasks of Subject K1 for the four motor imaging tasks, left hand, right hand, foot
and tongue movements. The values (r2) in the figures are calculated according to equation (15). The optimal discrimination channels of different
tasks were found to be located at C4 for left hand, C3 for right hand, Cz for foot and CP6 for tongue, respectively.
doi:10.1371/journal.pone.0014634.g001

Probabilistic LDA
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The data set consists of two 2-dimensional normal distributions.

The positive class (labeled y = 1) and the negative class (label

y = 21) are given by below model parameters,

u1~(ux1,uy1)T~(0,0)T u2~(ux2,uy2)T~(1,0)T

S1~
s2

1 0

0 s2
1

 !
~

1 0

0 1

� �
S2~

s2
2 0

0 s2
2

 !
~

0:8 0

0 0:8

� �

where u1 and
P

1 are the mean and covariance matrix for class

labeled with 1, and u2 and
P

2 are the mean and covariance

matrix for class labeled with 21.

Mathematically, the Bayesian optimal decision boundary of this

data set is,

1

s2
2

½(x{ux2)2z(y{uy2)2�{ 1

s2
1

½(x{ux1)2z(y{uy1)2�

~4 log (
s1

s2

)

ð14Þ

3.2 Experiment Data
Two datasets were used in this study, where dataset 1 was

recorded from our BCI system, and dataset 2 was Data set IIIa in

BCI Competition III 2005 provided by BCI-Lab.

In dataset 1, EEG was recorded from two healthy male right-

handed subjects aged 22 and 26 (P1, Y1) respectively. During the

experiment, the subjects sat in a relaxing chair with armrests. The

trial began with a fixation cross ‘‘+’’ appearing in the screen center.

After 2 s’ presentation of the fixation, a letter cue indicating the

Figure 2. The average amplitude envelopes of the m rhythm in time interval 3.5s—7.5s for subject K1. The curves are the Hilbert
amplitude envelopes of the m rhythm for the four motor imagery tasks, and the gray area indicates the optimal time window showing the obvious r2

difference among the tasks.
doi:10.1371/journal.pone.0014634.g002

Figure 3. The scalp distributions of the CSP filters for subject K1 with performing right and left motor imagery. The two filters are
defined by the largest and smallest eigenvalues in CSP decomposition, and the evoked ERDs for these two tasks can be reflected by the scalp
distributions of the two CSP filters.
doi:10.1371/journal.pone.0014634.g003
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motor imagery for left hand, right hand and foot or tongue was

presented. The subject was asked to perform the corresponding

motor imagery. The experiments consisted of several runs (6 or 9

runs), each of which contained 40 trials and lasted about 9 minutes.

All runs were conducted in one session with a 3–4 minutes break

between them. In the experiment, the four movement tasks have the

equal probability to appear (i.e., 25% for each task). The total

number of trials was 240 for P1 and 360 for Y1. For the two

subjects, the trials were split into a training set and an unlabeled test

set. The recording was done by the Net Amps 200 systems with a

129-channel electrode cap (Electrical Geodesics Incorporated,

USA), two channels for EOG and the other 127 for EEG. EEG

was recorded with Cz as reference at sampling rate 250Hz, and the

band-pass filter between 0.1 to 48Hz was applied to recordings.

The paradigm designed for dataset 2 was similar to that of

dataset 1. The details can be found in [13]. Three subjects (K1, K6

and L1) participated in the experiment. The recording was made

with a 64-channel EEG amplifier from Neuroscan, using the left

mastoid as reference and the right mastoid as ground. The total

number of trials was 360 for Subject K1 and 240 for the other two

subjects (K6 and L1). The data were sampled at 250 Hz and

filtered from 1 to 50 Hz. In our offline analysis, all data sets were

down-sampled to 100Hz, and re-referenced to common average

reference. The trials for each subject were also split into training

and testing sets for performance evaluation.

3.3 Subject-Specific Feature Extraction
Event related synchronization and event related desynchronization

(ERS/ERD) [14] could be observed over sensorimotor cortex during

motor imagery tasks, and the experimental observation showed that

particular mental tasks had related effects on the spatial distribution of

EEG at m (8–13Hz) and b (18–26Hz) rhythms. Further classification

requires extraction of the rhythm related features from scalp EEG

signals. In this study, in order to tackle the multi-class motor

imaginary problems with binary classifiers, one-versus-one strategy

[5] was adopted to change the multi-class problems to sub-binary

problems. The final classification output is obtained by majoring

voting for outputs of those sub-binary classifiers.

CSP has been proved to be an effective method to extract

ERD/ERS related features from multi-channel EEG data of a

two-motor imaginary task [15,16]. The CSP extensions for multi-

class problem have been shown in [14,17]. Generally, the spatial

filters were calculated individually for each subject, and such

hyper-parameters of CSP as the frequency band, time section,

optimal channel subset, m and b band-pass filters could be semi-

automatically estimated for each subject [18]. In our study, these

hyperparameters were estimated in the following procedure.

1) Activity regions for different patterns. After the single

trial log band power was estimated by spectrum estimation

technique for each channel, the average band power during the

motor imagery execution (Individual power) is calculated for each

task based on each channel by averaging the task-correlated trials.

The activity region of different patterns can be obtained by using

Individual power minus Background power, where Background

power is the average of band power over all the training trails of

the four tasks. At last, the optimal discrimination channels of

different tasks were selected by using below r2,

r2~(

ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p

L1zL2

mean(X1){mean(X2)

std(X1|X2)
)2 ð15Þ

where X1 and X2 are the band power related features of certain

class and the background power respectively, while L1 and L2 are

the numbers of samples for different classes. Fig. 1 provides an

example for Subject K1 that the optimal activity regions of

different patterns were found to be located at C4 for left hand, C3

for right hand, Cz for foot and CP6 for tongue.

The related positions may vary across different subjects, but the

similar pattern as that in Fig. 1 could be observed.

2) Selection of optimal time interval. The amplitude

envelope of m-rhythm for an optimal discrimination channel

selected in the above step 1) was calculated by Hilbert transform

and averaged over all training trials as the Background module.

The amplitude envelopes during the execution of the four motor

imagery tasks were calculated respectively as the Individual

modules. The optimal time interval differentiating the four tasks

was determined by the r2, which is defined in equation (15). Fig. 2

gives the optimal time interval 4.2s–7.5s for Subject K1.

The gray translucent rectangle marks the optimal time interval

for the classification of the four different tasks.

3) Band-pass filter used for m and b rhythms. Though the

ERD/ERS were observed for all the 5 subjects, the band of the m
and b rhythms were different among subjects. In this paper, the

best band-pass filter was estimated according to both the best

discrimination electrodes obtained from step 1) and the optimal

time segments extracted from step 2) for each subject. In our study,

8–33Hz band filter is identified as a good choice for all the five

subjects.

Figure 4. Decision boundaries and feature vector distribution of training sets derived from one of the 5610-fold cross validation
processes for simulated datasets. The green curve denotes the theoretical boundary, and the boundary curves for BLDA and EBLDA are in red
and blue respectively. The blue circles and the red crosses represent the training samples of classes 1 and 2 respectively. (a) training set contains 50
samples; (b) training set has 100 samples; (c) training set has 150 samples; (d) training set has 200 samples. The size of the test set consists of 100
samples for (a), (b), (c) and (d), and EBLDA will select the samples with high probability from these 100 samples to enlarge the training set. The shift of
decision boundary between BLDA and EBLDA was due to the combination of reliable samples with high probability in EBLDA.
doi:10.1371/journal.pone.0014634.g004

Table 1. The Kappa coefficients (%) for the simulated dataset.

Training size 20 50 80 100 150 200

BLDA 44.4660.28 47.7060.36 50.2460.28 53.8060.20 53.8460.24 52.4860.16

EBLDA 46.8860.36 54.8660.32 54.4060.20 54.7260.16 55.4260.32 52.3660.24

p-valuesD ,0.01 ,0.01 ,0.01 ,0.05 0.3333 0.5879

The calculation is based on a 5610-fold cross validation with BLDA and EBLDA methods. The p-values of the paired t-test are in the fourth row.
D: P values are noted as ,0.01(very significant), 0.05 (significant) or the true value for .0.05.
doi:10.1371/journal.pone.0014634.t001
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4) Selection of channels for CSP. Selection of the

discriminative channels was meaningful to lower the computation

load for feature extraction and promote the stability of BCI. There

are various techniques to select the channels [19]. In this study, we

used the Greedy iterative to search for channel selection because it is

easy to understand and implement. In each iteration of Greedy

iterative algorithm, 4 channels randomly selected from the channel

set were removed and the classification was performed using the

remaining channels. The average classification result of a 265-fold

cross-validation (CV) was used as the criteria for electrode selection.

The iteration continued until all possible combinations of electrodes

were tested. The best channel set was the channel combination that

has the best classification accuracy in iterations.

5) Selection of the CSP filters. After electrodes were selected,

CSP was used to extract the features for classification. In CSP, good

contrasts were provided by the paired filters, which had high eigenvalue

and low eigenvalue, respectively. In this study, the optimal number of

CSP filters was chosen from the number set {2, 4, 6, 8} for each subject

by a 265-fold cross-validation. Fig. 3 shows two dominant CSP filters

for the right and left imaginary tasks for Subject K1.

In this paper, the log-variance of the CSP projected signals is

used as features for classification.

In summary, the optimal filters for m and b and the time section

were determined from the selected best channel. Based on the time

window and frequency band, the optimal channel subset was

selected for a robust CSP implementation. Finally, the log-variance

of CSP filtered time series was treated as feature for classification.

The above steps provided us with a fixed procedure to select the

optimal parameters for different subjects. In this paper, we followed

this fixed procedure to find the relatively optimal parameters and

extract the rhythm related features for each subject.

3.4 Majority Voting
The one-versus-one decomposition transforms a N-class prob-

lem into N(N21)/2 binary classification problems, and the final

classifier output for N-classes could be made by the voting of all the

binary classifiers. Let pij(ijj; x) denote the probability of feature x

belonging to class i when the classification is made between class i

and class j. The below voting strategy could be used to obtain the

probability of feature x belonging to class i with all binary

classifiers (named as p(ijx)) as,

p(ijx)~

PN
j~1,j=i

pij(ijj; x)

PN
k~1

PN
j~1,j=k

pij(kjj; x)

ð16Þ

Based on the combination of classifiers, the input x is assigned

into the class y[class~f1,2,3,4g using the majority of votes,

i~ arg max p(ijx), i[f1,2,3,4g ð17Þ

3.5 Kappa Coefficient
The kappa coefficient [20] is an evaluation criterion for unifying

different number classification problems. In the N class problems,

the proper performance measure of the classifier is described by its

confusion matrix [20].If the N classes occur equally with

probability of 1/N, the relationship between kappa coefficient k

Table 2. The Kappa coefficients of 5610-fold cross validations with BLDA and EBLDA for the experiment dataset.

Training size methods Subjects

K1 K6 L1 P1 Y1

40

BLDA 81.368.9 34.1613.0 42.8611.3 29.0612.0 40.8610.8

EBLDA 82.669.0 32.9611.5 42.8610.8 29.0611.0 41.1610.4

p-values 0.1492 0.1167 0.9519 1 0.8089

60

BLDA 86.264.7 50.869.4 60.669.0 35.4610.1 47.669.5

EBLDA 87.964.1 52.369.6 61.169.5 33.8611.6 47.168.5

p-values ,0.01 ,0.05 0.1243 0.0874 0.7245

80

BLDA 87.964.3 53.269.0 63.469.4 38.968.5 52.868.2

EBLDA 89.063.9 55.468.7 67.168.3 37.068.3 55.269.0

p-values ,0.01 ,0.01 ,0.01 ,0.01 ,0.01

100

BLDA 89.263.5 55.168.3 68.266.7 38.969.2 56.467.8

EBLDA 90.463.2 57.368.4 69.566.3 39.168.7 57.168.0

p-values ,0.05 ,0.01 ,0.05 0.8032 ,0.05

120

BLDA 89.663.4 56.568.2 69.666.1 40.567.7 57.365.6

EBLDA 90.063.2 57.768.4 71.265.8 39.967.8 58.066.8

p-values 0.2314 ,0.05 0.0657 0.0785 ,0.05

The feature vectors are obtained by one-versus-one CSP methods. The performance of BLDA and EBLDA classification methods are estimated with different training sizes.
doi:10.1371/journal.pone.0014634.t002
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and accuracy (acc) can be described as,

k~
acc{1=N

1{1=N
ð18Þ

where acc is the classification accuracy. In our work, there were an

equal number of trials of each class in each session. Therefore, we

took this simplified equation to evaluate the performance of

classifiers.

In the algorithm realization, the parameters of BLDA and

EBLDA (mean and covariance matrix) were not obtained by the

time-consuming CV procedure in this study. Instead, we got these

parameters by an iteration algorithm, which was constructed

according to the probabilistic output model and allowed a quick

and automatic parameters estimation with a few iterations as

noted in Section BLDA [9].

Results

1. Why and When do BLDA and EBLDA work?
As illuminated in section the Simulated Data Sets, the optimal

decision boundaries can be determined by the distribution

parameters of the simulated data (equation (14)). To observe the

efficiency of EBLDA for the small training set, we increased the

size of training sets from 20 to 200, and another 100 test samples

were used to select high probabilistic samples. As for EBLDA, the

samples from the original training sets combined with the selected

samples were used to train the classifier. BLDA and EBLDA used

the same test dataset, which contained 100 samples for

performance evaluation. Fig. 4 reveals the change of boundaries

between BLDA and EBLDA when the size of training set

increased. Fig. 4 showed four cases where the initial training

sample sizes were 50, 100,150 and 200 respectively. In Fig. 4, the

blue circles and the red crosses represent the training samples of

classes 1 and 2 respectively. The green solid lines are the Bayesian

optimal decision boundaries of the two classes.

5610-fold CV was adopted to obtain the average kappa

coefficient for BLDA and EBLDA, where the 10-fold CV was

repeated for 5 times. Meanwhile, the paired t-test was performed

to investigate the difference between BLDA and EBLDA. Table 1

shows the mean Kappa and standard deviation of 5-fold cross

validation with BLDA and EBLDA for the simulated dataset.

2. Experimental results
As for this dataset, the five steps described in III-C were firstly

used to select the subject-specified parameters. As for the 4 motor

imagery tasks with the one-versus-one CSP method, there were six

individual binary-class groups in total, ({1,2}, {1,3}, {1,4}, {2,3},

{2,4}, {3,4}). We took the 2J CSPs filters that best discriminated

each binary class problem to obtain the feature vector, where 265

fold CV was used to choose a suitable J in the range of 1,6. The

different 2J features vectors were obtained for each class group,

and the final results were obtained by voting strategy. In our study,

the optimal number of CSP filters was six for Subjects K6 and L1

and four for other subjects. BLDA and EBLDA were tested with a

5610-fold cross–validation. To investigate the effect of training set

size on classifier performance, the trials were split into three sets

(i.e., the training set, the enlarging set for obtaining high

probabilistic samples, the test set for evaluating the performance

of BLDA and EBLDA). The size of training set ranged from 40 to

120 for all subjects. The size of the enlarging set was 60 for

Subjects K6, L1 and P1 and 90 for Subjects K1 and Y1, and the

Figure 5. The selection of reliable samples and the corresponding accuracy of BLDA. The number of selected reliable samples and the
corresponding classification accuracy when probability threshold is kept to be 0.90 for the 5 subjects. The plot is derived from one of 5610-fold cross
validation for the five subjects. The red bar using the scale of the left axis represents the number of trials selected for expanding training set; the gray
one using the scale of the right axis is the classification accuracy when the reliable samples are used for classifier training.
doi:10.1371/journal.pone.0014634.g005
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size of test set equaled that of the enlarging set for each subject. In

each CV procedure, EBLDA and BLDA had the same test set for

performance evaluation and comparison. In this paper, as a model

selection procedure, the values of the BLDA parameters (the mean

and covariance matrixes) were automatically estimated by an

iterative algorithm introduced in [11] according to the training set

for different subjects. For the tested datasets, hyper-parameters

optimization usually converged after eight to fifty iterations.

The classification performance for those five subjects when

different approaches were used was listed in Table 2.

The number of the test samples selected for enlarging training

set was determined by the probability threshold, which was used

for reliable sample selection. The one–versus-one decomposition

strategy transformed the four-class problem into six binary

subtasks, ({1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}), where three

classifiers were related to one task. Fig. 5 illustrated the number of

high probabilistic test samples in the test samples and the

corresponding accuracies achieved by combining those high

probabilistic test samples for classification in EBLDA. In Fig. 5,

the confident threshold is 0.90 for all subjects, and those test trials

having probabilities above 0.90 will be added to the training set for

classifier re-training. Fig. 6 shows the curves of probability

threshold vs accuracy (blue) and probability threshold vs number

of selected reliable samples (green) for subject K1.

Discussion

1. EBLDA vs BLDA
Fig. 4 reveals that the classification boundary of BLDA shifted

to the tangent direction of Bayesian optimal interface when the

training sets were expanded by adding the reliable test samples

that had high probability. The angle between BLDA to EBLDA

became small when the size of training set increased, suggesting

that the boundaries of BLDA and EBLDA were more similar to

each other. Furthermore, the final decision boundaries of these

two classification methods had a high degree of overlap when the

training set had enough samples. Table 1 reveals that the EBLDA

method produced a significantly better kappa than BLDA with a

training size of 20 to 100 (t-test, p,0.05). The results suggest that

high probabilistic test samples can refine the BLDA boundary and

EBLDA can obtain a more stable result using information from

the reliable test samples. As a linear classifier, based on BLDA [9],

EBLDA can solve the overfitting problem better than other

nonlinear counterpart like LDA, MD, when a limited sample size

is available. Furthermore, EBLDA can also relearn information

from new samples, which can produce a better boundary for

normal distributions especially when a small sample set is used.

The kappa coefficients shown in Table 1 also show that the

expansion of the training set with reliable test samples improves

Figure 6. The curves of probability threshold vs accuracy (blue) and probability threshold vs number of selected reliable samples
(green) for subject K1. The blue curve uses the scale of the left axis, and the green curve uses the scale of the right axis.
doi:10.1371/journal.pone.0014634.g006
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the classifier performance, where more obvious improvement can

be observed for small training set. Generally, EBLDA has better

performance using the information in the additional high

probabilistic test samples, and it could be a refined version of

BLDA.

2. Multi-class problem and majority voting
Unlike the two-class problem, a multi-class problem may have

unclassifiable region where a sample may have an equal chance to

be classified into a few classes when a 0/1 voting is adopted. As for

the real dataset containing four tasks, we adopted probability

majority voting, which could automatically remove uncertainty.

3. Selection of threshold and reliable test samples
Fig. 6 demonstrates that with larger threshold, the accuracy

increased and the selected samples will be reduced. Besides, as

shown in Fig. 5, the size of training samples for Subjects K1 and

Y1 is 180 and 120 for other subjects (K6, L1, P1). The rest of the

trials are treated as test samples. When 0.9 is used as the confident

threshold, the number of test samples added to training set is about

1/3,1/2 of the size of the test sets for most of the subjects.

According to Fig. 6, all test samples are added to the training set if

we set a probabilistic threshold smaller than 0.5 for Subjects K1,

but the accuracy may be small. If we choose a high threshold such

as 0.75, the classification accuracy will be higher than 0.9 for K1.

This fact suggests that if the test samples with high probability

could be selected for classifier training, the classification accuracy

could be substantially improved. On the other hand, the unreliable

information introduced by the trials with small probability will

distort the classifier performance. In this study, 0.9 is a good

threshold for Subjects K1 and Y1, 0.85 is good for subjects K6,

L1, and 0.8 is suitable for subject P1. This threshold has to be

estimated for each individual subject and the selection criteria is to

include as many high probability samples as possible while high

accuracy could be guaranteed at the same time.

4. EBLDA for individual subjects
As Table 2 shows, EBLDA generated better results than BLDA

for all subjects except P1. The averaged classification Kappa

coefficients of the five subjects ranged from 0.586 to 0.657. When

the training size increased, the kappa coefficient of EBLDA did

not fluctuate as much as that obtained by BLDA, especially for

subjects with high classification accuracy. For Subject P1 with low

classification accuracy, the classification result of EBLDA was even

worse than that of BLDA when the training set was expanded.

One possible explanation is that when the training set was

expanded with misclassified samples, the classifier would be

distorted by the unreliable information from those misclassified

samples. However, for subjects with high classification kappa

coefficients (i.e., K1, L1 and Y1), the performance of EBLDA was

better than that of BLDA, suggesting that EBLDA can learn useful

information from the correctly classified test samples to improve

the classification accuracy, especially for subjects with high kappa

coefficients.

5. Conclusion and prospect
The results confirmed that EBLDA could achieve substantial

improvement over the traditional BLDA algorithm, especially

when the size of training set is small. Since the unlabeled test

samples added to the training set are strictly selected by the

probability threshold, EBLDA could produce a more creditable

result than BLDA. Some previous studies have confirmed that

BLDA can get more reliable results for the multi-class classification

compared to the traditional classifier like LDA, MD, SVM, and

accordingly EBLDA can have superior performance to those

traditional counterparts according to the performance relationship

between BLDA and EBLDA revealed in this paper.

In summary, BLDA is robust to noise in the training data [9],

and can capture information from test samples without much

human intervention. Since Bayesian approach of prediction could

take the posteriori uncertainty of the parameters into account, it

could produce a more accurate estimation of the uncertainty in

predictions, especially when the training data do not have enough

information for a precise estimation of the model parameters.

Based on BLDA, EBLDA can efficiently use the additional

information from test samples for classifier calibration. EBLDA

also has other properties, which are very important for practice of

BCI. First, EBLDA can obtain probabilistic output, which can be

used to reject trials that cannot be classified with certainly.

Therefore, it could help alleviate the negative effect of wrong

decisions [9]. Furthermore, probabilistic output can be used for

continuous control with high classification results. Finally, the

hyperparameters of BLDA can be estimated quickly, which may

satisfy the demand for real-time BCI communication.
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