
Multiscale Modeling of Light Absorption in Tissues:
Limitations of Classical Homogenization Approach
Stephane Mottin1*, Grigory Panasenko2*, S. Sivaji Ganesh3

1 CNRS, University of Lyon, University of Saint-Etienne, UMR5516, Saint-Etienne, France, 2 University of Lyon, University of Saint-Etienne, LAMUSE, Saint-Etienne, France,

3 IIT Bombay, Powai, Mumbai, India

Abstract

In biophotonics, the light absorption in a tissue is usually modeled by the Helmholtz equation with two constant
parameters, the scattering coefficient and the absorption coefficient. This classic approximation of ‘‘haemoglobin diluted
everywhere’’ (constant absorption coefficient) corresponds to the classical homogenization approach. The paper discusses
the limitations of this approach. The scattering coefficient is supposed to be constant (equal to one) while the absorption
coefficient is equal to zero everywhere except for a periodic set of thin parallel strips simulating the blood vessels, where it
is a large parameter v: The problem contains two other parameters which are small: E , the ratio of the distance between the
axes of vessels to the characteristic macroscopic size, and d, the ratio of the thickness of thin vessels and the period. We
construct asymptotic expansion in two cases: E?0, v??, d?0,vd??, E2vd?0: and E?0, v??, d?0,E2vd2??, and
prove that in the first case the classical homogenization (averaging) of the differential equation is true while in the second
case it is wrong. This result may be applied in the biomedical optics, for instance, in the modeling of the skin and cosmetics.
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Introduction

Physical background of the problem
In the present paper we consider the Helmholtz equation with

rapidly oscillating large potential with a periodic support having a

small measure of its intersection with a period. This absorption

coefficient q of the potential (more precisely, it is the ratio between

the absorption coefficient and the diffusion coefficient) depends on

three small parameters: E is a standard homogenization parameter

that is the ratio of the period of the potential and the characteristic

macroscopic size; d is the ratio between the measure of the

intersection of the support of q and the period; v{1 is a small

parameter standing for the inverse of the ratio of the maximal

value of the coefficient q and the diffusion coefficient multiplied by

the square of the characteristic macroscopic size of the problem

(we will consider the case when q takes only two values: v and 0).

The Helmholtz equation

{D uE ,d,vzq
x1

E

� �
uE ,d,v~f : ð1Þ

is considered below as a model of the light absorption in tissues

under hypothesis that this absorption takes place only in the set of

parallel thin blood vessels (where q~v=0) and this absorption is

ignored outside of these vessels.

The linear dimensions of the vessels are much smaller than the

linear dimensions of the body as a whole. Typically the distance

between two neighboring large micro-vessels (of about 15 mm in

the diameter) is around 180 mm in primate cerebral cortex [1].

This distance is also used in 3D simulation of tumor growth and

angiogenesis [2]. Assume at the first approximation that the tissue

is a nearly periodic structure. Moreover, consider the two-

dimensional idealization of this periodic structure that is, the

periodic set of the parallel strait narrow identic vessels separated

by the homogeneous tissue. Let L be the macroscopic character-

istic size and let EL be the distance between two neighboring

vessels (strips). It means that the parameter E stands here for the

ratio of the distance between two neighboring vessels and the

characteristic macroscopic size L. It is assumed throughout that

this ratio is a small parameter. Indeed, if the characteristic

macroscopic size (L) is equal to 10 mm (it is a typical value of the

diffuse optical tomography [3]) and the distance between the

vessels is equal to 0.18 mm, then E~0:018. The second parameter

of the model is the ratio of the thickness of the vessels and the

distance between neighboring vessels denoted d. This d as well is

supposed to be a small parameter. Thus, in the discussed above

structure we have d~15=180~0:08333 . . .. In the spectral

window 500 nm–700 nm, the oxyhaemoglobin extinction coeffi-

cient shows a wide dynamic from 275 (mole/L){1 cm{1 at

690 nm (the lowest) and 55 500 (mole/L){1 cm{1 at 575 nm [4].

In order to quantify the maximum variation we compare arterial

blood (90 percent saturated) with pure water at 690 nm and

575 nm then the ratio of the absorption coefficient is respectively

300 and 400000. At 700 nm the absorption of tissue (without

blood) is about ten times less than that of the pure water [5]. In the

visible window the maximum of this ratio can be more than

10000. That is why in the idealized model we consider the case

when the absorption coefficient is equal to zero out of vessels. As
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we have mentioned above the light absorption process is described

here by the Helmholtz equation (1), where q is just non-

dimensionalized absorption coefficient, equal to zero out of vessels

and equal to the great (dimensionless) parameter v within the

vessels. Let us remind that the physical sense of this great

parameter is the ratio of the absorption and diffusion effects, more

exactly, the ratio of the absorption coefficient and the diffusion

coefficient multiplied (i.e. the ratio is multiplied) by the square of

the characteristic macroscopic size L. Let the haemoglobin

concentration be 150 g/liter. Then in order to convert the molar

extinction coefficient E to the absorption coefficient (in mm{1),

one has to multiply it by 0.00054. At the wavelength 575 nm for

the scattering coefficient close to 2.5 mm{1, v is about 23000.

Then E2vd~0:62 and E2vd2~0:05: In the case of penetrating

vessels with the average diameter close to 65 mm, at the same

wavelength, E2vd2~1. Then the case when E2vd2 is greater than

one can be found in a spectral window below 600 nm and for

vessels of large diameter. In neurophotonics, the highly vascular-

ized pie-matter correspond to the maximal values of E2vd2. The

highly vascularized tumors could be also a special case when

E2vd2 is very high.

Models of this ‘‘composite medium’’ are widely considered in

biophysics. Let us give a short review of these results. The partial

differential equation (PDE) diffusion with absorption is one of the

most important in life science, and in particular, in tissue optics

[6]. The researchers are interested in two types of results:

a) when the optical properties are unknown, and they want to

find them using observed measurements, it is the harder well-

known inverse problem.

b) when the optical properties are known, then they can use

many strategies to calculate various quantities of interest

(reflectance, transmission, fluence). This is often referred to as

the forward problem.

But in all these approaches, the community of research in

biophotonics uses the volumetric averaging of the absorption

coefficient. This problem is crucial in the domain of in vivo diffuse

optical tomography [3,7], and is always present in in vivo optical

neuromethods [8].

There are as well some experimental papers on the problem of

averaging of blood absorption of light in tissue but without the

homogenization theory [9–14].

Our goal in the present paper is to show that the classical
homogenization (averaging) approach to the solution of

equation (1) leading to the approximation

{D u0zvqw u0~f : ð2Þ

where vqw is often approximated to the volumic mean value of

q, has some limitations. Indeed, we will show that it is right for

some combination of magnitudes of parameters E ,d,v: it can be

proved that uE ,d,v?u0 but it is inapplicable for some other

combinations. In this paper we do not construct the expansions for

all possible combinations; we only prove the classical homogeni-

zation result in the case

Að Þ E?0, v??, d?0,vd??, E2vd?0,

and there exists cw0,such that, v E2vd
� �c

~O 1ð Þ,

and we show that the homogeneous model (2) is inapplicable in the

case

Bð Þ E?0, v??, d?0,E2vd2??:

It means that the ‘‘diluting’’ of vessels in multiscale modeling of

light absorption of tissues may be applied only in justified cases, in

particular, in case A. In fact, the situations when the coefficients of

equations depend on two or more small parameters and it leads to

a fail of classical homogenization are not too surprising now: first

results of this type could be found in [15–17]. For some cases the

non-classical asymptotic expansions were constructed. However,

to our knowledge, such examples have not been constructed for

rapidly oscillating large potentials with narrow support. The

present paper tries to contribute in this important case of

biophysical applications.

In order to simplify technical details of the analysis we consider

the boundary value problem for the Helmholtz equation set in a

layer 0vx1v1,x2[Rf g with the Dirichlet conditions on the

boundary of the layer; we assume that the right-hand sides of the

equation and of the boundary condition do not depend on x2. In

this case we may seek a solution independent of x2 as well. The

Helmholtz equation takes the following form:

{u00E ,d,vzq
x

E

� �
uE ,d,v~f (x), ð3Þ

where x stands for x1, E is a small positive parameter, such that,

1=E is an integer.

We consider a boundary condition corresponding to a constant

solution in the case of the constant absorption coefficient q~v
and of a constant right-hand side f ~1. Then uE ,d,v~1=v. So,

these boundary conditions are:

uE ,d,v(0)~uE ,d,v(1)~
1

v
ð4Þ

Similar problems were addressed by many authors [18–22];

however the potentials considered in these works are typically E{1

or E{2. In this work, there are three parameters and we study all

relevant asymptotic regimes. We follow the ideas and methods of

[15–17,23,24] in the sense that we construct asymptotic expan-

sions for uE and analyze all the important asymptotic regimes of

the parameters E , v, d.

Mention that the Helmholtz equation (1) (or (3)) is not a perfect

model for the light absorption process: it is not more than an

approximation of a more adequate model based on the radiation

transfer equation [25]. Indeed, one can introduce the average

(over all directions v) for the diffused radiation intensity I(x,v) :

u(x)~
1

4p

ð
I(x,v)dv:

In the case of the described above plane geometry the diffusion

approximation of the radiation transfer has a form [25]

{
d

dx1

1

3([(x1)zs(x1))

du

dx1

� �
z[(x1)u(x1)

~[(x1)g(x1)zs(x1)f (x1), x1[(0,L),

where [(x1) and s(x1) are the coefficients corresponding to the

light absorption and dispersion respectively, g is the blood heat

Modeling of Light Absorption
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radiation intensity and f is the external radiation intensity, L is the

thickness of the irradiated skin strip,
1

3
is the dimension factor.

Introducing the new variable corresponding to the relative optical

depth of the radiation process

X~X (x1)~

Ð x1
0 [(y)zs(y)dyÐ L

0
[(y)zs(y)dy

,

we get for U(X ) (here U(X (x1))~u(x1)):

{U 00(X )z
[A2

[zs
U(X )~

[A2

[zs
(g{f )zA2f , X[(0,1),

where A2~3
Ð L

0
([(y)zs(y)dy

� �2

, and functions [,s,g,f depend

on x1(X ), solution of equation

Ð x1
0 [(y)zs(y)dyÐ L

0
[(y)zs(y)dy

~X :

Making the change of unknown function

�UU~A{2(U{gzf )

we get finally equation (3):

{ �UU 00zq �UU~f , X[(0,1)

with q~
A2

[

[zs
:

The choice of the boundary conditions (4) is not too important

for our analysis: the asymptotic approach developed below can be

applied in the case of other conditions, for instance,

uE ,d,v(0)~uE ,d,v(1)~
1

vd
,

corresponding to a constant solution for equation (3) with q
replaced by its volumic mean vqw, or

uE ,d,v(0)~uE ,d,v(1)~0,

or the periodicity conditions (mention that the diffusion approx-

imation of the radiation transfer may loose its precision near the

boundary).

Mathematical statement of the problem
Consider interval V~½0,1� and let 0vdv1=2: Let q(:) be a 1-

periodic function defined on the basic period ½0,1� by

q(y) :~
v if y[(0,

d

2
)|(1{

d

2
,1)

0 otherwise:

8<
: ð5Þ

Let f be smooth enough (this assertion will be formulated more

precisely later). We are interested in studying the asymptotic

behaviour as E?0, v??, and d?0 of uE ,d,v solving the following

boundary value problem:

LE uE ,d,v:{u00E ,d,vzq
x

E

� �
uE ,d,v~f (x) in V, ð6Þ

uE ,d,v(0)~uE ,d,v(1)~
1

v
on LV: ð7Þ

Note that we have the following a priori estimate for solution of

equation (6) with boundary condition (7) replaced by the

homogeneous one

uE ,d,v(0)~uE ,d,v(1)~0:

Proposition 0.1. There exists a constant C independent of small

parameters such that

uE ,d,vk k
H1

0
(V)

ƒC fk k
L2(V)

:

Here C may be taken equal to 1=2. A well-known imbedding

theorem gives:

Corollary 0.1. There exists a constant C independent of small

parameters such that

uE ,d,vk kL?(V)ƒC fk k
L2(V)

:

Applying equation, we get:

Corollary 0.2. There exists a constant C independent of small

parameters such that

u00E ,d,v

�� ��
L?(V)

ƒC(1zv) fk kL?(V):

Returning now to equation (6) with non-homogeneous bound-

ary condition (7) we can present the solution as a sum of the

solution of equation (6) with homogeneous boundary condition

and the solution of the homogeneous equation (6) with non-

homogeneous boundary condition (7). Applying the maximum

principle argument, we get:

Proposition 0.2. There exists a constant C independent of small

parameters such that solution of problem (6)-(7) satisfies:

uE ,d,vk kL?(V)ƒC fk k
L2(V)

z
1

v

� �
:

Remark 0.1. If boundary condition (7) is replaced by another

one:

uE ,d,v(0)~A, uE ,d,v(1)~B

with some numbers A and B then the estimate of Proposition 0.2

takes form:

uE ,d,vk kL?(V)ƒC ( fk k
L2(V)

z Aj jz Bj j):

Let us mention one more useful inequality for functions v of

C2 0,l½ �ð Þ :

v0k kL? 0,l½ �ð Þƒ
2

l
vk kL? 0,l½ �ð Þzl v00k kL? 0,l½ �ð Þ ð8Þ

Modeling of Light Absorption
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Proof: For any x,x0[½0,l�, v0(x){v0(x0)~
Ð x

x0
v00(t)dt: Choose x0

such that v0(x0)j j~ minx[½0,l� v0(x)j j: We get:

v0(x)j jƒ v0(x0)j jzl max
x[½0,l�

v00j j:

If v0(x0)~0, then the estimate is proved. If v0(x0)=0, then the sign

of v0 is constant on the whole interval ½0,l�; consider the case v0w0:
Then v is increasing and v(1)~v(0)z

Ð l

0
v0(t)dt§v(0)zlv0(x0), and

so,

0vv0(x0)ƒ(v(1){v(0))=lƒ(2=l) vk kL? 0,l½ �ð Þ

and we get (8). In the same way we consider the opposite case when

v0v0:

Methods

Asymptotic expansion in the case
E?0,v??,d?0,vd??,E2vd?0

Consider the K-th level approximation uK
E of uE given by an

ansatz from [15]:

uK
E (x)~

X
0ƒl,pƒKz1:0ƒlzpƒKz1

E lzp N
p
l (j)Dl vE (x)

		
j~

x

E

, ð9Þ

where N
p
l (:) are 1-periodic functions, Dl~

dl

dxl
, and vE is a smooth

function which will be sought in a form

vE (x)~
XKz1

r~0

E r vr(x) : ð10Þ

Substituting the expression for uK
E from (9) in (6) we obtain

{D2 uK
E zq

x

E

� �
uK
E ~{

XKz1

lzp~0

E lzp{2 H
p
l Dl vE (x)zBE ,K

1 ð11Þ

where

H
p
l ~

d2N
p
l

dj2
(j1)z2

dN
p
l{1

dj
(j)zN

p
l{2(j){q(j) N

p{2
l (j) ð12Þ

and BE ,K
1 is given by

BE ,K
1 ~EK {

X
pzl~Kz2

2
dN

p
l{1

dj
(j)zN

p
l{2(j){q(j)N

p{2
l (j)

� �
Dl vE (x){

(

{
X

pzl~Kz3

E N
p
l{2(j){q(j)N

p{2
l (j)

� �
Dl vE (x)

)
:

ð13Þ

In writing expressions (11), (12) we followed the convention that

N
p
l ~0 if at least one of the two indices p or l, is negative.

We choose H
p
l (j) being a constant such that the equation (12)

has a solution, i.e.

h
p
l ~SN

p
l{2(j){q(j) N

p{2
l (j)T, ð14Þ

where S.T~

ð1

0

.dj: Also, periodic solutions N
p
l of equation

d2N
p
l

dj2
(j1)z2

dN
p
l{1

dj
(j)zN

p
l{2(j){q(j) N

p{2
l (j)~h

p
l ð15Þ

are chosen to be of average zero for all p and l such that,

(p,l)=(0,0); N0
0 is chosen equal to 1. We get: N0

0 ~1, N0
l ~0,

N1
l ~0 for all l, N2

0 is a 1-periodic solution of equation

d2N2
0

dj2
(j1)~q(j){SqT,

SqT~vd:

We solve the family of equations (15) by determining for each

fixed p§0 the solutions N
p
l for all l[N. Due to the form of the

equation (15) the behavior of N2m
l and N2mz1

l will be similar.

With this background, we now state the principal result

concerning the 1-periodic functions N
p
l .

Lemma 0.1. Let vdw1. For each p§0 (of the form p~2m or

p~2mz1) and l[N,

1. Functions N
p
l are piecewise polynomials on ½0,1� with respect to the

partition 0,
d

2
,1{

d

2
,1


 �
.

2. There exists a constant Cm independent of the small parameters such that,

fo r aj j~0,1, Da
jN

p
l

��� ���
L?½0 1�

ƒCl,m(vd)m, Dj~d=dj, and

h
p
l ƒCl,m(vd)m.

Proof. The proof is by induction on m.

Step (i). Let m~0. That is, p~0,1. We get: N0
0 ~1,

h
p
l ~SN

p
l{2(j)T~dl,2dp,0, N

p
l satisfy equations (15) with the last

two terms equal to zero; so N0
l ~0, for all lw0, N1

l ~0 for all l§0
and the assertion of lemma for m~0 is evident.

Step (ii). Let m§1 and let all N
p
l , DjN

p
l and h

p
l with

pƒ2mz1 be bounded by cl,m(vd)½p=2�, where ½a� stands for the

integer part of a, and cl,m is a constant independent of the small

parameters. Consider equation (15) for p~2mz2. For l~0 it

takes form

d2N2mz2
0

dj2
(j1)~q(j)N2m

0 {Sq(j)N2m
0 T,

with the piecewise polynomial right hand side; moreover, the

primitive (with vanishing mean value) of this right hand side is also

bounded by the same order. That is why, integrating this equation

twice and keeping every time the vanishing mean for the primitive,

we prove the assertion of lemma for l~0. In the same way we

prove it for N2mz3
0 .

Now we apply again (15), express D2
jN

p
l from this equation and

prove by induction on l that all h2mz2
l , h2mz3

l , the right hand sides

and so, finally, N2mz2
l and N2mz3

l are bounded by Cl,mz1(vd)mz1.

The lemma is proved.

Substituting the expression for uK
E from (9) in (7) we obtain

uK
E (0){

1

v
~

X
0ƒl,pƒKz1:0ƒlzpƒKz1

E lzp N
p
l (0)Dl vE (0){

1

v
, ð16Þ

ð13Þ
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uK
E (1){

1

v
~

X
0ƒl,pƒKz1:0ƒlzpƒKz1

E lzp N
p
l

1

E

� �
Dl vE (1){

1

v
;

and applying the 1{periodicity of functions N
p
l and the divisibility

of 1 by E we get:

uK
E (1){

1

v
~

X
0ƒl,pƒKz1:0ƒlzpƒKz1

E lzp N
p
l (0)Dl vE (1){

1

v
:ð17Þ

Substituting the expression for vE (10) in (11),(16),(17), we get:

{D2 uK
E zq(

x

E
) uK

E

~{
XKz1

lzpzr~0

E lzpzr{2 h
p
l Dl vr(x)zBE ,K

1 zBE ,K
2

ð18Þ

and

uK
E (0){

1

v

~
X

0ƒl,p,rƒKz1:0ƒlzpzrƒKz1

E lzpzr N
p
l (0)Dl vr(0){

1

v
zBE ,K

3 ,

ð19Þ

uK
E (1){

1

v

~
X

0ƒl,p,rƒKz1:0ƒlzpzrƒKz1

E lzpzr N
p
l (0)Dl vr(1){

1

v
zBE ,K

4 :

ð20Þ

Here

BE ,K
2 ~

X
0ƒl,p,rƒKz1:Kz2ƒlzpzrƒ2Kz2

E lzpzr{2 h
p
l Dl vr(x) ð21Þ

BE ,K
3 ~

X
0ƒl,p,rƒKz1:Kz2ƒlzpzrƒ2Kz2

E lzpzr N
p
l (0)Dl vr(0), ð22Þ

and

BE ,K
4 ~

X
0ƒl,p,rƒKz1:Kz2ƒlzpzrƒ2Kz2

E lzpzr N
p
l (0)Dl vr(1): ð23Þ

Define now functions vr from boundary value problems:

{D2vr(x)zSqTvr(x)

~f dr,0z
Xrz2

lzp~3

h
p
l Dl vr{l{pz2(x), x[(0,1)

ð24Þ

and

vr(0)~
1

v
dr,0z

Xr

lzp~1

N
p
l (0)Dl vr{l{p(0), ð25Þ

vr(1)~
1

v
dr,0z

Xr

lzp~1

N
p
l (0)Dl vr{l{p(1), ð26Þ

Here SqT~dv is supposed to be greater than 1. These equations

have a form

{D2vr(x)zSqTvr(x)~fr, x[(0,1), vr(0)~ar,vr(1)~br,

where ar,br are some real numbers and fr is a smooth function. In

the same way as in the first section we prove that

vrk kL?(V)ƒC ( frk kL?(V)z arj jz brj j),

v00r
�� ��

L?(V)
ƒC(1zvd) ( frk kL?(V)z arj jz brj j),

and so,

v0r
�� ��

L?(V)
ƒC1(vd) ( frk kL?(V)z arj jz brj j),v0

where the constants C and C1 are independent of small

parameters.

Applying the induction on m, we get:

D2mvr

�� ��
L?(v)

ƒCm(vd)m ( frk kL?(v)z arj jz brj j)

z
Xm{1

j~1

(vd)m{j{1 D2j fr

�� ��
L?(v)

,

where the constants Cm are independent of small parameters.

Applying now (8), we get: for mw0

D2m{1vr

�� ��
L?(v)

ƒCm’(vd)m ( frk kL?(v)z arj jz brj j)

z
Xm{1

j~1

(vd)m{j{1 D2j fr

�� ��
L?(v)

,

and so,

Dlvr

�� ��
L?(v)

ƒCl(vd)½(lz1)=2� frk kL?(v)z arj jz brj j)

z
X½(lz1)=2�{1

j~1

(vd)½(lz1)=2�{j{1 D2j fr

�� ��
L?(v)

:

Remark 0.2. Functions vr depend on small parameters but

their asymptotic expansion can be constructed by classical

boundary layer technique (see [23]). For instance, if

f [C2K1 (½0,1�), then v0 has a form:
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v0(x)~
1

vd
f (x)z

1

vd
d{f (0)ð Þe{x

ffiffiffiffiffi
vd
p

z
1

vd
d{f (1)ð Þe(x{1)

ffiffiffiffiffi
vd
p

zO(1


(vd)2)~

~
1

vd
f (x)z

1

vd
d{f (0)ð Þe{x

ffiffiffiffiffi
vd
p

z
1

vd
d{f (1)ð Þe(x{1)

ffiffiffiffiffi
vd
p

z

z
XK1{1

j~1

1

(vd)jz1
D2j f (x){D2j f (0)e{x

ffiffiffiffiffi
vd
p

{D2j f (1)e(x{1)
ffiffiffiffiffi
vd
p� �

zR0(x), R0(x)~O 1


(vd)K1
� �

:

Moreover, if f [C2K1zK2 (½0,1�), then R0 is K2 times differentia-

ble and satisfies the estimate (see the above a priori estimate for vr):

DlR0

�� ��
L?(½0,1�)~O 1

.
(vd)K1{(lz1)=2

� �
, lƒK2:

In the same way we construct by induction the expansions of

functions vr, rƒKz1. Assume that K1§2K , K2§Kz1.

Consider the right hand side fr having the form of a linear

combination with some bounded coefficients h
p
l

.
(vd)½p=2� of

functions g having a form:

g(x)~

X2K1{1

j~0

1

(vd)(j{r)=2
F0r,j {x

ffiffiffiffiffiffi
vd
p� �

zF1r,j (x{1)
ffiffiffiffiffiffi
vd
p� �

zFr,j(x)
� �

z~RRr(x)

where F0r,j ,F1r,j ,Fr,j are 2K1zK2{r times differentiable functions

independent of small parameters vd and E , such that, there exist

constants c1,c2 independent of small parameters satisfying for any

real j inequalities

Dl
jF0r,j(j)

		 		ƒc1e{c2 jj j, Dl
jF0r,j(j)

		 		ƒc1e{c2 jj j, lƒK2{l,

Fr,j are K1zK2{r times differentiable on ½0,1�,

Dl ~RRr

�� ��
L?(½0,1�)~O 1

.
(vd)K1{(rzlz1)=2

� �
, lƒK2{l:

The right hand sides of the boundary conditions as well have a

similar form: they are some linear combinations with bounded

coefficients N
p
l (0)

.
(vd)½p=2� of constants s and t having a form:

s~
X2K1{1

j~0

1

(vd)(jz2{r)=2
ar,j ,

t~
X2K1{1

j~0

1

(vd)(jz2{r)=2
br,j ,

where ar,j ,br,j are independent of small parameters.

The expansion of vr has a similar form of a linear combination

with bounded coefficients of functions

vrg(x)~

X2K1{1

j~0

1

(vd)(jz2{r)=2
U0r,j({x

ffiffiffiffiffiffi
vd
p

)zU1r,j (x{1)
ffiffiffiffiffiffi
vd
p� �

zur,j(x)
� �

zRr(x),

where ur,j satisfy equations (functions with the negative indices are

equal to zero)

ur,j(x)~Fr,j{2(x){D2ur,j{2(x),

and exponentially decaying at infinity functions U0r,j satisfy

equations

{D2
jU0r,jzU0r,j~F0r,j{2(j), j[(0,?),

and boundary conditions

U0r,j(0)~{ur,j(1),

exponentially decaying at infinity functions U1r,j satisfy equations

{D2
jU1r,jzU1r,j~F1r,j{2(j), j[({?,0),

and boundary conditions

U1r,j(0)~{ur,j(0)

and of the exponents

X2K1{1

j~0

1

(vd)(jz2{r)=2
ar,je

{x
ffiffiffiffiffi
vd
p

,

X2K1{1

j~0

1

(vd)(jz2{r)=2
br,je

(x{1)
ffiffiffiffiffi
vd
p

:

Here

DlRr

�� ��
L?(½0,1�)~O 1

.
(vd)K1{(rzlz1)=2

� �
, lƒK2{r:

Applying the induction on r, the explicit expressions for the

right hand sides of the problems (24),(25),(26) for vr and the

estimates of Lemma 0.1 we prove that there exist constants Cl,r

independent of small parameters, such that,

Dlvr

�� ��
L?(v)

ƒCl,r(vd)(lzr)=2{1: ð27Þ

This estimate and Lemma 0.1 are crucial for evaluation of the

discrepancies B1,B2,B3 and B4:

EBE ,K
a EL?(v)ƒCK v(E2vd)K=2(vd){1=2, a~1,2,

BE ,K
b

			 			ƒCK (E2vd)(Kz1)=2(vd){1, a~3,4:
ð28Þ
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Now, applying the a priori estimate of the Remark after

Proposition 0.2 we get the estimate

uE ,d,v{uK
E

�� ��
L?(½0,1�)~O v(E2vd)K=2(vd){1

� �
:

Assume that there exists a positive real c such that, v(E2vd)c is

bounded by a constant independent of small parameters. Then the

last bound yields:

uE ,d,v{uK
E

�� ��
L?(½0,1�)~O (E2vd)K=2{c(vd){1

� �
:

Taking K1w2czK , we get:

uE ,d,v{u
K1
E

��� ���
L?(½0,1�)

~O (E2vd)K1=2{c
� �

~O (E2vd)K=2(vd){1
� �

:

On the other hand, (27) and Lemma 0.1 give:

u
K1
E {uK{1

E

��� ���
L?(½0,1�)

~O (E2vd)K=2(vd){1
� �

:

So, from the triangle inequality we get

uE ,d,v{uK{1
E

�� ��
L?(½0,1�)~O (E2vd)K=2(vd){1

� �
:

Theorem 0.1. Assume that there exists a positive real c such that,

v(E2vd)c is bounded by a constant independent of small parameters. Let f

belong to C3(2czKz1)(½0,1�). Then there exists a constant C independent of

small parameters such that

uE ,d,v{uK{1
E

�� ��
L?(½0,1�)~C(E2vd)K=2(vd){1:

Consider now the very first term of the expansion v0 and K~0
we get:

Corollary 0.3. There exists a constant C independent of small

parameters such that

uE ,d,v{v0k kL?(V)ƒC E2:

Mention that the error of order E2 is much smaller than v0 that

is of order
1

vd
, and so the relative error of the approximation of the

exact solution uE ,d,v by v0 is small.

Remark 0.3. Here we have considered the case when vd
stands for a large parameter tending to the infinity. The case when

vd is a positive finite constant may be considered by a classical

technique [15] and the estimate of Corollary 0.3 becomes

uE ,d,v{v0k kL?(V)ƒC E2:

Asymptotic analysis: case E?0, v??, d?0, E2vd2??
Here we will construct an example where the behavior of the

solution is completely different from the behavior described in the

previous section. In particular, the solution of the problem is

different from the behavior of the solution v0 of the homogenized

equation. For the sake of simplicity consider the right hand side

f (x)~1. Consider an auxiliary function g defined on the interval

½{1,1� as a function from C2(½{1,1�) independent of small

parameters such that it equals to zero on the interval ½{1=3,1=3�
and it equals to one on ½{1,{2=3�|½2=3,1�. Let us keep the same

notation g for the 2-periodic extension of this function on R.

Consider an approximation for uE ,d,v having a form:

u(x)~

{
1

2
x{

d

2

� �
x{Ez

Ed

2

� �
zCz

1

v
if x[

Ed

2
,E{

Ed

2

� �

Ce
x{

Ed

2

� � ffiffiffi
v
p

g
2x

Ed

� �
z

1

v
if x[ 0,

Ed

2

� �

Ce
{xzE{

Ed

2

� � ffiffiffi
v
p

g
2(x{E)

Ed

� �
z

1

v
if x[ E{

Ed

2
,E

� �

8>>>>>>>>><
>>>>>>>>>:

ð29Þ

where C~E(1{d)=(2
ffiffiffiffi
v
p

) and extend it E{periodically to ½0,1�.
By a simple calculation we find that u satisfies the boundary

conditions exactly and the equation with a discrepancy of order

(Ed){1 ffiffiffiffi
v
p

e{Ed
ffiffiffi
v
p

=6, i.e.
vffiffiffiffi
v
p

Ed
e{Ed

ffiffiffi
v
p

=6. Assume that there exists

a positive real c such that, v~O (E
ffiffiffiffi
v
p

d)cð Þ. Then for any positive

K , (Ed){1
ffiffiffiffi
v
p

e{Ed
ffiffiffi
v
p

=6~O(v{K ).

So, the discrepancy of the equation is O(v{K ): Applying now

Corollary 1.1, we get an error estimate in L?{norm of the same

order:

u{uE ,d,vk kL?(½0,1�)~O(v{K ):

Mention that for Kw1 the right hand side of this bound is

much smaller than the values of approximation u(x), and so the

relative error of the approximation of the exact solution uE ,d,v by u
is small.

Results and Discussion

The main observations on the asymptotic analysis
We record some observations in the following remark.

Remark 0.4. Let us compare the asymptotic behavior of

solution for f ~1 in the cases

(A) E?0, v??, d?0,vd??, E2vd?0

and

(B) E?0, v??, d?0,E2vd2??:

In the case (A), the leading term is equal to the solution v0 of

the homogenized equation (2), that is the constant 1=(vd) plus

two exponents rapidly decaying from the boundary: their

contribution can be neglected at the distance of order of

O (1
. ffiffiffiffiffiffi

vd
p

)ln(vd)
� �

vv1. In the case (B) the approximate

solution is completely different: it is E{periodic piecewise

quadratic function of order E2 except for the small intervals

where the potential is large. That is why the homogeneous model

(2) is inapplicable in this case.

Thus, the homogenized model (2) may be applied only in the

case E?0, v??, d?0,vd??, E2vd?0, when it is justified
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theoretically. The homogenized model may be inapplicable in the

case if E2vd is not small.

On the effective absorption coefficient, the volumetric
mean and the total absorption coefficient

Biological tissues are highly heterogeneous media at the

microscopic scale. For years, the patterns of the mammalian

cortex micro-angioarchitecture have attracted the interest of many

research groups [1,26–28]. At different scales the blood vessels

have very different physical characteristics. Moreover the

absorption coefficient is great in the vessels and small out of the

vessels in UV and visible parts of the spectrum. At the end they

induce multiscale complex photon propagation and absorption.

On the other hand the experimental data are obtained mainly at

the macroscopic scale, and so one of the main questions is how to

make a passage from the micro-scale to the macro-scale. The main

mathematical tool of such passage from one scale to another (the

up-scaling) is the homogenization theory, see [15,19,23,24] and

the references there. Normally, the microscopic description of the

heterogeneous medium can be replaced by an equation with

constant coefficients. This equation is called the homogenized

equation and the constant coefficients are effective coefficients.

This homogeneous approximation for the heterogeneous medium

is justified if the solutions of both models are close in some norms.

In some cases a heterogeneous medium cannot be approximated

by a homogeneous one [16,17,23,24]. Then the notion of an

effective coefficient cannot be introduced in the above sense.

In particular, in the present paper we prove that if product

E2vd is small then the homogenized model (2) is justified and the

effective absorption coefficient is equal to the volumetric mean
value vqw of function q. The smallness of the value of this

product E2vd means that the relative error of the approximation

of the heterogeneous medium by the homogeneous one is of order

of this product. The effective absorption coefficient is an important

quantity because the detailed knowledge of the tissue macroscopic

optical properties is essential for an optimization of optical

methods i.e. for modeling the color of skin, of port-wine stains

and for tumor detection; it helps to adapt an appropriate

photodynamic therapy, in particular, some laser treatment.

On the other hand the present paper shows the limitations of

the homogenized models for the absorption problems. Indeed, if

product E2vd2 is not small then the homogenized model (2) as well

as other homogenized models (with other possible constant values

of the effective absorption coefficient) do not approximate the

initial microscale model, because the solution of problem (2) does

not oscillate for any choice of the effective absorption coefficient,

while the solution of equation (6) with boundary condition (7)

rapidly oscillates (see (29)).

This theoretical argument is confirmed by some physical reasons

and by experimental observations. Many authors [10,12,14,29] show

that the assumption of a homogeneous distribution of blood in the

tissue may strongly overestimate the total blood absorption when

absorption is high and/or the vessels have sufficient diameter. For

large vessels less of light reaches the center of the vessel, and the

absorbers in the center of a vessel contribute less and less to the total

attenuation of the light. However, the total blood absorption is an

important qualitative characteristic of the absorption process and so it

should be calculated with a great precision. Let us apply the above

asymptotic analysis provided for equation (6) with boundary condition

(7) and calculate the total blood absorption in cases A and B. Let us

define the total absorption coefficient m as a ratio of the integrals

m~

Ð 1

0
q(x=E)uE ,d,v(x)dxÐ 1

0
uE ,d,v(x)dx

:

For the particular case of a constant coefficient q we get

evidently m~q. In the case A substituting the leading term of an

asymptotic expansion we get that the asymptotic behavior of m is

given by an approximate formula m&vqw, i.e. it is close to the

volumetric mean of q that is, vd. In the case B the value of this

total absorption coefficient m is much less than the volumetric

mean (that was observed in the discussed above experiments): the

direct computations for the approximation (29) show that

m&vqw=(0:5E
ffiffiffiffi
v
p

d) with E
ffiffiffiffi
v
p

dww1:
The authors of papers [10,12,14,29] characterize the fall of the

total absorption coefficient by the correction factor Cd~m=vqw

and discuss the situations when this factor is different from 1. In

our asymptotic analysis we see that in the case A Cd&1 but in the

case B Cdvv1.

We hope that our result will help to analyze the link between the

total absorption coefficient m and other parameters which may be

applied in optical tomography [3,7].
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