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Abstract

A significant feature of influenza pandemics is multiple waves of morbidity and mortality over a few months or years. The
size of these successive waves depends on intervention strategies including antivirals and vaccination, as well as the effects
of immunity gained from previous infection. However, the global vaccine manufacturing capacity is limited. Also, antiviral
stockpiles are costly and thus, are limited to very few countries. The combined effect of antivirals and vaccination in
successive waves of a pandemic has not been quantified. The effect of acquired immunity from vaccination and previous
infection has also not been characterized. In times of a pandemic threat countries must consider the effects of a limited
vaccine, limited antiviral use and the effects of prior immunity so as to adopt a pandemic strategy that will best aid the
population. We developed a mathematical model describing the first and second waves of an influenza pandemic including
drug therapy, vaccination and acquired immunity. The first wave model includes the use of antiviral drugs under different
treatment profiles. In the second wave model the effects of antivirals, vaccination and immunity gained from the first wave
are considered. The models are used to characterize the severity of infection in a population under different drug therapy
and vaccination strategies, as well as school closure, so that public health policies regarding future influenza pandemics are
better informed.
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Introduction

Influenza pandemics have been known to cause multiple waves

of morbidity and mortality over a few months or years [1]. The

cause of the wave behaviour of influenza pandemics is not

precisely understood [2,3]. Control measures such as vaccination

and antiviral drugs will have an effect [4,5], but to what extent do

these need to be used to protect a population from severe

infection? In June 2009, the World Health Organization declared

the new strain of swine-origin H1N1 as a pandemic. Several

countries combined antivirals and vaccinaiton strategies to battle

the first and second waves of this pandemic. It is unknown,

however, how effective these interventions have been on

decreasing infection. School closure for the summer term in many

countires may also have had an affect on disease spread. In this

paper we provide estimates on the efficacy of antivirals and

vaccination in the first and second waves of a pandemic, including

a scenario of school closure in the summer months.

Vaccination is used to induce immunity in individuals such that,

if they are exposed to the virus they have a high probability of

resisting infection. Vaccination can also benefit a population by

inducing herd immunity, where individuals that are not vaccinated

are still protected from infection. Vaccination is the mainstay of

seasonal influenza, however, in a pandemic situation the strain is

initially unknown and the vaccine can take several months to be

formulated. Thus, it is unlikely to be implemented in the first wave

of infection, and may be available early in the second wave.

However, the global manufacturing vaccine capacity is limited and

is unlikely to meet the full demand of a pandemic threat. Also, the

vaccine is developed from an early pandemic strain and if the

strain changes over time, because of the high mutation rate of

influenza, the vaccine will be less effective and only induce partial

immunity.

Since efficacious vaccines are unlikely to be widely available

during at least the first wave of pandemic influenza, antivirals,

which reduce the ability of the virus to replicate but not provide

immunity to a host, form a critical component for the containment

of a pandemic. Antivirals may aid in the prevention of infection,

but also reduce the severity of infection and the level of

transmission [5–8]. Potential roles for antivirals include post-

exposure prophylaxis (when drugs are given to individuals shortly

after they are exposed), pre-exposure prophylaxis (when drugs are

given before exposure) and early treatment (when drugs are given

shortly after symptoms are presented).

During the 2009 H1N1 pandemic, vaccination and antivirals

were employed to fight infection. Antivirals stockpiles of

oseltamivir (Tamiflu) and zanamivir (Relenza), which were

accumulated by many different countries in wait of the next

pandemic threat, were used to provide prophylaxis and treat

infections. In the beginning of the second wave, vaccination was

also available. The use of antivirals and the rate of vaccine uptake,

however, varied greatly by country (see Table 1). But, how do

different control strategies affect the waves of morbidity and

mortality of a pandemic?
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In the 2009 H1N1 pandemic schools closed over the summer

months. It has been shown that this can have substantial impact on

the spread of an infectious disease which is transmitted through

close contacts [9,10]. Along with the use of antivirals, school

closure must have had a great effect on disease spread in the first

wave. But, does school closure change the most effective control

strategy against a pandemic?

Mathematical modelling provides a toolkit that can be used to

evaluate different control strategies of antiviral use and vaccine

uptake, as well as school closure. Mathematical models have been

employed to measure the efficacy of mitigation strategies of

pandemic influenza considering pharmaceutical as well as non-

pharmaceutical interventions [11–16]. They also rationalized the

use of antiviral agents for both treatment and prophylaxis as a

primary control measures during early stages of a pandemic

[11,12]. Since the start of the H1N1 pandemic a number of

mathematical epidemiological studies have been used to under-

stand the pandemic potential of the novel H1N1 strain early on

[17], the initial transmission characteristics [18–20], and the

disease burden and societal costs associated with infection [21].

Recently, mathematical studies have been used to evaluate the

effects of a late release of a vaccine and closing schools [9,22,23]

and the prophylactic use of antivirals [24].

A drawback of previous models of pandemic influenza is that

they either ignore or do not explicitly consider the effects of

immunity acquired from the first wave on disease outcomes in the

second and consecutive waves. The underlying immunity of

individuals can have a profound impact on the prevalence of

disease in a population and the level of disease that is observed.

This is seen through the correlation of transmissibility and

immunity which are interlinked with the degree of susceptibility

and disease outcome [25]. We have developed a mathematical

model describing the first and second waves of an influenza

pandemic, including antivirals, vaccination and summer school

closure, that explicitly considers the effects of acquired immunity

from the first wave of infection. This explicit consideration will aid

in assessing pandemic control policies in a more informed manner.

Methods

The mathematical model is composed of two smaller mathe-

matical models describing the first and the second waves

respectively. In both models we consider the effects of antivirals

and/or vaccination that are available during that period. In the

first wave we also consider the effects of summer school closures,

and in the both waves we consider the effects of acquired

immunity from previous infection either of the pandemic strain, or

a seasonal influenza strain that may be closely related [26].

First wave
Assumptions and Initial Conditions. The mathematical

model of the first wave is an extension of an SEIR (susceptible-

exposed-infected-recovered) model that includes the use of

antivirals and the probability of asymptomatic infection.

Acquired immunity from previous infections of influenza that are

related to the current circulating pandemic strain may have an effect

on the size of the first wave through the effects of partial immunity

[26]. It is, however, difficult to determine what percentage of the

population, if any, has been infected by a strain that is related to the

pandemic strain. It is also difficult to determine whether these

individuals still maintain any immunity acquired from this previous

infection. Since partial immunity may aid in preventing disease

(symptoms) we include an asymptomatic class (A) in the model.

Antivirals form a critical component for the containment of a

pandemic in the first wave. Antivirals may reduce the ability of the

virus to replicate in a host and thus, will affect the level of virus

transmission. It has been shown that to achieve effectiveness of

antiviral treatment, therapy should be initiated within 48 hours of

the onset of clinical symptoms [11,12]. This is referred to as the

window of opportunity (WOP) [12,27]. It has also been shown that

a delay between the onset of symptoms and the initiation of therapy

can greatly affect the efficacy of treatment [28]. Early initiation of

treatment appears to be the most important determinant of

treatment efficacy [29]. Treatment started within the first 12 hours

after the onset of fever can shorten the period of illness by more than

3 days as compared with treatment started at 48 hours [29] and

treatment in later stages of the WOP can shorten the length of illness

proportionately [29]. Since early administration of drug decreases

the length of illness, we include two treated classes in the model:

early the WOP, late in the WOP, and after the WOP. This model is

similar to a previously published model by [28], but this model did

not divide the WOP into two stages and thus, did not capture the

effects of early versus late treatment.

We assume that viral transmission depends on the level of

treatment and the degree of symptoms demonstrated. We thus,

reduce the infectivity of the infected classes (asymptomatic,

symptomatic with no treatment, symptomatic and treated in the

first stage of the WOP, symptomatic and treated in the second

stage of the WOP) proportionately. We also assume that immunity

acquired from infection depends on the infected class. Thus, we

include four recovered classes which correspond to each infected

class. The resulting susceptible and recovered classes will be used

as the initial population for the second wave model.

The first wave model is used to explore two scenarios of school

closure. In the first scenario we assume that the first wave does not

coincide with summer school closure and thus, model the first

wave until the number of infections reaches zero (when the

number of susceptibles is depleted). In the second scenario we

consider the effects of summer school closure on the first wave.

This is done by reducing the transmission parameter to

correspond to a lower value of R0 (the basic reproduction ratio)

of the pandemic strain (see below).

First Wave Model. The first wave model considers a

population comprised of individuals that are susceptible (S),

exposed (E), asymptomatic infectious (A), untreated symptomatic

infectious (IU ), early treated symptomatic infectious (IT1
), late treated

symptomatic infectious (IT2
), recovered from asymptomatic infection

(R1), recovered from untreated symptomatic infection (R2), recovered

from early treated symptomatic infection (R3) and recovered from

late treated symptomatic infection (R4). The model is as follows:

Table 1. Antiviral stockpile size and number of doses of
vaccine by country.

Country stockpile # doses vaccine

Size vaccine uptake

(% population) (million) (% population)

Australia 41 21 30

Canada 25 50.4 40

China 1 100 3.2

France 50 94 7.8

UK 80 60 7

USA 30 195 20

doi:10.1371/journal.pone.0014307.t001
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represent the probability of infected individuals who remain

untreated until age a of clinical disease in the first and second

stages of the WOP and depend on the rates of treatment in these

stages, r1 and r2 respectively. Also,
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is the force of infection, where iT1
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A schematic diagram for first wave model is depicted in Fig. 1.

Model parameters and descriptions are listed in Table 2 and

below. For the derivation of the model please see ‘‘Text S1’’. Note

that the recovered classes Ri’, i~1,2,3,4 are distinguished because

of different recovery rates from different infective classes and also

because these classes will have different levels of acquired

immunity which will affect the dynamics of the second wave.

Reproduction numbers. The basic reproduction number

(R0), defined as the number of new cases caused by one infectious

person entering a totally susceptible population (in the absence of

any interventions) [30], is the key parameter used to determine

whether an infection will spread in a population. For the first wave

model, we find that
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where S(0) is the initial population of susceptibles. The three terms

correspond to the contributions of asymptomatic infectious

individuals and symptomatic infectious individuals during and

after the WOP.

The control reproduction number Rc is another useful quantity

that can be used to evaluate whether control measures or

interventions can contain or halt pathogen spread. For the first

wave model
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Note that, in absence of control measures (i.e. q(a)~q’(a):1)

Rc~R0.

Parameter Values. Parameter values for the first wave

model are listed in Table 2. Briefly, we assume that R0 is near

or in the reported range of 1:3{1:7 for the H1N1 pandemic [17–
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Figure 1. Schematic diagram of first wave model.
doi:10.1371/journal.pone.0014307.g001

Table 2. Population and parameters with description, values and sources for the 1st wave model.

Symbols Description Value Source

Populations

S Susceptible

E Exposed

A Asymptomatic

IU Symptomatic untreated

IT1
Symptomatic, treated day one of WOP

IT2
Symptomatic, treated day two of WOP

R1 Recovered from A

R2 Recovered from IU

R3 Recovered from IT1

R4 Recovered from IT2

Parameters

b Baseline transmission rate of infection variable with school closure b decreasing after 70 days

1=mE Mean incubation period 3 days [21,31]

1=mA Mean infectious period of asymptomatic infection 4.1 days [16]

1=mU Mean infectious period of untreated symptomatic infection 2.85 days [11,28]

1
�

mT1
Mean infectious period of symptomatic if treated
on day one WOP

1.05 days [28,42]

1
�

mT2
Mean infectious period of symptomatic if treated
on day two WOP

2 days [28,42]

n Length of the WOP 2 days [12,27]

dU Death rate of untreated symptomatic infection 0.002/day [28]

dT1
Death rate of symptomatic treated on day one of WOP 0.0001/day [28]

dT2
Death rate of symptomatic treated on day two of WOP 0.0002/day [28]

dA Relative infectiousness of asymptomatic infection 0.071 [28]

dU Relative infectiousness of untreated symptomatic infection 0.143 [28]

dT1
Relative infectiousness of treated (day one) symptomatic
infection

0.3 [28] and assumption

dT2
Relative infectiousness of treated (day two) symptomatic
infection

0.4 [28]

p Probability of developing symptoms 0.6 [11,16,22,24,31]

rmax Maximum treatment level in WOP 0.4

doi:10.1371/journal.pone.0014307.t002
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20]. When considering the effects of summer school closures we

decrease the transmission paramter to reflect a lower R0, but keep

it such that R0w1. This was done in similar fashion to [9,10]. We

assume that after a short incubation period of 3 days [21,31] 60%

of infected individuals develop clinical symptoms [11,16,22,24,31]

and treatment may commence at this time. The mean infectious

period of symptomatic individuals who remain untreated is taken

to be 4.85 days [28,29] which includes the 2 day WOP [28,29]

and a mean duration of 2.85 days during which initiating

treatment is not effective. The mean duration of asymptomatic

infection is assumed to be 4.1 days [16] and antiviral treatment is

assumed to reduce infectiousness by 60% from the time when

treatment is initiated [11,32]. Asymptomatic infection is assumed

to be 50% less infectious than symptomatic cases [16]. The

baseline transmission rate is calculated using a final size relation

(see Text S1). The death rates of the symptomatic untreated and

treated classes are taken from [28].

To investigate the feasibility of containing a pandemic in the first

wave with antivirals, we prescribe five different scenarios for the

treatment rate (see Fig. 2). We assume that treatment may commence

with the onset of symptoms and it can be administered for 2 days (the

length of the WOP). We also assume that there is a maximum

treatment level rmax. Treatment profiles (i–iii) were chosen to reflect

the fact that antiviral stockpiles may be more limited in some

countries over others. In these three profiles the treatment rate

increases with slope a on the first day to the maximum level rmax.

This is then followed by either (i) a decline with slope {a on the

second day (Fig. 2(a)), (ii) a constant level at rmax on the second day

(Fig. 2(b)) or (iii) a constant level of zero (Fig. 2(c)). Treatment profile (i)

reflects a situation which gives priority to individuals that are

diagnosed in the mid-stages of the WOP. Treatment profile (ii)

reflects a situation in which a country may have a large stockpile and

can administer doses to individuals in the second stage of the WOP.

Treatment profile (iii) represents a scenario in which the stockpile is

limited, thus, antivirals are only given to individuals that present to

the doctors in the first stage of the WOP, which has a greater

probability of reducing infection and transmission. Treatment profiles

(iv–v) are similar to profiles (ii–iii), but have the same total treatment

rate (area under the curve) as profile (i) (see Fig. 2(d,e)). Profiles (iv–v)

may be chosen to replace profile (i) if they are more effective in

reducing infection and, perhaps, treat less infections. Treatment

profiles (i–v) can be represented by:

r
1
(a)~armax,0ƒaƒ1

r
2
(a)~(2{a)rmax,1ƒaƒ2

ð20Þ

Figure 2. Profile of treatment rate - function (i–v). r’max~2=3rmax and r’’max~2rmax.
doi:10.1371/journal.pone.0014307.g002
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We assume that the treatment of clinical cases commences only

after the first 30 days of the first wave. This reflects the fact that

there is usually a lag between the incidence of disease in a

population and clinical recognition of disease cases.

Second wave
Assumptions and Initial Conditions. Immunity gained

from infection in the first wave or vaccination will affect the

severity of the second wave. Firstly, it will change the overall

susceptibility of infection of the population, and secondly, it will

affect the number of cases that develop symptomatic infection. We

have developed a model of influenza transmission dynamics in the

second wave that includes susceptible classes that are delineated by

immune status from the first wave and by vaccination (see Table 3).

It is assumed that the susceptibility of each class with some existing

immunity will be reduced by factor c
i
,i~1,2,3,4,5, (0vc

i
v1)

where c
2
vc

5
vc

4
vc

3
vc

1
.

We include infected classes that are delineated by immune

status (si, i~1,2,3,4), (0vsiv1) at the time of exposure (see

Table 3). It is assumed that the development of symptomatic

infection is intimately linked to the immune status of the individual

at the time of exposure to the pathogen [25]. Thus, we assume that

the probability of asymptomatic infection increases by strength of

pre-existing immunity at the time of exposure. We take

s2ws4ws3ws
1
.

Second wave model. The effect of partial immunity on

seasonal influenza epidemics has been studied through history-

based formulations [33–35] and status-based models [36,37]. We

propose a second wave model that is related to these models in that

it includes reduced susceptibility of a susceptible host population

and reduced transmissibility of infected individuals. The model is an

extension of the classical SIR model [38] and can be written as
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where c�~1, r
i

is the probability of symptomatic infection,

n
j
,j~1,2,3,4 are the recovery rates of respective classes of infected

individuals and w
1
,w

2
are the proportion of symptomatic infected

individuals initiating treatment on the first and second stages of the

WOP respectively.
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P5

i~�,1 q
i
, I~

P4
j~1 p

j
and R~r and c

i
~c,Vi, s

j
~s

and n
j
~n, Vj then the above model reduces to the SIR model

_SS~
X5

i~�,1
_qqi

~{bsc
X4

j~1

pj

X4

i~�,1
qi

~{bSI

ð31Þ

_II~
X4

j~1

_ppj

~bsc
X4

j~1

pj

X5

i~�,1
qi{n

X4

j~1

pj

~bSI{nI

ð32Þ

_RR~_rr

~nI
ð33Þ

where bsc*b. A schematic of the second wave model is shown in

Fig. 3. Parameters and descriptions are listed in Table 3 and

below. Note that the we chose not to employ a similar model to

Eq. 10 for the second wave since vaccination would dominate the

infection outcomes and, thus the effects of the different treatment

profiles in the second wave would be negligible.

Reproduction numbers. The number of secondary cases in

the second wave is given by the control reproduction number

Rc~R
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which give the number of secondary infections produced by an

infected individuals that is asymptomatic, symptomatic and

untreated, symptomatic and treated on the first stage of the

WOP and symptomatic and treated on the second stage of the

Table 3. Population and parameters with description, values and sources for the 2nd wave model.

Symbols Description Value Source

Populations

q� Not infected in the first wave

q1 Recovered from asymptomatic infection in first wave

q2 Recovered from symptomatic untreated infection
in first wave

q3 Recovered from treated symptomatic infection
on day one of WOP in first wave

q4 Recovered from treated symptomatic infection on
day two of WOP in first wave

q5 Vaccinated at beginning of second wave

p1 Asymptomatic infected in second wave

p2 Symptomatic infected and untreated in second wave

p3 Symptomatic infected and treated on day one of
WOP in second wave

p4 Symptomatic infected and treated on day two of WOP
in second wave

Parameters

b transmission rate in the second wave 0.9302 and 1.0148 when no school closure in the first wave

0.6342 when school closure is considered in the
first wave

c1 Reduction in susceptibility of q1 0.75 Assumption

c2 Reduction in susceptibility of q2 0.25 Assumption

c3 Reduction in susceptibility of q3 0.5 Assumption

c4 Reduction in susceptibility of q4 0.4 Assumption

c5 Reduction in susceptibility of q5 0.3 Assumption

r� Probability of symptomatic infection of q� 0.6 Assumption

r1 Probability of symptomatic infection of q1 0.5 Assumption

r2 Probability of symptomatic infection of q2 0.2 Assumption

r3 Probability of symptomatic infection of q3 0.4 Assumption

r4 Probability of symptomatic infection of q4 0.3 Assumption

r5 Probability of symptomatic infection of q5 0.25 Assumption

s1 Reduction in infectiousness of p1 0.2 Assumption

s2 Reduction in infectiousness of p2 0.7 Assumption

s3 Reduction in infectiousness of p3 0.3 Assumption

s4 Reduction in infectiousness of p3 0.4 Assumption

1=n1 Mean infectious period of p1 4.1 days [16]

1=n2 Mean infectious period of p2 4.85 days [11,28]

1=n3 Mean infectious period of p3 3.05 days

1=n4 Mean infectious period of p4 4 days

w1 Probability of treatment on day one of WOP Variable

w2 Probability of treatment on day two of WOP Variable

doi:10.1371/journal.pone.0014307.t003
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are the probabilities of infection being initiated by an individual

that is asymptomatic, symptomatic and untreated, symptomatic

and treated on the first stage of the WOP or symptomatic and

treated on the second stage of the WOP.

In the absence of vaccination and antiviral treatment in the

second wave Rc reduces to the effective reproduction number
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and if no prior immunity against the pathogen exists it further

reduces to the basic reproduction number
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Parameter values. Parameter values are similar to those

used in the first wave and were taken from the modelling and

clinical literature of influenza A and H1N1. When we do not

consider the effects of summer school closure we assume that R0 in

the second wave is greater than R0 for the first wave so that

infection of the population with partial immunity will still occur

(Rew1). This reflects the fact that in some pandemic situations the

second wave may be started by an imported case of a mutated and

higher fit strain than what was present during the first wave of a

pandemic. Here, we have chosen to study R0w2 such that Rew1.

When summer school closure is considered, we increase the

transmission rate back up to the value used in the beginning of the

first wave when schools are openned for the next school term. This

reflects the fact that social contacts are increased when school

returns. We also chose values for reduced susceptibility and

symptomatic infection so that the relationships c
2
vc

5
vc

4
vc

3

vc
1

and s2ws4ws3ws
1

are satisfied.

The initial population of the second wave will depend on the

treatment profile of the first wave (see Results). It is assumed that

the same proportion of the resulting susceptible and recovered

classes from the first wave are vaccinated.

Results

We consider two scenarios of school closure. We first consider

the case when the pandemic occurs at a time when summer school

closure will not coincide with the first or second wave. We then

consider the case when summer school closure occurs during the

first wave of infection similar to that experienced in the 2009

H1N1 pandemic. In both scenarios we first simulate the first wave

model Eq. 10 to evaluate the impact of different treatment profiles

on disease incidence. We then simulate both models, using the

results of the first wave model to initialize the second wave model

Eq. 30 to compare and contrast different combinations of

treatment and vaccination strategies.

No school closure in the first wave
First wave. Fig. 4(a,b) shows the progression of infection in a

population and the cumulative attack rate (untreated and treated

infections) over the first wave when R0~1:6 for each treatment

profile ((i) - blue, (ii) - red, (iii) - green, (iv) - pink and (v) - yellow)

and when treatment is not used (black). When treatment is not

used, the first wave infection peaks at 1.3% of the population

around day 60–70 and 38% of the population experiences

infection over the whole wave. As the treatment rate increases

the wave peak decreases in magnitude and occurs later in time

Fig. 4(a). The cumulative attack rate also decreases Fig. 4(b).

As R0 increases, the wave peak increases (not shown) and the

proportion of the population experiencing infection also increases

with and without treatment (Fig. 4(c)). When treatment is used, the

cumulative attack rate is greatly reduced (Fig. 4(c)). When R0 is

only slightly greater than one the five treatment profiles result in a

similar number of total infections (Fig. 4(c)). However, as R0

increases they diverge but follow similar dynamics: there will be a

steep increase in the number of infections and this will be followed

by an approximately linear relationship with R0 (Fig. 4(c)).

The distribution of the susceptible and recovered classes at the

end of the first wave depends on the value of R0 (not shown) and

also on the treatment profile used (Fig. 4(d) assuming R0~1:6).

The proportion of the population receiving treatment is also

affected i.e. if R0~1:6, 7.7, 6.1, 4.9, 7.3 and 5.6% of the

population received some form of treatment under treatment

profiles (i–v) respectively (Fig. 4(d)). The resulting distribution will

provide the starting population of the second wave.

Comparing the different treatment profiles we see that profile (ii)

always results in the lowest amount of infection. The overall

treatment efficacy however, may not be the best. When R0~1:6
over 50% of those treated under treatment profile (ii) received drug

Figure 3. Schematic diagram of second wave model.
doi:10.1371/journal.pone.0014307.g003
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therapy only in the second stage of the WOP (Fig. 4(c,d)) which is

less effective at reducing disease and transmission. In contrast,

treatment profile (v) which results in only a slightly higher level of

infection (Fig. 4(b,c)) uses less drugs and all those treated were

given treatment on the first day (Fig. 4(d)).

Second wave. It is not known what the basic reproductive

ratio of the second wave of a pandemic will be and it cannot be

measured since partial immunity in the population exists. It is

possible that the second wave will be initiated by a more fit

strain of H1N1 in that the transmission rate increases. It is also

possible that the virus will have evolved so that individuals that

were infected in the first wave are not fully immune. In this

section we have chosen values for the transmission rate b so that

Rew1 for the initial population resulting from any of the five

treatment profiles in the first wave and when vaccination is used

at the start of the second wave. It is assumed that, when

vaccination is used, the same proportion of individuals from

each susceptible class will be vaccinated. The Re values are

1:3685 and 1:6705, 1:8843, 1:5803, 1:6991, 1:8140 correspond-

ing to no treatment and using treatment profile (i–v) respectively

when b~0:9302 in the second wave. We also look at a second

case for a more fit strain with b~1:0148, the respective values

of Re are 1:4929 and 1:8224, 2:0556, 1:7239, 1:8536, 1:9789.

In this section we have also chosen values for ci and ri,

i~ � ,1,2,3,4 to reflect reduced levels of susceptibility and a

reduced probability of symptomatic infection depending on the

infection history in the first wave.

Second wave without vaccination - Fig. 5(a) (black line) shows

the case when drug therapy and vaccination are not used during

the first and second waves when b~0:9302 (left) and b~1:0148
(right). Comparing the first and second waves (Fig. 4(a) and

Fig. 5(a)) we see that the peak is decreased in the second wave and

it occurs at a later time. The cumulative attack rate is also lower

(Fig. 4(b) and Fig. 5(a)).

When drug therapy is used in the first wave, the second wave is

more severe (Fig. 5(a) coloured lines) compared to when it is not

(Fig. 5(a) black line). The wave peak is higher and occurs earlier in

time. The cumulative attack rate is also greater. Thus, drug

therapy interventions in the first wave have a substantial impact on

the second wave. This is a direct effect from the difference in the

underlying immunity of the susceptible population at the

beginning of the second wave.

In Fig. 5(b,c) we show the prevalence of infection and

cumulative attack rate in the second wave when b~0:9302 (left)

and b~1:0148 (right) when drug therapy is used to treat infected

individuals in the second wave. Fig. 5(b) reflects the scenario when

the antiviral stockpile is limited and Fig. 5(c) reflects the situation

when a large antiviral stockpile exists. The prevalence of infection

and the cumulative attack rate is reduced when drug therapy use

increases. However, if b~0:9302 and drug uptake is v5%
(Fig. 5(b), left) the magnitude of the second wave is similar to the

case when b~1:0148 and drug uptake is w5% (Fig. 5(c), right).

Note that, if drug therapy is used in the first wave, profile (iii)

always results in the lowest number of infections whether drug

therapy is used in the second wave or not.

Second wave with vaccination - Vaccination affects the severity

of the second wave of infections. When only vaccination is used the

peak of the second wave is reduced in magnitude and occurs later

Figure 4. First wave with and without treatment with no school closure. (a) Disease incidence with no treatment (black line) and with
treatment profiles (i–v) (blue, red, green, pink, yellow) when R0~1:6. (b) Cumulative attack rate under no treatment and treatment with profiles (i–v)
when R0~1:6. For each profile of treatment the cumulative value at the end point corresponds to the clinical attack rate given by p(1{S(?)=S(0)),
where p,S(?),S(0) respectively gives the probability of getting symptoms, the final value of susceptible at the end of epidemic and the initial
susceptible population in the beginning. (c) Cumulative number of infections with no treatment and treatment profiles (i–v) when 1:1ƒR0ƒ1:8. (d)
Distribution of resulting susceptible and recovered classes from first wave for no treatment and treatment profiles (i–v).
doi:10.1371/journal.pone.0014307.g004

Influenza Pandemic Mitigation

PLoS ONE | www.plosone.org 9 December 2010 | Volume 5 | Issue 12 | e14307



in time compared to the case when only drug therapy is used

(Fig. 6(a) and Fig. 5(a)). In turn, it reduces the cumulative attack

rate in the second wave (Fig. 6(a) and Fig. (5a)). When both

vaccination and drug therapy is available in the second wave these

are also further reduced (Fig. 6(b,c) and Fig. 5(b,c)). When

b~0:9302 and drug uptake is w5% (Fig. 6(c) left) the second wave

is almost non-existent for the case when drug therapy is not used in

the first wave (black line). Note that, if drug therapy is used in the

first wave, profile (iii) always results in the lowest number of

infections whether drug therapy is used in the second wave or not.

Fig. 7 plots the combined effect of antiviral treatment and initial

vaccination in reducing the control reproduction number Rc in the

second wave for treatment profiles (i) and (iii) when Re~1:6705
and Re~1:5803 corresponding to b~0:9302 in the second wave.

This figure shows that as vaccination uptake increases, the need

for drug therapy to control infection in the second wave reduces.

Also, when drug therapy use increases, the need for vaccination to

control the second wave decreases. This is true for all treatment

profiles used in the first wave, however, treatment profile (iii)

results in a distribution of susceptibles of the second wave that is

more sensitive to the effects of vaccination and drug therapy

uptake in the second wave.

Vaccination may not be available at the beginning of the second

wave. A delay of up to 40 days in the release of the vaccine will

have little to no effect on the second wave peak and on the

cumulative attack rate (Fig. 8 for treatment profile (v) in the first

wave). This is true for all treatment profiles (not shown).

Both waves. The goal of a pandemic control strategy is

ultimately to reduce the total level of infection. Fig. 9 shows the

cumulative number of infections (asymptomatic, symptomatic

untreated and symptomatic treated on either day) over both waves

for all treatment profiles in the first wave, and all combinations of

drug therapy and vaccination in the second wave. This figure

shows that the cumulative number of cases will lie between

50{100% of the population depending on the control strategy in

both waves.

Figure 5. Disease incidence in second wave without vaccine and no school closure in first wave. Clinical infection in second wave with no
vaccine when b~0:9302 (left) and b~1:0148 (right) having no school closure in the first wave. Lines correspond to no treatment (black) or treatment
following profile (i–v) (blue, red, green, pink, yellow) in the first wave when R0~1:5. In each plot disease incidence and cumulative attack rates are
shown. (a) No drug or vaccine. (b) With drug but no vaccine. Drug uptake is v5%. (c) With drug but no vaccine. Drug uptake is w5%.
doi:10.1371/journal.pone.0014307.g005
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Comparing all combinations of strategies in the first wave and

second wave (Table 4(a) with R0~1:5, in the first wave and

b~0:9302 in the second wave), we find that a control strategy of

vaccination and high use of drug therapy in the second wave will

always result in the lowest number of cases no matter what

treatment profile is used in the first wave. The lowest level of

infection over both waves, &54:5% of the population, results from

a combination of treatment profile (iii) in the first wave and

vaccination and w5% drug uptake in the second wave. However,

if drug therapy uptake in the second wave is low or vaccination is

not available in the second wave, then the best strategy to

minimize the total number of infections over both waves is to use

no drug therapy in the first wave. If both vaccination and drug

therapy are not available in the second wave, profile (ii) in the first

wave results in the lowest number of total infections.

All infections are not visible to public health as some may be

asymptomatic. Table 4(b) lists the cumulative number of clinical

cases (treated and untreated, cumulative attack rate) over both

waves assuming R0~1:5 in the first wave and b~0:9302 in the

second wave. To reduce the total number of clinical cases

treatment profile (iii) in the first wave along with vaccination and

w5% drug uptake in the second wave still results in the lowest

number. Also, if drug uptake is low in the second wave, or if

vaccination is not available in the second wave, then no treatment

in the first wave still results in the lowest number, and profile (ii) in

the first wave will result in the lowest number of clinical cases if

there is no vaccination or drug available in the second wave.

If the vaccination level is lower than 30% uptake in the second

wave, then no treatment in the first wave may result in a lower

number of infections than treatment profile (iii) when vaccination

and drug therapy (w5%) are available in the second wave (not

shown). Also, profile (ii) may replace no treatment in the first wave

as the best strategy if vaccination uptake is low when drug therapy

uptake is v5% in the second wave (not shown). In both of these

cases, however, the difference between no treatment and profile

(iii), and no treatment and profile (ii) is very small (not shown).

Figure 6. Disease incidence in second wave with vaccine and no school closure in first wave. Clinical infection in second wave with
vaccine when b~0:9302 (left) and b~1:0148 (right) having no school closure in the first wave. Lines correspond to no treatment (black) or treatment
following profile (i–v) (blue, red, green, pink, yellow) in the first wave when R0~1:5. In each plot disease incidence and cumulative attack rates are
shown. (a) With vaccine but no drug. (b) With drug and vaccine. Drug uptake is v5%. (c) With drug and vaccine. Drug uptake is w5%.
doi:10.1371/journal.pone.0014307.g006
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School closure in the first wave
School closure during the summer vacation may result in a

reduction in transmissibility of H1N1 in the first wave [9]. The

closing of schools over the summer months will reduce the number

of contacts of school age children, thus affecting the transmissi-

bility of the H1N1 pandemic virus which may cause a great

decrease in infections. This could be seen as the first wave of the

pandemic. In this section school holidays are assumed to start 70

days after the first wave emerges and last approximately 60 days

(July and August). This gives a total duration of 130 days of first

wave of the pandemic (starting from last week of April). The

second wave is considered for 180 days (from September to

February of the next year). As before, we simulate the first wave

model to evaluate the different treatment profiles on disease

burden and then we simulate both models using the resulting

distribution of the susceptible and recovered populations at the

end of the first wave.

First wave. As the contact pattern changes due to school

closure approximately 70 days after the first wave emerges, we

assume that the transmissibility of the virus reduces by 30%

(b~0:6733) of the initial transmissibility (R0~1:5 initially) [10].

Fig. 10(a) shows that if there is no treatment the first wave infection

peaks at 0.8% of the population around day 70 and it comes down

as the transmissibility reduces observably during the summer

holidays. Approximately 21% of the population experiences

infection over the whole wave without treatment (Fig. 10(b)).

Treatment with the different profiles (i–v) reduces the wave peak in

magnitude (Fig. 10(a)). The cumulative attack rate also decreases

accordingly due to treatment in the school closure scenario

(Fig. 10(b)). Note that total infection is greatly reduced in this

scenario when compared to the case when school closure does not

occur.

Fig. 10(c) shows the distribution of the susceptible and recovered

populations for all scenarios of treatment in the first wave (i–v).

This figures demonstrates that school closure over the summer

months increases the naive susceptible population to levels close to

100% (93.1, 97.6, 88.6, 94.4 and 96.8% for profile (i–v)

respectively) for second wave. For treatment profiles (i–v), 1.3,

0.6, 1.2, 1.2 and 0.6% of the population received some form of

treatment respectively (Fig. 10(c)). The distribution of the

susceptible and recovered populations from the first wave provides

the starting population at the beginning of the second wave, when

schools reopen for the next school year.

Second wave. In the 2009 H1N1 pandemic the first dip of

infection (or first wave) was probably caused by the end of

the school term [9]. However, when school returns the

transmissibility which was reduced during summer vacation can

then be restored to its original value in the second wave. In the

second wave we find that the Re values are 1:1703 and

1:4366,1:4779,1:3926,1:4482,1:4709 corresponding to no treat-

ment and using treatment profile (i–v) where the minimum is with

profile (iii) and the maximum is with profile (ii) when treatment is

considered. As before, we assume that the same proportin of

individuals from each susceptible class is vaccinated.

Second wave without vaccination - Fig. 11 shows the level of

infection (left) and cumulative attack rate (right) over the first

180 days of the second wave when vaccination is not used as a

control strategy in the second wave. This figure demonstrates

Figure 7. Combined effect of antiviral and vaccine during second wave with no school closure in first wave. The combined effect of
antiviral treatment and initial vaccination in reducing the control reproduction number (Rc) during the second wave of the pandemic with b~0:9302
(left) and b~1:0148 (right) having no school closure in the first wave. The white region shows the eradication of the disease where the grey region
shows disease persistence. (a) Profile (i) used in first wave. (b) Profile (iii) used in first wave.
doi:10.1371/journal.pone.0014307.g007
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that when no treatment is used in the first wave (black line) this

results in the lowest number of infections in the second wave by

a considerable margin. This is true when treatment is not used

in the second wave (Fig. 11(a)), treatment levels are low

(Fig. 11(b)) and when treatment levels are high (Fig. 11(c)).

Thus, when drug therapy is used in the first wave, the severity of

the second wave is greatly increased. This is similar to the

situation observed without school closure. Note that school

closure makes profile (ii) and profile (v) have almost the same

effect on the attack rate whether there is use of drug or not in

the second wave.

Second wave with vaccination - Vaccination gives the same

qualitative features as it did when school closure was not

considered. When only vaccination is used the peak of the second

wave is reduced in magnitude and occurs later in time compared

to the case when only drug therapy is used (Fig. 11(a) and

Fig. 12(a)). In turn, it reduces the cumulative attack rate in the

second wave (Fig. 12(a) (right). When drug therapy and vaccine are

both used in the second wave the total level of infection and

cumulative attack rate are also reduced when compared to the

case when vaccination was not used in the second wave (Fig. 11(b,c)

and Fig. 12(b,c)).

The second wave is almost non-existent when drug therapy is

not used in the first wave (Fig. 12(a,b,c)). If drug therapy is used in

the first wave profile (iii) results in the lowest level of infection in

the second wave(Fig. 12(a,b,c) green line). This is also true when

school closure is not considered (Fig. 6, green line).

Both waves. The cumulative number of infections

(asymptomatic, symptomatic untreated and symptomatic treated

on either day) over both waves for all treatment profiles in the first

wave, and all combinations of drug therapy and vaccination in the

second wave is shown in Fig. 13. This figure shows that the

reduced transmissibility due to school closure over the summer

months during the first wave reduces the total cumulative number

over both waves when compared to the case when school closure

did not occur (Fig. 9 and Fig. 13). The total cumulative infections

when school closure occurs lies between 8{60% of the population

depending on the control strategies used in both waves.

Figure 8. Delaying vaccination in second wave with no school closure in first wave. Effect of delay in initiating vaccination for second wave
of clinical infection when b~0:9302 (left) and b~1:0148 (right) having no school closure in the first wave. Lines correspond to 0, 10, 20, 30 and 40
days delay. Initial distribution results from profile (v) in the first wave when R0~1:5. In each plot disease incidence and cumulative infections are
shown. (a) With vaccine but no drug. (b) With drug and vaccine. Drug uptake is v5%. (c) With drug and vaccine. Drug uptake is w5%.
doi:10.1371/journal.pone.0014307.g008
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Comparing all combinations of strategies in the first and second

waves, we find that a control strategy of vaccination and a high use

of drug therapy in the second wave will always result in the lowest

number of cases no matter what treatment profile is used in the

first wave (Table 5(a)). This is also the case when school closure

was not considered. However, the lowest number of total

infections when considering school closure results from a

combination of treatment profile (ii) in the first wave and

vaccination and w5% drug uptake in the second wave. This

differs from our previous result where treatment profile (iii) in the

first wave and vaccination and w5% drug uptake in the second

wave resulted in the lowest number of cases. Note that in all

scenarios profile (iii) results in a higher number of infections than

profile either or both of profile (iv) or (v). Thus, using treatment

profile (iii) should not be considered if school closure over the

summer months coincides with the first wave of infection.

When vaccination is used in the second wave, or when

vaccination is not used and drug therapy is high in the second

wave, profile (ii) results in the lowest level of total infection

(Table 5(a)). However, when vaccination is not used in the second

wave and drug therapy use during the second wave is low or

nonexistent then no treatment in the first wave results in the lowest

cumulative number of infections over both waves (Table 5(a)).

Table 5(b) gives the cumulative number of clinical cases (treated

and untreated) over both waves. The results here are the same as

in that found for (Table 5(a)).

Discussion

Pandemic preparedness is a public health priority and, with the

recent emergence of the highly pathogenic H1N1 influenza virus,

it has become even more important to define control policies that

Figure 9. Cumulative total infections in both waves with no school closure in first wave. Cumulative infections (clinical and subclinical) in
both waves when R0~1:5 in the first wave having no school closure. The five panels correspond to second wave: (a) no drug or vaccine (solid line),
(b) no vaccine with drug v5% (dashed line), (c) no vaccine with drug w5% (dashdot line), (d) with drug uptake v5% and vaccine coverage 30%
(dotted line), (e) with drug uptake w5% and vaccine coverage 30% (solid line with circles). In each panel lines correspond to no treatment (black) and
treatment profile (i–v) (blue, red, green, pink, yellow) in the first wave.
doi:10.1371/journal.pone.0014307.g009
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will effectively stave off infection of a population, or at least,

greatly reduce the number of infections and the burden on the

health care system. The control policy that a particular country

may adapt will depend greatly on the resources of that country

and, perhaps, on the generousity of other countries. Thus, the

control policy that is adapted will differ between countries with

high or low levels of antiviral stockpiles, and high or low levels of

vaccine doses being purchased. The efficacy of the control policy

Table 4. Cumulative (a) total infections and (b) clinical cases over both waves when R0~1:5 in first wave without school closure
and b~0:9302 in the second wave.

Second wave

no drug v5% w5% v5% w5%

no vaccine no vaccine no vaccine 30% 30%

(a) First wave no treatment 96.7 86.7 66.2 58.4 58.3

profile (i) 99.4 92.3 83.0 76.4 64.3

profile (ii) 94.1 88.2 80.3 74.7 65.8

profile (iii) 99.6 92.0 82.1 74.0 54.5

profile (iv) 98.5 91.6 82.5 76.1 65.0

profile (v) 96.3 90.0 81.7 75.9 66.5

(b) First wave no treatment 54.6 49.6 39.1 35.0 35.0

profile (i) 56.2 52.5 47.5 43.2 36.9

profile (ii) 54.1 50.9 46.5 42.3 37.5

profile (iii) 56.2 52.3 47.0 42.1 32.0

profile (iv) 55.8 52.1 47.2 42.9 37.2

profile (v) 55.1 51.7 47.1 43.0 37.9

doi:10.1371/journal.pone.0014307.t004

Figure 10. Disease incidence in first wave with and without treatment and school closure for last 60 days. First wave with and without
treatment considering school closure in the first wave from the day 71 to day 130. (a) Disease incidence with no treatment (black line) and with
treatment profiles (i–v) (blue, red, green, pink, yellow) when R0~1:5. (b) Cumulative attack rate under no treatment and treatment with profiles (i–v)
when R0~1:5. For each profile of treatment the cumulative value at the end point corresponds to the clinical attack rate. (c) Distribution of resulting
susceptible and recovered classes from first wave for no treatment and treatment profiles (i–v).
doi:10.1371/journal.pone.0014307.g010
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will depend on the rates of uptake of treatment or prophylactic use

of these antivirals, the rate of uptake of antiviral drugs

(presentation to a doctor), the distribution of the vaccine and

vaccine uptake. The efficacy of a control policy will also depend on

the circulating strain, especially in successive waves since

individuals infected in previous waves will have acquired some

immunity.

A number of epidemiological models have explored various

mitigation strategies for pandemic influenza throughout the globe.

However, with the exception of [9] these have focussed on a single

wave of infection. We developed a model that describes the first

and second wave of an influenza pandemic which includes the two

major interventions that can be taken during a pandemic,

antivirals and vaccination. The model was used to assess the

impact of different combinations of these on the severity of the first

and second waves, and on the total number of infections over both

waves for two scenarios when the first wave coincides with school

closure over the summer months and when it does not. The first

wave model includes the use of antiviral, where antivirals are not

used, or one of five different treatment profiles is used. Each

scenario was chosen to reflect possible use of countries with no

antiviral stockpile (so no use of antivirals), a small stockpile (profile

(iii)), a medium sized one (profile (i)), or a very large one (profile

(ii)). We also explored the effects of changing treatment profile (i) to

similar profiles of (ii) and (iii) where the total probability of

treatment over the WOP was the same (treatment profiles (iv–v)).

The outcome of the first wave is a susceptible population that has

varying degrees of immunity gained from infection. This

population is used as the initial population of the second wave

of infection. In the second wave model we explored different

combinations of drug treatment rates and vaccination uptake on

the level of infection, including the effects of prior immunity from

the first wave. This was done for two different values of of

transmission b, when school closure was not considered so as to

Figure 11. Disease incidence in second wave without vaccination and with school closure in first wave. Clinical infection in second wave
with no vaccine (left) and corresponding cumulative attack rate (right) when R0~1:5 in the first wave with school closure. Lines correspond to no
treatment (black) or treatment following profile (i–v) (blue, red, green, pink, yellow) in the first wave when R0~1:5. (a) No drug or vaccine. (b) With
drug but no vaccine. Drug uptake is v5%. (c) With drug but no vaccine. Drug uptake is w5%.
doi:10.1371/journal.pone.0014307.g011
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capture the possibility of more fit influenza strains in the second

wave.

We find that no matter what treatment strategy is used in the

first wave, a combination of vaccination and w5% drug uptake in

the second wave will result in the lowest amount of infection and

clinical cases. This is lowest when treatment profile (iii) is used in

the first wave when school closure is not considered and it is lowest

when treatment profile (ii) is used in the first wave when summer

school closure is included in the model.

In cases where vaccination and drug therapy are not readily

available the optimal treatment strategy changes. When school

closure is not considered the model predicts that if drug uptake is

low in the second wave and vaccination is available, the total

number of infections and clinical cases will be reduced if no drug

therapy is used in the first wave. This result is also found in cases

where drug therapy is available in the second wave but vaccination

is not. However, if neither drug therapy or vaccination is available

in the second wave, then treatment profile (ii) in the first wave will

result in the lowest number of infections and clinical cases. The

results vary when schools are closed over the summer months.

Here, the model predicts that profile (ii) in the first wave will result

in the lowest number of infections in all cases except when

vaccination is not availble in the second wave and drug therapy

use is low or non-existent.

Though the cost-effectiveness analysis of the proposed mitigation

strategies has not been explicitly included in the present model, it is

assumed that this is related to the total number of infections and

clinical cases (Fig. 9, 13 and Table 4, 5). The economic evaluation of

inter-pandemic influenza programs is an important issue in aspect of

pandemic preparedness and our model could be compared with the

economic evaluation of mitigation strategies from a social

perspective in the USA [39] and Europe [9].

Though the parameter values introduced to reflect a reduction

in susceptibility, a reduction in infectiousness and the probability

Figure 12. Disease incidence in second wave with vaccination and with school closure in first wave. Clinical infection in second wave
with vaccine (left) and corresponding cumulative attack rate (right) when R0~1:5 in the first wave with school closure. Lines correspond to no
treatment (black) or treatment following profile (i–v) (blue, red, green, pink, yellow) in the first wave when R0~1:5. (a) With vaccine but no drug. (b)
With drug and vaccine. Drug uptake is v5%. (c) With drug and vaccine. Drug uptake is w5%.
doi:10.1371/journal.pone.0014307.g012
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of symptomatic infection in the second wave model are to some

extent based on assumptions underlying the model, we conceive

that the model results are significant and will aid in future

directions in policy making for pandemic preparedness. In this

context, however, more detailed model validation and parameter

estimation using data from the current H1N1 pandemic or past

pandemics should be a priority for future work. In the context of

pre-existing immunity our results could be reviewed with some

other modelling of mitigation strategies where it was predicted that

pre-existing immunity in 15% or more of the population kept the

attack rates low even if the whole population was not vaccinated or

vaccination was delayed [22].

Immuno-epidemiology is an emerging field which studies the

effects of individual immunity on disease dynamics at the

population level. Recently, Heffernan and Keeling [25,40] used

a model describing the pathogenesis of measles in-host to

parameterize an epidemiological model of measles infection to

study the effects of vaccination and waning immunity on disease

prevalence and asymptomatic infections. A similar study for

influenza would be helpful in determining the level of immunity

gained after influenza infection, studying how partial immunity

aids in the protection of an individual against future strains of

influenza, and studying how different distributions of pre-existing

immunity from previous infection or vaccination in a population

may provide herd immunity.

Future extensions of our model can include the study of the

effects of other non-pharmaceutical intervention strategies on the

severity of the first and second waves of a pandemic. These can

include other scenarios of school closure that were not considered

here, case isolation, household quarantine and restrictions on

travel. However, the inclusion of one or more of these intervention

strategies will add greatly to the complexity of the model.

Figure 13. Cumulative total infections in both waves with school closure in first wave. Cumulative infections (clinical and subclinical) in
both waves when R0~1:5 in the first wave with school closure. The five panels correspond to second wave: (a) no drug or vaccine (solid line), (b) no
vaccine with drug v5% (dashed line), (c) no vaccine with drug w5% (dashdot line), (d) with drug uptake v5% and vaccine coverage 30% (dotted
line), (e) with drug uptake w5% and vaccine coverage 30% (solid line with circles). In each panel lines correspond to no treatment (black) and
treatment profile (i–v) (blue, red, green, pink, yellow) in the first wave.
doi:10.1371/journal.pone.0014307.g013
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The evolution of drug resistance is not explicitly considered in our

study, but with the consideration of a higher R0 in the second wave

we do account for the better strain fitness that is able to overcome

some of the immunity gained from previous infection or vaccination.

Previous modeling studies on the effects of the accumulation of drug

resistant mutations have, like our study, found that use of drug

therapies should be minimized so as to prevent large epidemics

where drug therapy has no effect [24,41–43].

In conclusion, the two wave model predicted that if drug

therapy is readily available and a vaccine is available in the second

wave, then profile (iii) or (ii) combined with this will result in the

lowest number of possible infections in the population. However,

the use of no treatment in the first wave is optimal in most cases

when the drug therapy stockpile is limited, drug therapy use is low

and if vaccination is not available. These results pertain to the

population setting. The best result for an individual in the

population is to prevent or stave off severe infection. In future

work the benefits of the individual against the population will be

weighed. This may affect the level of drug therapy use predicted

by the model.
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