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Abstract

Epithelial-mesenchymal-transition (EMT) is a fundamental cellular process that is critical for normal development and tumor
metastasis. The transforming growth factor beta (TGFb) is a potent inducer of EMT like effects, but the mechanisms that
regulate TGFb-induced EMT remain incompletely understood. Using the widely employed NMuMG mammary epithelial cells
as a model to study TGFb-induced EMT, we report that TGFb downregulates the levels of the SUMO E3 ligase PIAS1 in cells
undergoing EMT. Gain and loss of function analyses indicate that PIAS1 acts in a SUMO ligase dependent manner to
suppress the ability of TGFb to induce EMT in these cells. We also find that TGFb inhibits sumoylation of the PIAS1 substrate
SnoN, a transcriptional regulator that antagonizes TGFb-induced EMT. Accordingly, loss of function mutations of SnoN
sumoylation impair the ability of SnoN to inhibit TGFb-induced EMT in NMuMG cells. Collectively, our findings suggest that
PIAS1 is a novel negative regulator of EMT and reveal that inhibition of the PIAS1-SnoN sumoylation pathway represents a
key mechanism by which TGFb induces EMT, with important implications in normal development and tumor metastasis.
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Introduction

Epithelial-mesenchymal transition (EMT) is a fundamental

biological process that is critical for proper tissue and organ

morphogenesis in the developing organism [1]. EMT also is

important for wound healing [1]. EMT is reactivated in pathological

conditions including fibrotic and neoplastic diseases, and importantly

EMT contributes to tumor metastasis [1,2,3,4]. Epithelial cells are

characterized by apical-basal polarity that is maintained by

specialized junctions including the apical tight junctions and

basolateral adherens junctions as well as by an organized cytoskeletal

architecture. Thus, EMT induces a morphological alteration in

epithelial cells from an apical-basal polarized to a spindle-like non-

polarized phenotype. EMT comprises the loss of epithelial cell

polarity and cell-cell adhesion due to changes in cytoskeletal

architecture and cell junctional proteins [2,3,5,6]. Consistent with

these morphological alterations, cells undergoing EMT show a

change in the actin cytoskeleton from cortical F-actin type to stress

fiber-like. EMT also induces downregulation or mislocalization of the

epithelial marker and adherens junctional protein E-cadherin [7]. E-

cadherin exerts a central role in epithelial homeostasis and its loss at

the cell-cell junctions leads to reduced expression and/or organiza-

tion of other epithelial markers including zona occludins-1 [8].

Reduction in E-cadherin levels at the sites of cell-cell attachments is

considered to be a hallmark of EMT [9,10,11]. In addition,

downregulation of E-cadherin is a predictive marker of invasiveness

and metastatic potential of many forms of cancer, including breast

and gastric tumors [12,13,14,15].

The transforming growth factor beta (TGFb) family of proteins

plays pleiotropic and essential roles in normal development and

homeostasis [16,17]. A key function of TGFb is its ability to induce

EMT [1,5,6,18]. TGFb-induced EMT plays critical roles in

development and wound healing, and contributes to the ability of

TGFb to promote tumor progression observed at later stages of

many malignancies including mammary, prostate, and colorectal

carcinomas [5,19,20,21,22].

TGFb initiates signaling in responsive cells by forming an

activated heteromeric complex with specific transmembrane

TGFb type I and II serine/threonine kinase receptors

[23,24,25,26]. The type II receptor kinase phosphorylates and

activates the type I receptor, which in turn induces the activation

of the canonical intracellular Smad signaling pathway

[27,28,29,30,31]. The Smad proteins, which are transcription

factors, are required for the ability of TGFb to induce EMT. In

particular, the Smad proteins induce the expression of other

transcription factors, including Snail and Zeb1, that are thought to

repress the expression of the E-cadherin gene [22]. Although the

mechanisms that mediate TGFb induction of EMT are beginning

to be elucidated, how the function of TGFb in EMT is regulated

has remained unexplored.

PIAS1 [protein inhibitor of activated STAT (signal transducer

and activator of transcription) 1] was originally identified based on

its ability to interact with and inhibit STAT1 binding to DNA

[32,33]. Later studies showed that PIAS1 is a SUMO E3 ligase

[34,35,36]. Sumoylation involves the covalent attachment of the

protein SUMO (small ubiquitin like modifier) to e-amino group in
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lysine residues of target substrates. Sumoylation is performed by

the sequential action of three sets of enzymes [37]. In the first step,

an E1 enzyme covalently binds a SUMO molecule in an ATP-

dependent fashion. The SUMO molecule is transferred next to the

SUMO E2 conjugating enzyme Ubc9. A SUMO E3 ligase binds

to Ubc9 and specific substrates, and thereby facilitates the transfer

of a SUMO molecule from Ubc9 to specific lysine residues within

substrates. As a SUMO E3 ligase, PIAS1 enhances the sumoyla-

tion of transcriptional regulators, including the transcriptional

modulator SnoN, which plays a critical role in TGFb responses

[38,39]. However, the functional significance of PIAS1 in TGFb-

induced EMT induction has remained unknown.

In this study, we uncover a novel mechanism that regulates

EMT. We show that TGFb reduces the level of the SUMO E3

ligase PIAS1 in cells undergoing EMT. Loss and gain of function

experiments suggest that PIAS1 antagonizes EMT. We also find

that TGFb leads to inhibition of sumoylation of the PIAS1

substrate SnoN during EMT. Loss of function experiments

demonstrate that sumoylation contributes to the ability of SnoN

to inhibit EMT. Thus, our study identifies the SUMO E3 ligase

PIAS1 as a novel regulator of TGFb-induced EMT.

Results

TGFb downregulates the SUMO ligase PIAS1 during EMT
To identify novel regulators of EMT, we employed mouse

mammary epithelial NMuMG cells, widely used for studies of

EMT [40,41,42]. We first confirmed that TGFb induced EMT in

these cells. NMuMG cells that were untreated or incubated for 2

days with TGFb in the absence or presence of TGFb type I

receptor kinase (TbRI) inhibitor SB431542 were assessed for EMT

[43,44]. A key molecular hallmark of EMT is loss or mislocaliza-

tion of the epithelial cell-cell junction protein E-cadherin. We used

an indirect immunofluorescence approach to visualize the

localization and quantify the levels of E-cadherin using the

Cellomics Kinetic Scan Reader (KSR) and associated Spot-

Detector bioapplication [45]. TGFb led to marked reduction of E-

cadherin in NMuMG cells, and the TbRI inhibitor completely

blocked this effect of TGFb (Figures 1A and 1B). We also

monitored actin reorganization from cortical to stress fiber type

and cell shape change from cuboidal to fibroblastic like, as

additional alterations associated with EMT. We used fluorescently

labeled phalloidin and the whole cell dye stain CMFDA to

visualize changes in actin reorganization and cell shape,

respectively. TGFb stimulation triggered actin stress fiber

formation and fibroblastic phenotype that were blocked by TbRI

inhibitor (Figures S1A and S1B). Collectively, these data confirm

that TGFb induces EMT in these cells.

Next, we used a candidate approach to identify potential novel

regulators of TGFb-induced EMT. The SUMO E3 ligase PIAS1

can regulate TGFb signaling but the potential role of PIAS1 in

EMT remained unidentified. To determine the role of PIAS1 in

TGFb-induced EMT, we first measured the levels of PIAS1 in

NMuMG cells that were left untreated or that were incubated with

TGFb for 2 days. Surprisingly, we found that TGFb dramatically

reduced the levels of PIAS1 in NMuMG cells (Figure 1C). The

TbRI inhibitor blocked the ability of TGFb to decrease the level of

PIAS1 as well as that of the epithelial marker E-cadherin

(Figure 1D). We confirmed that TbRI inhibitor blocked TGFb-

induced phosphorylation of Smad2 (Figure 1D). Next, we

determined if the decrease in the levels of PIAS1 in cells

undergoing EMT was at the level of transcription. However,

TGFb had little or no effect on the levels of PIAS1 mRNA

(Figure 1E). We then considered the possibility that TGFb-

dependent reduction in the levels of PIAS1 might be due to an

increase in PIAS1 ubiquitination and consequent degradation. To

test this idea, we incubated control and TGFb-treated NMuMG

cells with the proteasome inhibitor MG132 to protect polyubi-

quitinated proteins from proteasomal degradation. We found that

TGFb induced the polyubiquitination of PIAS1 in NMuMG cells

(Figure 1F). These data suggest that TGFb reduces the level of

PIAS1 via the ubiquitin-proteasome pathway in cells undergoing

EMT.

PIAS1 is a member of the PIAS family of SUMO E3 ligases that

also includes PIAS2, PIAS3, and PIAS4 [46]. We therefore also

determined effect of TGFb on the levels of PIAS 2, 3 and 4

mRNA and protein in NMuMG cells (see Materials and Methods

S1). We found that PIAS2, PIAS3 and PIAS4 mRNAs were

expressed in control NMuMG cells as determined by RT-PCR

analyses, and their levels were not altered upon TGFb treatment

(Figure S1C). Immunoblotting analyses revealed that PIAS3 and

PIAS4 were expressed in NMuMG cells but there was little or no

expression of PIAS2 in these cells (Figure S1D). In contrast to

TGFb-induced downregulation of PIAS1 protein in NMuMG

cells (Figure 1C), TGFb did not appreciably alter the levels of the

PIAS3 and PIAS4 proteins (Figure S1D). Together, these data

suggest that TGFb may selectively induce the downregulation of

PIAS1 among the PIAS proteins.

PIAS1 acts in a SUMO ligase dependent manner to inhibit
EMT

The finding that TGFb reduces the level of PIAS1 in cells

undergoing EMT led us to characterize the function of PIAS1 in

EMT. We first tested the effect of expression of exogenous PIAS1

on an E-cadherin promoter driven luciferase reporter gene, whose

repression represents a reliable readout of EMT [47,48]. We

confirmed that TGFb suppressed expression of the E-cadherin

luciferase reporter gene in NMuMG cells (Figures 2Ai and 2Aii).

Expression of exogenous PIAS1 inhibited the ability of TGFb to

repress the E-cadherin reporter without affecting the basal level of

the E-cadherin reporter in NMuMG cells (Figure 2Ai). The

cysteine-rich RING type zinc finger domain in PIAS1 is required

for its interaction with the E2 SUMO conjugating Ubc9 and

hence for the E3 SUMO ligase activity of PIAS1 [35]. We tested

the effect of expression of a mutant PIAS1 protein, in which

Cysteine 350 within the zinc finger domain was converted to

serine, on the E-cadherin-luciferase reporter gene [38]. We

confirmed that the wild type and the SUMO ligase mutant PIAS1

were expressed at equivalent levels (see Materials and Methods S1;

Figures S2Ai and S2Aii). Importantly, we found that the SUMO

ligase mutant PIAS1 failed to antagonize TGFb-inhibition of the

E-cadherin reporter gene (Figures 2Ai and 2Aii). We next carried

out a dose-response study to further confirm the role and

specificity of the SUMO ligase activity in the ability of PIAS1 to

inhibit TGFb repression of the E-cadherin promoter. These data

showed that PIAS1 antagonized TGFb-induced suppression of the

E-cadherin reporter gene in a dose-dependent manner (Figure 2B).

In contrast, the SUMO E3 ligase mutant PIAS1 (CS) did not block

the ability of TGFb to inhibit the E-cadherin reporter at any

concentration (Figure 2B). Collectively, these data suggest that the

SUMO ligase activity is critical for PIAS1 to block TGFb-

repression of E-cadherin transcription.

To characterize the role of endogenous PIAS1 on the ability of

TGFb to downregulate E-cadherin transcription, we employed an

RNAi approach to induce knockdown of PIAS1 ([38] and Figures

S2Bi and S2Bii). Expression of PIAS1 short hairpin RNAs

enhanced the ability of TGFb to suppress the E-cadherin

promoter suggesting that endogenous PIAS1 counteracts TGFb-

PIAS1 Negatively Regulates EMT
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Figure 1. TGFb downregulates the SUMO E3 ligase PIAS1 in cells undergoing EMT. A) E-cadherin immunofluorescence images of NMuMG
cells, left untreated (2 TGFb), or incubated with TGFb (+ TGFb), the TGFb-receptor type I kinase (TbRI) inhibitor SB431542 (+ KI), alone or together for
48 h. B) Each column is the mean (6 SEM, n = 3 experiments) of percent suppression of cellular E-cadherin by TGFb relative to that of the basal for
each of 2KI and +KI (see MATERIALS and METHODS). TGFb induces EMT as indicated by nearly 90% reduction in the level of the epithelial marker E-
cadherin in cells. The KI blocks TGFb reduction of E-cadherin and hence induction of EMT. C) TGFb decreases endogenous PIAS1 levels in NMuMG
cells undergoing EMT. Lysates of NMuMG cells left untreated or incubated with TGFb (48 h) were subjected to PIAS1 (a-PIAS1) and actin (a-actin)
immunoblotting (IB). D) TbRI-signaling is required for downregulation of PIAS1. Lysates of NMuMG cells left untreated or incubated with TGFb (48 h),
KI (for 48 h or for the last 24 h), alone or together, were subjected to PIAS1, E-cadherin (a-E-cadherin), Smad2 (a-Smad2) and phospho-Smad2 (a-
pSmad2) immunoblotting. TGFb increases phospho-Smad2 while reducing the levels of PIAS1 and E-cadherin. The KI blocks the ability of TGFb to
downregulate PIAS1 and E-cadherin. E) TGFb does not reduce the levels of PIAS1 mRNA. RT-PCR of RNA extracts from NMuMG cells incubated
without or with TGFb for 48 h to analyze mRNA levels of PIAS1 and the internal control GAPDH (see MATERIALS and METHODS). F) TGFb enhances
endogenous PIAS1 ubiquitination in NMuMG cells. Lysates of cells treated with the proteasome inhibitor MG132 (last 24 h of a 48 h culture), TGFb

PIAS1 Negatively Regulates EMT
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suppression of E-cadherin reporter gene promoter activity

(Figure 2C). Collectively, these data suggest that the SUMO E3

PIAS1 inhibits TGFb-repression of E-cadherin expression.

We next used biochemical and cell-based approaches to test the

possibility that PIAS1 negatively regulates TGFb-induced EMT.

We first generated NMuMG cells that stably expressed the wild

type or SUMO ligase mutant PIAS1, or that were stably

transfected with the control vector. Immunoblotting analyses

confirmed that the wild type and SUMO E3 ligase mutant PIAS1

were expressed at equivalent level in these cells (Figure 3A).

Comparison of the level of exogenous PIAS1 in these cells relative

to control transfectants showed that expression of the wild type or

SUMO E3 ligase mutant PIAS1 was only modestly increased

relative to endogenous levels of PIAS1 (Figure 3A). Immunoblot-

ting analyses using an antibody to E-cadherin revealed that

expression of PIAS1 decreased the ability of TGFb to suppress the

levels of E-cadherin protein in NMuMG cells (Figure 3B).

Quantitative analysis confirmed that the ability of PIAS1 to

reverse TGFb downregulation of E-cadherin levels was statistically

significant (Figure 3C). In contrast, we found that mutation of the

SUMO ligase activity significantly mitigated the ability of PIAS1

to inhibit TGFb-repression of E-cadherin protein level (Figures 3B

and 3C). Together, these data show that PIAS1 protects E-

cadherin protein from TGFb-dependent downregulation.

We also examined the effect of PIAS1 expression on different

EMT parameters using cell-based assays. At the basal epithelial

state, expression of PIAS1 did not appreciably affect the

localization or expression of E-cadherin (Figure 3D). Similarly,

we found that wild type or SUMO ligase mutant PIAS1 did not

alter significantly the cortical actin organization or cuboidal cell

shape in untreated cells (Figures S3A and S3B). In contrast,

expression of wild type but not the SUMO ligase mutant PIAS1

drastically inhibited the ability of two different concentrations of

TGFb to induce a loss in E-cadherin levels (Figures 3D and 3E).

Expression of PIAS1 suppressed the ability of TGFb to induce the

formation of actin stress fibers and fibroblastic cell phenotype

(Figures S3A and S3B). In contrast, the SUMO ligase mutant

PIAS1 did not reduce the ability of TGFb to change actin

reorganization and cell shape (Figures S3A and S3B). Collectively,

these findings suggest that the SUMO E3 ligase activity of PIAS1

plays a critical role in suppressing the ability of TGFb to induce

EMT.

The PIAS1 substrate SnoN contributes to PIAS1 inhibition
of EMT

The finding that the SUMO E3 ligase activity is required for the

ability of PIAS1 to antagonize EMT suggested that specific

SUMO substrates might mediate the effect of PIAS1 on this

fundamental cellular process. The transcriptional regulator SnoN

plays important roles in TGFb signaling and responses, including

antagonizing TGFb-induced EMT in cancer cells [39,49].

Recently, we and others showed that SnoN is sumoylated and

that Lysines 50 and 383 on SnoN are major sites for SUMO

conjugation [38,50]. We also identified SnoN as a PIAS1 SUMO

substrate [38,50]. We therefore tested the hypothesis that

sumoylation contributes to the ability of SnoN to inhibit TGFb-

induced EMT and that TGFb triggers a reduction in the levels of

PIAS1 and hence sumoylated SnoN to mediate EMT. SUMO-

conjugated proteins can be difficult to detect due to their

desumoylation by SUMO-proteases that might be activated

during lysis [37,51]. The general SUMO-protease inhibitor N-

ethylmaleimide (NEM) is typically included in the lysis buffer to

preserve the SUMO-conjugated species in the cellular extracts

[52,53]. Using SDS-PAGE analysis, the apparent molecular mass

of these NEM-sensitive SUMO-conjugated species is 20 kDa or

more as compared to the unmodified protein [37,54]. We

prepared NMuMG cellular extracts in the absence or presence

of NEM and subjected these lysates to SnoN immunoprecipitation

followed by SnoN immunoblotting. We first confirmed that

endogenous SnoN was sumoylated in NMuMG cells as indicated

by the appearance of several specific slow migrating NEM-

sensitive SnoN immunoreactive species as compared to unmod-

ified SnoN in SnoN immunoprecipitates (Figure 4A). Next, we

examined the status of SnoN sumoylation in cells undergoing

EMT. Interestingly, we found that TGFb stimulation led to a

reduction in the proportion of NEM-sensitive sumoylated-SnoN

species in cells undergoing EMT (Figure 4B). In other experi-

ments, inhibition of TbRI blocked the ability of TGFb to reduce

sumoylated-SnoN in these cells (Figure 4C). These data suggest

that TGFb signaling reduces the level of SnoN sumoylation in cells

undergoing EMT.

The finding that TGFb decreases SnoN sumoylation suggested

that this modification may contribute to SnoN’s ability to inhibit

EMT. To test this possibility, we compared the effect of stable

expression of wild type SnoN or a SUMO loss of function SnoN

mutant, in which Lysines 50 and 383 were converted to arginine

residues (SnoN (KdR)), on EMT [38]. Wild type and mutant

SnoN were expressed at equivalent levels (Figure 5A). Upon

immunoblotting, we found that wild type SnoN inhibited the

ability of TGFb to suppress E-cadherin expression (Figures 5B and

5C). In contrast, expression of the SUMO loss of function SnoN

mutant (KdR) had little or no effect on the ability of TGFb to

reduce E-cadherin expression (Figures 5B and 5C). Likewise,

expression of wild type SnoN but not SnoN (KdR) antagonized

TGFb-inhibition of E-cadherin in the NMuMG cells as deter-

mined by immunocytochemistry (Figures 5D and 5E). These data

suggest that sumoylation may be important for SnoN to inhibit

TGFb-induced EMT.

In addition to sumoylation, lysine residues can undergo other

modifications including acetylation and methylation [37,55]. To

exclude the possibility that the lack of effect of the SnoN (KdR) on

E-cadherin suppression by TGFb is due to impairment of potential

modifications other than sumoylation, we generated a distinct

SUMO loss of function SnoN mutant (SnoN (EdA)) in which

Glutamates 52 and 385 within SUMO consensus motifs (yKXE)

in SnoN were converted to alanine residues (Figure 6A). The

acidic amino acid in position +3 of the SUMO consensus motif is

critical for covalent linkage of the lysine residue with SUMO [37].

Accordingly, we found that replacement of Glutamates 52 and 383

with alanines abrogated the ability of SnoN to undergo

sumoylation at Lysines 50 and 383 (Figure 6B).

We next compared the effect of stable expression of wild type

and the SUMO loss of function SnoN (EdA) on EMT. Wild type

SnoN and the SnoN (EdA) mutant were expressed at comparable

levels in these cells (Figure 6C). Immunoblotting analyses showed

that while wild type SnoN blocked the ability of TGFb to reduce

E-cadherin expression, the SnoN (EdA) mutant was ineffective in

counteracting the TGFb response (Figures 6D and 6E). Likewise,

immunofluorescence studies showed that although wild type SnoN

blocked downregulation of E-cadherin in NMuMG cells under-

(48 h), alone or together were subjected to PIAS1 immunoprecipitation followed by sequential ubiquitin and PIAS1 immunoblotting. Scans in C to F
are representative of experiments that were carried out at least 3 independent times.
doi:10.1371/journal.pone.0013971.g001
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going TGFb-induced EMT, the SnoN (EdA) mutant failed to

inhibit the TGFb response (Figures 6F and 6G). Collectively, our

findings suggest that sumoylation contributes significantly to the

ability of SnoN to inhibit TGFb-reduction of E-cadherin and

hence induction of EMT. In turn, TGFb decreases the level of

sumoylated SnoN to facilitate EMT.

Figure 2. PIAS1 inhibits the ability of TGFbto suppress E-cadherin promoter activity. A) PIAS1 decreases TGFb inhibition of E-cadherin
promoter activity in a SUMO E3 ligase-dependent manner. Lysates of NMuMG cells transfected with the E-cadherin promoter driven luciferase (E-
cadherin-p-luciferase) reporter and the b-galactosidase (b-gal) expression construct together with an empty expression vector (2), or one encoding
wild type PIAS1 (WT) or SUMO E3 ligase mutant PIAS1 (CS), and left untreated or incubated with 100 pM TGFb for 48 h, were subjected to luciferase
and b-galactosidase assays (see MATERIALS and METHODS). Ai) Each column is the mean (6 SEM, n = 5) of b-galactosidase normalized luciferase data
relative to that of the basal (2 TGFb) vector control. Aii) Each column is the mean (6 SEM, n = 5) of the percent repression of luciferase activity by
TGFb relative to that of the basal (2 TGFb) of the corresponding transfection as shown in Ai (see MATERIALS and METHODS). B) PIAS1 reversal of
TGFb-inhibition of the E-cadherin promoter activity is dose-dependent. Lysates of untreated or TGFb-treated cells transfected with E-cadherin-p-
luciferase reporter and b-gal plasmid together with an empty vector or increasing concentrations of plasmids containing PIAS1 (WT) or PIAS1 (CS)
were subjected to luciferase and b-galactosidase assays. Each column is the mean (6 SEM, n = 6) of percent suppression of E-cadherin luciferase
activity by TGFb. C) Endogenous PIAS1 knockdown enhances TGFb suppression of E-cadherin reporter expression. Lysates of untreated or TGFb
treated NMuMG cells transiently transfected with the E-cadherin-p-luciferase reporter and b-gal construct together with a control vector (control) or
one encoding short hairpin RNAs to knockdown endogenous PIAS1 (PIAS1i), were subjected to luciferase and b-galactosidase assays. Each column is
the mean (6 SEM, n = 6) of percent suppression of E-cadherin luciferase activity by TGFb from six independent experiments. * indicates statistical
significant difference (P,0.05) as compared to the corresponding TGFb treatment vector control.
doi:10.1371/journal.pone.0013971.g002
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The finding that sumoylation contributes to SnoN’s ability to

inhibit TGFb-induced EMT supports the conclusion that SnoN

mediates the ability of the SnoN SUMO E3 ligase PIAS1 to

suppress EMT. To further investigate the role of PIAS1-SnoN

sumoylation pathway in the regulation of EMT, we examined the

codependence of PIAS1 and SnoN in inhibiting TGFb-induced

downregulation of E-cadherin promoter. First, we asked whether

expression of the SUMO loss of function SnoN (EdA) mutant

might act in a dominantly interfering manner to block the function

of the SUMO E3 ligase PIAS1 in NMuMG cells. Co-

immunoprecipitation studies revealed that the SnoN (EdA) mutant

was as effective as the wild type SnoN in associating with PIAS1

(Figure 7A). Importantly, in reporter analysis assays, we found that

expression of the SnoN (EdA) mutant, but not the wild type SnoN,

blocked the ability of PIAS1 to mitigate TGFb repression of E-

cadherin-promoter activity (Figure 7B). Quantitative immunoflu-

orescence analysis showed that PIAS1 was expressed at similar

levels in the control NMuMG cells as well as cells expressing wild

type SnoN or the SnoN (EdA) mutant (Figures S4Ai and S4Aii). In

other experiments, we examined the effect of expression of the

SUMO E3 ligase inactive PIAS1 (CS) mutant on the ability of

exogenous SnoN to block TGFb-repression of E-cadherin

promoter transcription. Co-immunoprecipitation experiments

demonstrated that SnoN interacts with PIAS1 (CS) as effectively

as with wild type PIAS1 (Figure 7C). In reporter assays, we found

that expression of the PIAS1 (CS) mutant, but not the wild type

PIAS1, reversed the ability of SnoN to counter TGFb-repression

of E-cadherin transcription (Figure 7D). Immunofluorescence

analysis showed that SnoN was expressed at similar levels in

control NMuMG cells as well as those expressing wild type PIAS1

or the PIAS1 (CS) mutant (Figures S4Bi and S4Bii). Together,

these findings support the conclusion that SnoN plays a critical

role in the ability of PIAS1 to block TGFb-repression of E-

cadherin promoter activity during EMT. Collectively, our findings

point to an important functional link involving TGFb, PIAS1 and

SnoN in the regulation of EMT.

Discussion

In this report, we identify a novel mechanism that regulates

EMT. We have found that TGFb reduces the levels of the SUMO

E3 ligase PIAS1 in cells undergoing EMT. Expression of PIAS1

antagonizes the ability of TGFb to induce EMT. Importantly, the

SUMO E3 ligase activity of PIAS1 is critical for its suppression of

EMT. TGFb stimulation leads to the inhibition of sumoylation of

the PIAS1 substrate SnoN. Loss of function mutations of SnoN

sumoylation abrogated the ability of SnoN to inhibit TGFb-

induced EMT. Collectively, these data suggest that PIAS1-induced

sumoylation of SnoN antagonizes EMT. Conversely, TGFb leads

to a reduction in the level of PIAS1 and sumoylated SnoN to

facilitate the induction of EMT.

The identification of PIAS1 downregulation as a critical

mechanism for TGFb-induced EMT bears significant implications

for our understanding of TGFb responses. Since EMT comprises

the loss of apical-basal polarity and cell-cell adhesion of epithelial

cells, PIAS1 inhibition of EMT suggests that PIAS1 may play a

critical role in maintaining cell polarity and cell-cell contact in

epithelial tissues. In other words, the PIAS1 sumoylation pathway

may operate as a checkpoint that must be overcome by TGFb
signaling in order for EMT to proceed. In future studies, it will be

important to determine the role of PIAS1 activity in organizing the

morphogenesis of epithelial tissues during development and in the

control of metastasis of epithelial tumors. Because TGFb regulates

a diverse set of biological responses including cell proliferation,

differentiation and apoptosis, our findings suggest that PIAS1 may

also influence other TGFb-regulated responses in addition to

EMT.

PIAS1 interacts with a number of proteins including transcrip-

tional regulators and signal transducers, many of which have been

identified as PIAS1 SUMO substrates [46]. The finding that

TGFb triggers the downregulation of PIAS1 in cells undergoing

EMT uncovers a novel mechanism that modulates PIAS1 actions.

The increase in polyubiquitinated PIAS1 conjugates in cells

undergoing EMT suggests that TGFb signaling may lead to

alteration in the expression or activity of components of the

ubiquitin machinery that ultimately may regulate PIAS1 in these

cells. It will be important in future studies to identify the ubiquitin

ligases or deubiquitinases that may couple TGFb signaling to the

control of PIAS1 ubiquitination and consequent degradation.

An important question raised by our study is how PIAS1-

induced sumoylation promotes the ability of SnoN to antagonize

TGFb-induced EMT. Sumoylation impacts the subcellular

localization, stability, or transcriptional activity of protein

substrates. However, sumoylation does not appear to affect the

stability or subcellular localization of SnoN [38]. Therefore, it will

be important in future studies to determine the molecular basis

underlying the ability of sumoylation of SnoN to inhibit EMT.

In summary, our study defines an important and novel role for

the SUMO E3 ligase PIAS1 as a suppressor of EMT. In particular,

our data indicate that SnoN, a PIAS1 SUMO ligase substrate,

might contribute to the ability of PIAS1 to inhibit EMT. On the

other hand, TGFb inhibits the PIAS1-SnoN sumoylation pathway

in cells undergoing EMT. As EMT is critical for proper

development and in the progression of cancer, it will be important

in future studies to identify the role of PIAS1 and sumoylated

SnoN in these biological processes.

Figure 3. PIAS1 suppresses the loss of E-cadherin levels associated with TGFb-induced EMT. A) Expression of wild type and the SUMO
ligase mutant (CS) PIAS1 in stable NMuMG cells. Lysates of NMuMG cells stably transfected with the control vector expressing the resistance marker
alone or together with wild type (WT) or SUMO E3 ligase mutant (CS) PIAS1 were subjected to anti-FLAG immunoprecipitation (a-FLAG IP) followed
by anti-PIAS1 immunoblotting (upper panel), or were immunoblotted for PIAS1 and actin, the latter to serve as loading control (lower two panels).
Wild type and SUMO ligase mutant PIAS1 (CS) are expressed at similar levels. B and C) PIAS1 acts in a SUMO E3 ligase dependent manner to suppress
TGFb-reduction in E-cadherin protein level. B) Lysates of NMuMG cells stably transfected with the control plasmid or a plasmid encoding WT or CS
PIAS1 as in A and left untreated or incubated with TGFb for 48 h were subjected to E-cadherin and actin immunoblotting. Scans are from a
representative experiment that was repeated 4 times. C) Each column is the mean (6 SEM, n = 4) of percent reduction by TGFb of actin-normalized E-
cadherin levels relative to the basal levels of the respective transfectant obtained from immunoblots including those shown in B (see MATERIALS and
METHODS). D) Representative E-cadherin immunofluorescence images of vector control (2), wild type (WT) or SUMO E3 ligase mutant (CS) PIAS1
expressing NMuMG stable cells that were left untreated (I) or incubated with 20 pM (II) or 100 pM (III) TGFb for 48 h. E) Quantification of E-cadherin
immunofluorescence from images as shown in D. Intensity of E-cadherin immunofluorescence per cell was obtained and analyzed (see MATERIALS
and METHODS). Each column is the mean (6 SEM, n = 4) of percent reduction in E-cadherin levels by 20 pM (clear column) or 100 pM (grey column)
TGFb. * indicates statistical significant difference (p,0.05) as compared to the vector control.
doi:10.1371/journal.pone.0013971.g003
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Materials and Methods

Ethics Statement
N/A

Plasmids
CMV-based plasmids to express FLAG-tagged wild type SnoN

(WT), SUMO loss of function SnoN where Lysines 50 and 383

were converted to arginine residues (KdR), wild type PIAS1 (WT),

and SUMO E3 ligase mutant PIAS1 where Cysteine 350 was

converted to serine (CS) have been described previously [35,38].

FLAG-tagged SUMO loss of function SnoN (EdA) in which

Glutamates 52 and 385 were changed to alanines was generated

by a PCR-based approach. The pCAGiP/FLAG expression

vector containing cDNA encoding PIAS1 (WT or CS), or SnoN

(WT, KdR, or EdA) protein was generated by subcloning the

respective cDNA into the pCAGIP vector as described elsewhere

[45,56]. A pCAGiP vector enables the coexpression of the gene

product of interest and the puromycin resistance marker from an

internal ribosomal entry site (IRES) containing bicistronic

transcript. The PIAS1 RNA interference vector encoding PIAS1

short hairpin RNAs and enhanced green fluorescent protein (GFP)

under the control of the U6 and CMV promoters, respectively,

was described previously [38,57]. The E-cadherin-p-luciferase

reporter, a generous gift from Dr. A. Cano, and the internal

control b-galactosidase reporter constructs have been previously

described [45,47,57]. The plasmids were confirmed by restriction

digests and/or DNA sequence analyses (University of Calgary

Core Sequencing Facility).

Cell Cultures and Transfections
The NAMRU mouse mammary gland epithelial cells

(NMuMG) were purchased from American Type Culture

Collection (ATCC) and cultured in Dulbecco’s modified Eagle’s

medium (Invitrogen) with high glucose and L-glutamine, supple-

mented with 10 mg/mL insulin and 10% fetal bovine serum

(Invitrogen). The human kidney epithelial (293T) cells [58,59]

were maintained in Dulbecco’s modified Eagle’s medium

(Invitrogen) with high glucose and L-glutamine, supplemented

with 10% fetal bovine serum. NMuMG cells at approximately

70% confluency were incubated in regular media in the absence or

presence of TGFb and left at 37uC for 48 h to induce EMT. The

TGFb receptor type I kinase (TbRI) inhibitor, SB431542 (Sigma),

was used at 10 mM, where indicated. 293T cells were transiently

transfected using the calcium phosphate method. NMuMG cells

were transiently transfected using FuGENE 6 (Roche Applied

Science) or TransIT LT1 (Mirus) according to the manufacturer’s

instructions. Pools of NMuMG stables expressing a puromycin-

resistant marker alone or together with PIAS1 or SnoN were

obtained by transfecting cells with pCAGIP-based vectors

containing specific cDNA using Lipofectin (Invitrogen) according

to the manufacturer’s instructions, followed by selection of

resistant cells using 2 mg/ml puromycin (Invitrogen).

Reporter Assays
NMuMG cells were seeded in 24-well plates at approximately

4.56104 cells/well one day prior to transfections. Cells were co-

transfected with the E-cadherin-promoter-driven firefly luciferase

reporter and the CMV-b-galactosidase internal control reporter

constructs, together with a control expression vector or one

encoding wild type PIAS1 (WT), SUMO ligase mutant PIAS1

(CS), or the PIAS1 RNAi plasmid (PIAS1i), as outlined in the

figure legends. 18 h post transfection, cells were incubated in fresh

media in the absence or presence of 100 pM TGFb, and left for an

additional 48 h, to allow for the induction of EMT where

applicable. Lysates were prepared and analyzed for luciferase

activity using a commercially available firefly luciferase assay kit

[38,45,57]. Arbitrary luciferase activity (relative light units) values

were normalized to b-galactosidase activity to account for

variations in transfection efficiency. For each transfection, percent

repression by TGFb of E-cadherin promoter driven luciferase

reporter gene expression was also determined and expressed

relative to luciferase activity of the respective basal condition

lysates (2TGFb). Each experimental condition was carried out in

Figure 4. TGFb inhibits SnoN sumoylation in cells undergoing
EMT. A) Endogenous SnoN is sumoylated in NMuMG cells. NMuMG cell
extracts prepared in the absence (2) or presence (+) of the isopeptidase
inhibitor N-ethylmaleimide (NEM) were subjected to anti-SnoN or
control IgG immunoprecipitation followed by SnoN immunoblotting.
Several NEM-sensitive slow migrating SnoN-immunoreactive species as
compared to unmodified SnoN were identified (SUMO-SnoN). B) TGFb
reduces SnoN sumoylation in cells undergoing EMT. Cells were left
untreated or incubated with TGFb for 48 h to induce EMT. NEM-
containing lysates were analyzed as described in A. C) Inhibition of TbRI-
dependent signaling blocks downregulation of SnoN sumoylation by
TGFb. NEM-treated lysates of NMuMG cells left untreated, or incubated
with TGFb alone or together with the TbRI inhibitor (KI) were subjected
to SnoN immunoprecipitation followed by SnoN immunoblotting as
described in A. Each of the scans in A, B and C is a representative blot
from an experiment that was repeated two to three times.
doi:10.1371/journal.pone.0013971.g004
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triplicate, and the data presented represent the mean (6 SEM) of

five to six independent experiments.

Reverse Transcription-PCR
NMuMG cells were lysed using TRIzol lysis reagent (Invitro-

gen), followed by total RNA extraction and concentration using

chloroform and isopropanol/ethanol, respectively. The reverse

transcriptase SuperScript II (Invitrogen) and oligo(dT)12–18

(Amersham Biosciences) as the primer were used to generate

Poly(A)-cDNA as described before [38,45,57]. Mouse PIAS1

(1080 bp) and GAPDH (300 bp) cDNA fragments were PCR-

amplified using the mouse poly(A)-cDNA as a template and gene

specific PIAS1 (sense 59-GGTATACGGGAAAAACCGG-39;

antisense 59- TCAGAGGTTACGAGCAAAGG-39), and

GAPDH (sense 59-CGGAGTCAACGGATTTGGTCGTAT-39;

antisense 59-AGCCTTCTC CATGGTGGTGAAGAC-39) oligo-

nucleotides as primers. The PCR products were resolved and

stained using 1.2% agarose gels and ethidium bromide, respec-

tively. The amplified cDNA products were scanned and visualized

using the VersaDoc 5000 Imager (Bio-Rad).

Immunoprecipitation and Immunoblotting
NMuMG or 293T cell extracts prepared in TNTE (50 mM

Tris-HCl, pH 7.4, 150 mM NaCl and 1 mM EDTA) buffer

containing 0.5% Triton X-100 with protease and phosphatase

inhibitors were centrifuged at 14,000 x g for 10 min at 4uC as

described previously [38,45,57]. 20 mM N-ethylmaleimide (NEM;

Sigma), an isopeptidase inhibitor, was included in the lysis buffer

where indicated [38]. Supernatants’ protein compositions were

resolved by SDS-PAGE followed by western blotting using

antibodies to proteins of interest. In experiments investigating

PIAS1 ubiquitination or SnoN sumoylation, the majority of the

supernatant was also subjected to immunoprecipitation using goat

anti-PIAS1 (N-18; Santa Cruz), or rabbit anti-SnoN (H317; Santa

Cruz) antibodies, respectively [38]. In studies examining the

association of SnoN and PIAS1, a large fraction of the supernatant

was subjected to immunoprecipitation using mouse anti-FLAG

(M2; Sigma) or anti-MYC (9E10; Covance). Immunoprecipita-

tions were performed on equivalent amounts of total protein in

each sample. The protein contents of total cell lysate and

immunoprecipitation samples were resolved by SDS-PAGE

followed by immunoblotting using rabbit anti-SnoN, rabbit-anti

ubiquitin (FL-76; Santa Cruz), mouse anti-E-cadherin (BD

Transduction Laboratories), rabbit anti-PIAS1 (Epitomics), mouse

anti-Smad2/3 (BD, Transduction Laboratories), rabbit anti-

phospho Smad2 (Calbiochem), mouse anti-FLAG, mouse anti-

MYC, and rabbit anti-actin (Sigma) as primary antibodies and

horseradish peroxidase-conjugated anti-mouse or anti-rabbit

antibody (Amersham Biosciences) as the secondary antibodies

[57]. ECL (Amersham Biosciences)-generated signals were visual-

ized and quantified using a VersaDoc 5000 Imager and Quantity

One software (Bio-Rad), respectively.

In experiments investigating the effect of expression of wild type

PIAS1, SUMO E3 ligase mutant PIAS1 (CS), wild type SnoN, or

SUMO loss of function SnoN mutants on the ability of TGFb to

inhibit E-cadherin protein expression, the densities of E-cadherin

and actin immunoblots in the absence and presence of TGFb were

quantified from appropriate scans including those shown in

Figures 3B, 5B, and 6D, and E-cadherin levels were normalized

to the corresponding actin levels. For each transfectant, reduction

of actin-normalized E-cadherin protein levels by TGFb was

determined and expressed as a percent of actin-normalized E-

cadherin levels in the respective basal (TGFb-untreated) lysates.

Each column in the bar graph shown in each of Figures 3C, 5C

and 6E represents the mean (6 SEM) of percent suppression of E-

cadherin protein levels by TGFb of a transfectant from several

independent experiments as indicated by the n value in

parenthesis in the respective figure legend.

Immunocytochemistry and Fluorescence-Cell Based
Analyses

16104 NMuMG cells were seeded per well in 96-well plates and

incubated without or with TGFb for 48 h to induce EMT. Cells

were fixed with 4% formaldehyde, permeabilized with 0.2%

Triton-X100, and blocked using 5% BSA and 5% calf serum in

phosphate buffered saline (PBS) [45]. Subcellular localization and

levels of E-cadherin were determined by incubating cells with a

mouse anti-E-cadherin antibody followed by Cy3-conjugated anti-

mouse IgG using a well established indirect immunofluorescence

protocol [45]. For whole cell imaging, live cells were stained with 5

mM 5-chloromethylfluorescein diacetate (CMFDA) (Molecular

Probes), according to manufactures instructions, followed by fixing

as described above. For actin staining, fixed cells were incubated

with TRITC-conjugated phalloidin (Sigma). All cells were

incubated with the DNA fluorescent dye Hoechst 33342

(Invitrogen) to visualize their nuclei (data not shown). Images

were acquired using the Cellomics Kinetic Scan Reader that is

equipped with Carl Zeiss Axiom x microscope and a charge-

coupled device (CCD) digital camera [45]. Representative E-

cadherin immunofluorescence images are shown in Figures 1A,

3D, 5D, and 6F. Each micrograph corresponds to a 350 mm width.

The SpotDetector bioapplication was used to quantify E-cadherin

fluorescence intensity per cell, with cells identified by nuclear stain,

from images including those shown in Figures 1A, 3D, 5D, and 6F.

Each condition was carried out at least in triplicates per

experiment, i.e. at least three wells of a 96-well plate, and the

immunofluorescence data were averaged from a minimum of 2000

cells per well. For each condition, the reduction of E-cadherin

immunofluorescence intensity by TGFb was expressed as a

percent of the E-cadherin immunofluorescence level in the

Figure 5. SnoN sumoylation contributes to the ability of SnoN to antagonize TGFb-suppression of E-cadherin. A) Wild type SnoN and
the SUMO loss of function SnoN (SnoN (KdR)) are expressed at equivalent levels in NMuMG stable cells. Lysates of NMuMG cells stably transfected
with the control vector expressing the resistance marker alone or together with wild type SnoN (WT) or SUMO loss of function SnoN (KdR) were
subjected to FLAG immunoprecipitation followed by SnoN immunoblotting (upper panel), or were immunoblotted for SnoN and actin, the latter
serving as a loading control (lower two panels). B and C) Wild type but not the SUMO loss of function SnoN inhibits TGFb-reduction in E-cadherin
protein level in cells undergoing EMT. B) Representative scans of E-cadherin and actin immunoblots of lysates of control vector, wild type SnoN (WT)
or SUMO loss of function SnoN (KdR) expressing cells that were left untreated or incubated with TGFb. C) The densities of E-cadherin and actin
immunoblots as shown in Figure 5B were analyzed (see MATERIALS and METHODS). Each column in the bar graph represents the mean (6 SEM,
n = 4) of percent suppression of E-cadherin protein level by TGFb. D) Representative micrographs of E-cadherin-indirect immunofluorescence of
vector control (2), wild type (WT) or SUMO loss of function (KdR) SnoN expressing NMuMG cells that were left untreated (I) or incubated with 20 pM
(II) or 100 pM (III) TGFb for 48 h. E) Intensity of E-cadherin immunofluorescence per cell was obtained and analyzed (see MATERIALS and METHODS).
Each column in the bar graph represents the mean (6 SEM, n = 3) of percent reduction in E-cadherin levels by 20 pM (clear column) or 100 pM (grey
column) TGFb. * indicates statistical significant difference (p,0.05) as compared to the vector control.
doi:10.1371/journal.pone.0013971.g005
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respective basal (TGFb-untreated) cells. Each column in each bar

graph in Figures 1B, 3E, 5E, and 6G represents the mean (6

SEM) of percent suppression of E-cadherin immunofluorescence

intensity by TGFb of a transfectant from several independent

experiments as indicated by the n value in parenthesis in the

respective figure legend.

Figure 7. The PIAS1-SnoN sumoylation pathway antagonizes TGFb-suppression of E-cadherin promoter activity. A) SUMO loss of
function SnoN associates with PIAS1. Lysates of 293T cells expressing PIAS1, SnoN (WT) or SUMO loss of function SnoN (EdA) mutant, alone or
together were subjected to SnoN immunoprecipitation (a-FLAG IP) followed by sequential PIAS1 (a-MYC) and SnoN (a-SnoN) immunoblotting.
Expression of PIAS1, SnoN, and actin in lysates were confirmed by MYC, SnoN, and actin immunoblotting. B) The SUMO loss of function SnoN mutant
inhibits PIAS1 to block TGFb-reduction of E-cadherin transcription. NMuMG cells stably expressing SnoN (WT) or SnoN (EdA) or stably transfected with
the vector control plasmid (2) were transiently transfected with the E-cadherin-p-luciferase reporter and the b-gal plasmid together with an empty
expression vector (2) or one encoding the PIAS1 protein (+) were subjected to luciferase and b-galactosidase assays (see MATERIALS and METHODS).
Each column is the mean (6 SEM, n = 6) of percent reduction of E-cadherin-p-luciferase activity by TGFb. C) The SUMO ligase mutant PIAS1 interacts
with SnoN. Lysates of 293T cells expressing SnoN, PIAS1 (WT) or SUMO E3 ligase mutant PIAS1 (CS), alone or together were subjected to PIAS1
immunoprecipitation (a-MYC IP) followed by SnoN (a-SnoN) and PIAS1 (a-MYC) immunoblotting. Total lysates were immunoblotted as described in
7A. D) SUMO E3 ligase mutant PIAS1 reverses the effect of SnoN to inhibit TGFb-repression of E-cadherin promoter activity. NMuMG cells stably
expressing PIAS1 (WT) or PIAS1 (CS), or stably transfected with the vector control plasmid (2) were transiently transfected with the E-cadherin-p-
luciferase reporter and the b-gal plasmid together with an empty expression vector (2) or one encoding the SnoN protein (+) were subjected to
luciferase and b-galactosidase assays. Data from 6 independent experiments are presented as outlined in Figure 7B. * indicates statistical significant
difference (P,0.05) as compared to vector control (column one of each B and D).
doi:10.1371/journal.pone.0013971.g007

Figure 6. Sumoylation mediates the ability of SnoN to antagonize TGFb-suppression of E-cadherin expression. A) A schematic
showing the two SUMO consensus motifs in SnoN and the amino acid residues that are mutated in each of the SnoN (KdR) and SnoN (EdA). B)
Glutamates 52 and 385 are critical for SnoN to be sumoylated on Lysines 50 and 383. NEM-treated lystaes of 293T cells expressing HA-tagged SUMO1,
alone or together with SnoN (WT), SnoN (EdA) or SnoN (KdR) were subjected to FLAG immunoprecipitation followed by sequential HA (a-HA) and
SnoN immunoblotting. Representative scans from an experiment that was done 4 times. C) Equivalent expression of SnoN (WT) and the SnoN (EdA) in
NMuMG stable cells. Lysates of cells stably transfected with the control vector, SnoN (WT) or SUMO loss of function SnoN (EdA) were subjected to
FLAG immunoprecipitation followed by SnoN immunoblotting, or were immunoblotted for SnoN and actin. D and E) SnoN (WT) but not SnoN (EdA)
inhibits TGFb-reduction in E-cadherin protein level in cells undergoing EMT. D) Scans of E-cadherin and actin immunoblots of lysates of control
vector, SnoN (WT) or SnoN (EdA) expressing cells that were left untreated or incubated with TGFb as in Figure 3B. E) Each column is the mean (6 SEM,
n = 5) of percent suppression of E-cadherin protein by TGFb obtained by analysis of immunoblots including those shown in 6D (see MATERIALS and
METHODS). F) Representative images of E-cadherin immunofluorescence of vector control (2), SnoN (WT) or SnoN (EdA) expressing NMuMG cells that
were left untreated (I) or incubated with TGFb (II and III) as in Figure 3D. G) Each column is the mean (6 SEM, n = 5) of percent reduction in E-cadherin
levels by 20 pM (clear column) or 100 pM (grey column) TGFb from images as shown in 6F (see MATERIALS and METHODS). * indicates statistical
significant difference (p,0.05) as compared to the vector control.
doi:10.1371/journal.pone.0013971.g006
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Statistical Analysis
Mean values of independent experiments repeated at least three

times were subjected to student-t-test or analysis of variance

(ANOVA) followed by post hoc tests to determine statistical

significance (p,0.05).

Supporting Information

Materials and Methods S1

Found at: doi:10.1371/journal.pone.0013971.s001 (0.03 MB

DOC)

Figure S1 Analysis of TGFb-induced EMT and assessment of

changes in levels of PIAS members by TGFb. A and B) Analysis of

TGFb-induced EMT in NMuMG cells A) NMuMG cells left

untreated, or incubated with TGFb, the TbRI inhibitor SB431542

(KI), alone or together for 48 h were fixed and subjected to actin

staining with TRITC-conjugated phalloidin. B) Cells treated as in

A were incubated with the CMFDA whole cell fluorescent dye

then fixed. Cells in A and B were also co-stained with the Hoechst

DNA fluorescent dye (data not shown). Cells were scanned using

the Cellomics KSR at X20 magnification (see MATERIALS and

METHODS). Each micrographs shown in A and B represents 350

mm in width. C and D) PIAS 2, 3 and 4 may not be regulated

during TGFb-induced EMT. C) Transcript levels of PIAS family

members in NMuMG cells may not be affected by TGFb-induced

EMT. RNA extracts from NMuMG cells that were left untreated

or were incubated with TGFb for 48 h, were subjected to reverse

transcription followed by PCR amplification (RT-PCR) using

specific primers for mouse PIAS1, PIAS2, PIAS3, PIAS4 and

GAPDH, with the latter serving as internal control (see Material

and Methods S1 for details). For each PIAS family member, 1 ng

of an expression plasmid containing cDNA encoding the

respective PIAS member was also subjected to PCR as a positive

control (PCR). D) Determination of protein levels of PIAS2,

PIAS3 and PIAS4 in NMuMG cells during EMT. Lysates of

NMuMG cells left untreated or treated with TGFb for 48 h, were

immunoblotted for PIAS2, PIAS3 and PIAS4 and actin, the latter

to serve as a loading control. Lysates of 293T cells transfected with

control vector (2) or one expressing PIAS2, PIAS3 or PIAS4 (+)

were subjected to the respective PIAS antibody immunoblotting as

positive controls.

Found at: doi:10.1371/journal.pone.0013971.s002 (5.05 MB TIF)

Figure S2 Quantitative analysis of PIAS1 levels in transiently

transfected NMuMG cells. Ai) NMuMG cells transiently co-

transfected with a GFP-expressing plasmid together with the

control vector (2), or one encoding wild type (WT) or SUMO E3

ligase mutant (CS) PIAS1 cDNA were subjected to indirect

immunofluorescence using an anti-PIAS1 antibody as primary

antibody followed by incubations with Cy3-conjugated antibody,

as the secondary antibody, and Hoechst 33342 nuclear stain. Cells

were visualized using fluorescence microscopy for endogenous (2)

or exogenous (WT or CS) PIAS1 (red), GFP (green) and nuclei

(blue). Arrows indicate transfected cells as determined by GFP

expression. Representative images of an experiment that was

repeated five times show equivalent localization and expression of

the wild type and SUMO E3 ligase mutant PIAS1 in transfected

NMuMG cells. Aii) Transfected cells, as determined by GFP

expression shown in Ai, were subjected to quantitative analysis of

the intensity of the PIAS1 immunofluorescence signal (see

Materials and Methods S1). Bi) Knockdown of endogenous PIAS1

in NMuMG cells by PIAS1 RNAi. NMuMG cells were transiently

transfected with a control RNAi vector or one encoding a PIAS1

short hairpin RNA. Both RNAi vectors also co-expressed GFP.

Cells were subjected to indirect anti-PIAS1 immunofluorescence

and Hoechst 33342 nuclear staining, as in Ai, and were visualized

using fluorescence microscopy for endogenous PIAS1 (red), GFP

(green) and nuclei (blue). Scans are representative images from an

experiment that was repeated four independent times. Arrows

indicate transfected cells, as determined by GFP expression. Bii)

Transfected cells, as determined by GFP expression shown in Bi,

were subjected to quantitative analysis of the intensity of the

PIAS1 immunofluorescence signal (see Materials and Methods S1

for details). Data show that PIAS1i is effective in reducing

endogenous PIAS1 levels. Each column in graph shown in Aii and

Bii represents the mean (6 SEM) of the average PIAS1 intensity

per cell from five and four independent experiments, respectively,

expressed relative to the respective control. * indicates significant

differences (P, 0.5) from the control.

Found at: doi:10.1371/journal.pone.0013971.s003 (26.78 MB

TIF)

Figure S3 PIAS1 suppresses the ability of TGFb to induce actin

reorganization and cell morphology change. A) Control vector

(2), wild type PIAS1 (WT), or SUMO E3 ligase mutant PIAS1

(CS) expressing cells that were left untreated (I) or incubated with

20 pM (II) or 100 pM (III) TGFb for 48 h were subjected to actin

and nuclear fluorescent co-staining (see MATERIALS and

METHODS). Wild type but not the SUMO E3 ligase mutant

PIAS1 suppresses the ability of TGFb to induce actin reorgani-

zation. B) Cells treated as in A, were costained with the whole cell

fluorescent dye CMFDA and Hoechst 33342 nuclear stain (see

MATERIALS and METHODS). Fluorescent images were

captured as described in Figure S1. PIAS1 acts in a SUMO ligase

dependent manner to reduce the ability of TGFb to induce

fibroblastic cell shape change associated with EMT.

Found at: doi:10.1371/journal.pone.0013971.s004 (4.69 MB TIF)

Figure S4 Quantitative analysis of transiently expressed PIAS1

and SnoN levels in NMuMG cells. Ai) NMuMG cells stably

expressing wild type SnoN (WT) or SUMO loss of function SnoN

(EdA), or stably transfected with the vector control (2) were

transiently transfected with a GFP-expressing plasmid together

with an empty expression vector control (2), or one expressing the

PIAS1 protein were subjected to indirect immunofluorescence

using an anti-PIAS1 antibody as primary antibody followed by

incubations with Cy3-conjugated antibody, as the secondary

antibody, and Hoechst 33342 nuclear stain. Cells were visualized

using fluorescence microscopy for endogenous (2) or exogenous

PIAS1 (red), GFP (green) and nuclei (blue). Representative images

of an experiment that was repeated four times show equivalent

expression of exogenous PIAS1 in different stable NMuMG cells.

Aii) Transfected cells, as determined by GFP expression shown in

Ai, were subjected to quantitative analysis of the intensity of the

PIAS1 immunofluorescence signal (see Materials and Methods S1

for details). Each column in the graph represents the mean (6

SEM, n = 4 independent experiments) of the average exogenous

PIAS1 intensity per cell of a stable transfectant expressed relative

to its respective empty expression vector control. Bi) NMuMG

cells stably expressing wild type PIAS1 (WT) or SUMO E3 ligase

mutant PIAS1 (CS) or stably transfected with the vector control

(2) were transiently transfected with a GFP-expressing plasmid

together with an empty expression vector control (2), or one

expressing SnoN protein were subjected to indirect immunoflu-

orescence using an anti-SnoN antibody as primary antibody

followed by incubations with Cy3-conjugated antibody, as the

secondary antibody, and Hoechst 33342 nuclear stain. Cells were

visualized using fluorescence microscopy for endogenous (2) or

exogenous SnoN (red), GFP (green) and nuclei (blue). Represen-
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tative images of an experiment that was repeated four times show

equivalent expression of exogenous SnoN in different stable

NMuMG cells. Aii) Transfected cells, as determined by GFP

expression shown in Ai, were subjected to quantitative analysis of

the intensity of the SnoN immunofluorescence signal (see

Materials and Methods S1 for details). Each column in the graph

represents the mean (6 SEM, n = 4 independent experiments) of

the average exogenous SnoN intensity per cell of a stable

transfectant expressed relative to its respective empty expression

vector control.

Found at: doi:10.1371/journal.pone.0013971.s005 (14.20 MB

TIF)
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