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Abstract

Identification of a small panel of population structure informative markers can reduce genotyping cost and is useful in
various applications, such as ancestry inference in association mapping, forensics and evolutionary theory in population
genetics. Traditional methods to ascertain ancestral informative markers usually require the prior knowledge of individual
ancestry and have difficulty for admixed populations. Recently Principal Components Analysis (PCA) has been employed
with success to select SNPs which are highly correlated with top significant principal components (PCs) without use of
individual ancestral information. The approach is also applicable to admixed populations. Here we propose a novel
approach based on our recent result on summarizing population structure by graph Laplacian eigenfunctions, which differs
from PCA in that it is geometric and robust to outliers. Our approach also takes advantage of the priori sparseness of
informative markers in the genome. Through simulation of a ring population and the real global population sample HGDP
of 650K SNPs genotyped in 940 unrelated individuals, we validate the proposed algorithm at selecting most informative
markers, a small fraction of which can recover the similar underlying population structure efficiently. Employing a standard
Support Vector Machine (SVM) to predict individuals’ continental memberships on HGDP dataset of seven continents, we
demonstrate that the selected SNPs by our method are more informative but less redundant than those selected by PCA.
Our algorithm is a promising tool in genome-wide association studies and population genetics, facilitating the selection of
structure informative markers, efficient detection of population substructure and ancestral inference.
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Introduction

Understanding genetic structure of human population is of

fundamental interest in many applications. In population

genetics, it has been widely used for inference of population

evolutionary histories. In medical genetics, spurious associations

can arise in the presence of population substructure. Detection

and correction of population structure is a necessary step in

genome-wide association studies. With the availability of high-

throughput genotyping data in genome-wide disease studies,

there has been increased interest in population structure.

Correctly quantifying and understanding the genetic variation

of human population is a challenging task. PCA has been used as

a dominant method to identify population structure in the

literature [1–3]. As a classical statistical tool to achieve

dimension reduction, principal components (PCs) are linear

combinations of the underlying variables and usually several top

PCs can explain a large amount of variation in the whole dataset.

For population based case-control association studies, the

confounding effect due to population stratification can be

effectively counted for by including the top PCs as covariates

in a regression setting [3–5].

Further identifying a small panel of structure-informative

markers that can be used to unravel population structure is also

desired, since it can achieve genotyping savings and provide

insight to genetic regions that undergone the evolutionary forces.

This topic has been extensively studied in the literature [6–9]. A

MCMC based program STRUCTURE [6] has been widely used

for assigning individuals to clusters of populations. However, the

expensive computing cost becomes impractical for disease studies

involving genome scale markers and thousands of individuals.

The result is also sensitive to the prior assumption of the number

of underlying subpopulations. Other existing approaches such as

information theory based informativeness for assignment [7] In, d
and Fst are allele frequencies based and require prior knowledge

of individuals’ ancestral memberships, which limits the applica-

tion to admixed populations such as African Americans or

individuals whose ancestral information is unknown. Recently

Paschou et al. [10,11] used the square sums of top PCs’ entries as

the weights to rank the informativeness of markers, which

outperformed the approach of informativeness for assignment

using statistic In on worldwide human populations. Similar PCA

based approaches have also been widely used to select a small

set of PCA-correlated SNPs to correct population stratification

[12–14].

However, PCA also has its limitation. It is sensitive to outliers

which is caused by the fact that it actually computes the

projection that maximizes the preservation of pairwise squared
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distances. The squaring of distances tends to preserve larger

distances at the expense of preservation of short distances. The

top PCs emphasize global patterns of the data, while the

substructure of the data tends to appear in the lower ranked

PCs. In the presence of outliers, pairwise distances involving

outliers are significantly larger than other pairwise distances,

which makes PCA tend to preserve the outlying structure rather

than the bulk of the data. Also, the inclusion of extra PCs for

population structure usually leads to power loss in association

testing [15].

Motivated from geometric learning, new approaches [16–18]

based on spectral graph theory [19] have been recently proposed

to summarize population structure. Different from PCA, the

methods use the idea of shrinkage and they preserve the local

dependence structure of the study subjects. The proposed

algorithms are nonlinear and robust to outliers, where one

regards each subject as a vertice of a weighted graph [19] and

makes edges only to its close neighbors, instead of all subjects in

the study (see Materials and Methods). This reflects the fact

that distances between vertices that are far apart are usually

meaningless than closely correlated ones. The weight associated

to edges for each pair of subjects measures their degree of being

related. This adjacency graph approximates the underlying

dependence structure of the sample population and the

eigenvectors of the associated graph Laplacian contain useful

geometric structure information (for details see the references

above). The corresponding Laplacian eigenmap formed by

embedding subjects to a lower dimensional Euclidean space via

the top few eigenfunctions has locality preserving property. That

is, distance between a pair of subjects in the embedded space

reflect theirs degree of being correlated. The more they are

correlated, the closer they are mapped to. Therefore Laplacian

eigenmap clusters subjects who either come from the same

discrete subpopulation or share more common ancestry from an

admixed population and is ideal from revealing population

structure.

Because of the limitation of PCA mentioned above, those PCA

based approaches can be potentially problematic in the presence

of outliers. In this paper, we use the global HGDP diversity panel

to demonstrate that the markers selected based on Laplacian

eigenfunctions in a regression setting (see Materials and
Methods) are more informative but less redundant than the

ones based on PCA approach (see examples below). Additionally,

those most informative markers are typically sparse in the whole

genome since they usually take only a very small percentage (less

than 1%) of the total number of markers. Neither of the existing

approaches in the literature has used this sparsity priori.

Furthermore, we show that suitably incorporating the sparsity

can significantly improve the overall performance on the HGDP

panel. Therefore, we propose a sparse version of graph Laplacian

eigenfunctions to select structure most informative markers which

are also ancestry informative and can also be efficiently used to

visualize the underlying population structure and correct

population stratification in association studies. To compare the

informativeness of selected SNPs with the PCA approach, we split

the HGDP dataset equally into a training set and a testing set,

and use the standard Support Vector Machine (SVM) [20–22] to

predict the continental memberships of the samples (see Results
for details). On the worldwide population HGDP panel, the

proposed sparse Laplacian approach not only outperforms the

PCA approach on the population membership prediction, the set

of selected markers is strikingly less redundant than that by PCA.

Therefore it is valuable for studies involving genome-wide

biomarkers of thousands of individuals.

Results

Simulation study of a ring population
We first applied PCA to the covariance matrix of this simulated

sample. From Figure 1, one observes that the PC1 and PC2

distinguish the ring species from the two outlier subpopulations

well, while the ring structure of the species, together with the two

outliers, is detected by lower ranked PC3 and PC4. From

Figure 2, one sees that the top two Laplacian eigenfunctions,

LAP1 and LAP2, describe the ring structure and the two outlier

subpopulations very well. Further comprehensive comparison of

PCA and Laplacian eigenfunctions is available in the literature

[16,18,23]. Next we used the marker selection procedure

described below (see Materials and Methods) and selected

top 300 informative markers out of total 10,000 markers. With

these selected markers, the sparse Laplacian eigenfunctions,

SLAP1 and SLAP2, recover a similar population structure without

much information loss. Their correlation coefficients with the

LAP1 and LAP2 are respectively 0.9912 and 0.9910. To measure

the similarity of the two Figures 2(a) and 2(b), the Mantel test [24]

based on pairwise distance is carried out with a highly significant

Z-statistic value 2037.11.

Global genomic variation of HGDP-CEPH dataset
After the preliminary data cleaning and normalization (see

Materials and Methods for details) we first computed the

standard top principal compents of the HGDP global sample. The

biplot of PC1 and PC2 distinguishes the seven continents very

well, except that there is some overlap of individuals from East

Asia and America (see Figure 3 (a)). Next we computed the top

Laplacian eigenfunctions with varying parameter e. For large

values of e, the biplot of LAP1 and LAP2 gives very similar global

patterns observed in biplot of PC1 and PC2. Tuning the e slightly,

we can observe some fine local strucuture such as the structures of

East Asia and America and their clear classification in Figure 3
(b). Finally we applied the proposed algorithm to identify the most

structure informative markers for the top K Laplacian eigenfunc-

tions. Here K~2 in the computation. The loading vectors bi’s are

very sparse and have more than 99% of the entries are vanishing.

We computed the top two sparse Laplacia eigenfunctions, SLAP1

and SLAP2, using the selected top 1,400 SNPs. Their correlation

coefficients with the LAP1 and LAP2 using all data are

respectively 0.5275 and 0.5221. The Z-statistic of the Mantel test

for the two Figures 3(b) and 3(c) is 1867.04. The biplot of SLAP1

and SLAP2 preserves the essential geographic patterns as observed

in biplot of LAP1 and LAP2, see Figure 3 (c). Even more, the

clusters of C.S.Asia, E.Asia and America are slightly better

separated.

Intra-continent population structure
We also explored the intra-continental structure in the HDGP-

CEPH data using Laplacian eigenfunctions. Here we demonstrate

it on the Central and South Asian population group consisting of

total 207 individuals. The biplot of LAP1 and LAP2 gives almost

identical gobal pattern as given by biplot of PC1 and PC2, see

Figure 4. The biplot of PC3 and PC4 mainly identifies several

outliers faraway from the clustering of the rest individuals. While

with a suitably small e, the biplot of LAP3 and LAP4 clearly

distinguishes the Burusho subpopulation out. Next, we applied our

algorithm to select the most informative SNPs for these top four

Laplacian eigenfunctions. With the top 747 SNPs, we recovered

the main population structure as the structure above obtained

using all available SNPs. Their correlation coefficients with the top

four Laplacian eigenfunctions using all data are respectively

Sparse Informative Markers
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0.9875, 0.9846, 0.9212 and 0.8998. The Z-statistics of the Mantel

similarity test for the two pairs of Figures 4(c) and 4(e) and

Figures 4(d) and 4(f) are respectively 409.37 and 404.98.

Informative SNPs predicts continent membership via
Support Vector Machine

To further validate the selected SNPs as signatures of

population structure, we study the performance of predicting the

continental memberships of the samples using the panel of most

informative SNPs. We randomly split the total 940 individuals

equally into a training set and a testing set. For individuals in the

training set, the class labels are simply assigned to be

f1,2,3,4,5,6,7g to stand for their corresponding seven continental

memberships of Africa, Middle East, Europe, Central and South

Asia, East Asia, Oceania and America. We use a standard SVM

[20] to achieve our multi-class classification task with the top most

informative SNPs. SVM is a supervised learning method which

constructs a hyperplane or set of hyperplanes in a high-

dimensional space typically for classification and regression tasks.

Intuitively, a good separation is achieved by the hyperplane that

has the largest distance to the nearest training datapoints of any

class, since in general the larger the margin the lower the

generalization error of the classifier. In all the experents carried

out, the radial basis function is used as the default kernel function.

The experiment is repeated 10 times and the average percentage

of correct continental membership prediction is shown in Fig 5.

Here we also selected the informative markers using the PCA

based approach [10,11]. We reminder the readers that this

approach transforms the genotype matrix g differently from the

standard normalization by setting the heterogenious genotypes to

0 and the homogenious wild/mild genotypes to +1/21. Here we

denote the updated data matrix as A. For optimal performance,

we next estimated that the top 18 principal components of AAt are

significant, all of whose entries are then summed to select the

ancestral informative markers. However, the initial identified set of

informative markers by PCA is very redundant, see the

summarized distribution of the linkage disequilibrium (LD)

measure r2 in Table 1. Finally we use the designed QR algorithm

[11] to select the first 100 less correlated markers among the initial

top 500 most informative markers identified by PCA.

From the results in Fig 5, we can see first that the PCA

approach is effective as compared with the poor result predicted

by random SNPs. Next, with only the top two eigenfunctions the

Laplacian approach (LAP) without sparsity consideration, which is

equivalent to setting the penalty parameters l’s to zero in the

general framework (see Materials and Methods), is compara-

ble with the PCA approach using all 18 significant PCs and

redundancy removal procedure on prediction performance.

Finally as expected, the sparse Laplacian approach (SLAP)

improves the performance uniformly and works the best.

The error percentage of assigning individuals to their popula-

tions of the three approaches is also provided in Fig 6. There, for

example, one can observe that for Americans Laplacian approach

has reduced prediction error than PCA and sparse Laplacian has

even no prediction errors. The top 500 informative SNPs

identified by the proposed sparse Laplacian eigenfunction

approach and PCA are both shown in Fig 7. Interestingly, the

SNPs of Africa are dominantly green(wild alleles), and the PCA

Figure 1. The top four PCs of a ring species and two outlier
subpopulations. (a) shows that the PC1 and PC2 emphasize the two
outliers; (b) PC3 and PC4 capture the underlying structure.
doi:10.1371/journal.pone.0013734.g001
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identified SNPs are dominantly red(mild alleles) for the three

continents of East Asia, Oceania and America. However, this

homogeneity of the alleles for the three continents makes it difficult

to distinguish the continent memberships among them. For

example, in the PCA experiments of Fig 5 quite a few individuals

from American were mistakenly predicted as from East Asia. This

is partly due to the clustering of America and East Asia in the

biplot of the top principal components, which was observed

earlier. While that is a relatively easy task using the SNPs identified

by sparse Laplacian approach.

The distribution of these top 500 informative SNPs in the

genome is also provided in Fig 8. These markers are relatively

uniformly distributed in the genome. Nearby markers are usually

redundent in terms of ancestral informativeness because of linkage

disequlibrium (LD). The LDs among them are generally small.

This pattern suggests that the driving forces that differentiate

geographic population structure such as selection, climates,

historical events, migration and drift may adapt the whole genome

simultaneously rather than a specific region at a time. The top 20

most informative SNPs are provided in Table 2 for interested

readers, and the complete set of markers are available upon

request.

Discussion

The idea of incorporating regularized regression is that majority

of the top Laplacian eigenfunction entries are very close to zero

and represent random noise rather than true signals of population

structure differentiation. The corresponding biological motivation

is that some genomic regions undergone evolutionary processes

such as selection or historic events more significantly than majority

of the genome, though accumulated evidence [25,26] shows that

most of the regions can tell the population diversity. Therefore,

suitably forcing small entries of eigenfunctions to be zero with l1
norm can presumably reduce the random effect and improve the

entry precision of informative markers.

However, we emphasize that structure informative markers are

usually many and the proposed algorithm selects only the most

informative ones. The number of selected informative markers

with nonvanishing scores increases as the penalty tuning

parameter l1 decreases. The rankings of the top most informative

markers are quite stable as the tuning parameter varies, which may

suffice for most applications. However, other unselected random

markers can also detect the underlying population structure except

that it generally requires a lot more random markers than those

top informative ones. For the selection of tuning parameter,

generally there is no universal optimal parameters. For the

parameters E and t of the undiscovered structures, we usually

default t to be 1 and set a large value of E if we are interested in

global pattern of the dataset, while setting small values of E will

give more details of the local pattern. Also, the set of informative

markers selected by sparse Laplacian approach is less redundant

than usual Laplacian regression approach is partly due to the

property of LASSO [27] that it tends to select a representative

rather than a few from a group of correlated variables, which

corresponds to the LD of markers in our setting. While the

disadvantage of the LASSO type sparse regression is that it could

Figure 2. The top two Laplacian eigenfunctions of a ring
species and two outlier subpopulations and its sparse version
with only 300 most informative markers out of total 10,000
markers, where e~0:90.
doi:10.1371/journal.pone.0013734.g002
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Figure 3. The global population structure of population sample HGDP-CEPH. Summarized by: (a) the top two Principal Components; (b)
the top two Laplacian eigenfunctions using all available 647,483 SNPs; and (c) the top two Sparse Laplacian eigenvectors using the top 1,000 most
informative SNPs. Here the parameter e is set to be 1:10.
doi:10.1371/journal.pone.0013734.g003
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be time-consuming for hundreds of thousands of markers of

thousands of samples.

Generally inclusion of more significant Laplacian eigenfunc-

tions or principal components describing the population structure

in our regression setting will improve the overall performance, as

the additional eigenfunctions can help locating the specific

markers that distinguish the under described subpopulation more

efficiently. Here we simply demonstrate that the panel of SNPs

selected by our algorithm with K = 2 gives an effective set of

informative markers to distinguish seven continents, which is not

necessarily optimal. Earlier Lao et al. [28] developed a method

based on the informativeness of assignment index In to find

markers that differentiate populations and identified 10 SNPs

from Y Chromosome Consortium [YCC] panel to successfully

differentiate four geographic regions: western Eurasia, East Asia,

Africa and America. Their result shows also that there is

considerable lack of power when applying the ascertained SNPs

to another independent set of population samples. Here we also

provide the informativeness of assignment of the top 20

informative markers for interested readers. Needs to mention,

addition to the simple application of the In approach on the

training dataset. One can also employ suitable clustering

algorithms such as STRUCTURE [29] and FRAPPE [30] etc.

on the data to infer clusterings of individuals which rather than

the predefined individual’s membership can then be used to

compute In.

The incorporated standard SVM with multiple classes feature is

not necessarily the optimal approach for the task of multiple

continental membership prediction. Even the choice of different

kernel functions used can produce slightly different results. Here it

is just employed to compare the informativeness between the panel

of SNPs selected by PCA and ours. It is possible that other

classification techniques such as K-means and variations of SVM

etc. may improve the performance. Further investigation in this

direction is encouraged. However, we point out that the

performance generally depends not only on the number of classes

to be predicted but also the variance of each class. The larger the

variance is, the more difficult the task is. For the continental

membership prediction problem we consider above, the variation

within each continent is large since each continent contains quite a

few subpopulations with a total 52 worldwide subpopulations.

Therefore, it is a challenging task. In the case of population

membership prediction for the same number of subpopulations

instead of continents or other large geographic regions, the

difficulty level drops as the variation of each subpopulation

generally is much smaller than that of a continent.

Figure 5. The performance of three approaches. Sparse Laplacian and Laplacian with top two eigenfunctions and PCA with top 18 PCs on the
population memebership prediction, where the global population sample HGDP-CEPH were split into training and testing subsets with 470
individuals each.
doi:10.1371/journal.pone.0013734.g005

Figure 4. The population structure of Central and South Asia summarized by the top four principal compents and Laplacian
eigenfunctions using all available 647,483 SNPs and its sparse version using only the top 747 most informative SNPs. Here the
parameter e~0.
doi:10.1371/journal.pone.0013734.g004
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In the current study we exclude the reported related and

ambiguous samples [31]. Generally speaking, inclusion of atypical

or related samples changes the population structure of the samples.

Specifically, atypical samples spread away from major population

clusters and related samples cluster toward respective subpopula-

tions. The structure identified by the Laplacian approach is less

sensitive to outliers by considering only the close neighbors of each

individual, compared with PCA. One expects the Laplacian

approaches are relatively robust to a set of samples with a small

number of related or ambiguous individuals. However, a careful

identification of any potential ambiguous or related samples from

the genotype data is strongly recommended, as a few softwares

such as PREST [32–34] are available to achieve such tasks.

In summary, we have developed an algorithm to select

population structure informative markers which are also ancestry

informative and can be used to recover the original population

structure with usually more than 99% genotyping savings.

Compared with the PCA approach, the algorithm is not only

robust to outliers but also the selected informative markers are less

redundant. It is a promising basic tool for the tasks of identifying

informative markers and visualization of genetic variation in

population genetics and rapidly ongoing genome-wide association

studies.

Materials and Methods

Data
We use the public global population sample HGDP-CEPH

dataset consisting of 1043 individuals from 52 populations of seven

geographic continents. All individuals were genotyped using 650K

SNP array with total 660,918 SNP markers. We did quality

control of the SNPs with the following criteria: minor allele

frequency larger than 0.01 and missing rate less than 0.10. After

the quality control, 647,483 SNPs are retained. The earlierly

reported relatives and ambiguous samples were also excluded in

the analysis [31]. The final dataset contains 940 unrelated

individuals. The missing genotype data were simply replaced with

the average of the nonmissing genotype.

Basic Notations
Assume there are total N affected and unaffected individuals in

the sample. Let Yj denote the disease status of individual j, i.e.,

Yj~1 if j is affected, and Yj~0 if j is unaffected. Let gij denote

the matrix of genotype (0, 0.5, 1) of individual j at SNP i, where

i~1, . . . ,M. Each SNP i is then normalized by subtracting off

the row mean m~
1

N

X
j
gij , and then divide each entry byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
pi(1{pi)

r
, where pi is a posterior estimate of the allele

frequency at SNP i given by pi~

1

2
z
X

j
gij

1zN
, all missing entries

are excluded from the computation. Let’s use ĝgij denote the

normalized genotype matrix of size N|M, then Cjk~
1

M

X
i
ĝgij ĝgik denotes the standard sample correlation coefficient

between individuals j and k.

Laplacian of weight matrix
Next we summarize the main ingredients of the recent work

[17,18] on describing population structure using Laplacian

eigenfunctions. For each pair of individuals j and k we assign a

distance djk and weight Wjk. Here we set djk~1{Cjk. The weight

is set to Wjk~e{
d2

t if djkvE, i.e., Cjkw1{E, and Wjk~0
otherwise, where both E and t are some preselected positive real

numbers. The t stands for global diffusion scale and in all the

computation within the paper we set t~1:0. The E measures the

size of each subject’s neighborhood in terms of the metric djk. The

motivation of the proposed weight is that one counts only pairs

who are genetically close. The selected Gaussian weight is optimal

in certain sense, and it has deep connection with heat kernel on a

manifold which gives the general solution to heat equation.

Let D be a diagonal matrix of size N|N with row sums of W

as entries Djj~
P

k Wjk. The Laplacian matrix of the weight W is

defined to be L~D{W . Note that L is a symmetric and positive

semi-definite matrix. We restrict to the normalized version

L~D{
1
2LD{

1
2 which is also symmetric. We remark that an

alternative normalized version of L is given by D{1L, which is not

symmetric and can be regarded as a Markov matrix on the graph

since each row sum equals one. These two normalizations of

Laplacian share the same spectrum [35].

Laplacian eigenfunctions with sparse loadings
Let f be a function on the graph with value f (i) on the ith

vertex. Then the inner product can be written as vf , Lf w~

vD{
1
2f , LD{

1
2f w~

PN
i~1 F (i) LF (i)~

P
i=j Wij(F (i){F (j))2,

where F~D{
1
2f is the normalized version. The eigenfunctions of

L, denoted as e0,e1, . . . ,eN{1 in the increasing order of

eigenvalues, are the functions that minimize the weighted

variation. That is, Lei~Liei, where i~0, . . . ,N{1 and Li is

the ith associated eigenvalue. Note e0~(1, . . . ,1)t is a trivial

solution with equal value on every vertex. The top eigenfunctions

of L has been recently used to describe population structures

[16–18].

Next let b~(b1, . . . ,bK ) be a matrix of size M|K , where each

column bi~(bi1, . . . ,biM )t[RM is a unit vector and K is the

number of significant top Laplacian eigenfunctions that one uses to

represent the meaningful population structure. We consider the

optimization problem below

argminbi
Dei{Gbi D

2zl1Dbi D1zl2Dbi D2

Here l1 and l2 are two nonnegative real numbers which serve as

the tuning parameters of the regularized terms l1 and l2 norms of

bi. The ith entry bai of the loading ba measures the projected signal

Table 1. Summary of r2 among the top 500 informative SNPs.

Rank PCA Lap Slap

r2ƒ0.1 88422 118061 124457

0.1vr2ƒ0.2 26604 6401 219

0.2vr2ƒ0.3 7141 260 31

0.3vr2ƒ0.4 1342 6 15

0.4vr2ƒ0.5 365 6 11

0.5vr2ƒ0.6 193 4 3

0.6vr2ƒ0.7 195 4 6

0.7vr2ƒ0.8 179 1 1

0.8vr2ƒ0.9 140 3 5

0.9vr2 169 4 2

Distribution of numbers of pairs among the most informative 500 SNPs
identified by PCA without redundancy removed, Laplacian and Sparse Laplacian
approachs for seven global continental population structure.
doi:10.1371/journal.pone.0013734.t001
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of the ith marker on the ath Laplacian eigenvector. It is a general

belief that the SNPs that are most informative about the

population structure are only a few. That is, the loadings of the

eigenvectors are sparse. The l1 norm term serves as penalty for

being nonzero and forces majority of the SNPs with small effect or

just random noise to have zero loadings for the corresponding

eigenvectors. Linear regression with l1 constraint was first

introduced as LASSO to the statistical community by Tibshirani

[36]. Later l2 term was also included in order to have the grouping

property for variables sharing group effect, for details see Zou et al

[37]. Nowadays sparse regression has been applied in many fields

such as compressed sensing and gene expression profiles [38–40]

and various combinations of penalization terms have been

proposed in the literature. In the computation we simply set

l2~10{6 and l1~1:0. However, one can choose different values.

For the ith marker, we define a rank statistic ti~
PK

k~1 rkb2
ki,

where rk’s are weights for each eigenvector. Ideally rk measures

the percentage of variance of the data explained by the k-th

eigenvector. A simple alternative statistic is just ti~
PK

k~1 b2
ki with

uniform weights. The markers are ranked in the decreasing order

of ti’s. The more informative a marker is, the higher it ranks.

Majority of the markers have their rank statistic value equal to

zero and this reflects the fact that their contribution to the

underlying structure is relatively weak.

Whole Genome Scan
For the computational and memory limitation due to large

number of SNPs in whole genome studies, for example in scale of a

million SNPs, we propose an alternative stepwise iterative genome

scan as follows. In first step, one partitions all the available SNPs

randomly into multiple groups whose sizes are around a previously

set small number, say, 10,000. To reduce the effect caused by the

linkage disequilibrium (LD) between closeby SNPs, one tries to

partition SNPs that are in strong LD into distinct groups. Step two,

one applies the proposed selection algorithm to each group and

selects a proportion of the top SNPs. Then one merges the selected

SNPs into a group and apply the above procedures again.

Simulation Study
A ring species. Following reference [2], an equilibrium

population is simulated using the softare MS for population

genetics developed by Hudson [41]. The population consists of

100 subpopulations which are equal-spacely arranged on a circle

and two isolated subpopulations as outliers. Each subpopulation is

assumed to consist of equal number of diploids. During each

generation backward in time, a fraction m~0:1 of each

subpopulation along the circle is made up of migrants from each

adjacent subpopulation and there is no gamete swaps between

non-adjacent subpopulations. 10,000 SNP loci were independently

simulated with one segregation site per locus and ten individuals

were sampled from each subpopulation with total 1020 samples.

URL
R code for computing Sparse Laplacian Eigenfunctions is avail-

able at http://galton.uchicago.edu/,junzhang/LAPSTRUCT.

html.

 

Figure 6. Prediction error percentages of PCA, Sparse LAP and
LAP approaches of assigning individuals to their continental
memberships.
doi:10.1371/journal.pone.0013734.g006
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Figure 7. Comparison of the top informative markers. The homogeneous genotypes of wild alleles indicated with green, homegeneous
genotype of mild alleles indicated with red, the heterogeneous genotype indicated with black and the missing genotypes indicated with yellow. (a)
the top 500 ancestral informative SNPs identified by sparse Laplacian approach; (b) the top 500 ancestral informative SNPs identified by PCA
approach.
doi:10.1371/journal.pone.0013734.g007

Figure 8. The top 500 ancestral informative SNPs identified by sparse Laplacian approach. The top 100 SNPs are above the dashed red
line with scores larger or equal than 1:38|10{7 .
doi:10.1371/journal.pone.0013734.g008
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