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Abstract

Efficient human motor control is characterized by an extensive use of joint impedance modulation, which is achieved by co-
contracting antagonistic muscles in a way that is beneficial to the specific task. While there is much experimental evidence
available that the nervous system employs such strategies, no generally-valid computational model of impedance control
derived from first principles has been proposed so far. Here we develop a new impedance control model for antagonistic
limb systems which is based on a minimization of uncertainties in the internal model predictions. In contrast to previously
proposed models, our framework predicts a wide range of impedance control patterns, during stationary and adaptive
tasks. This indicates that many well-known impedance control phenomena naturally emerge from the first principles of a
stochastic optimization process that minimizes for internal model prediction uncertainties, along with energy and accuracy
demands. The insights from this computational model could be used to interpret existing experimental impedance control
data from the viewpoint of optimality or could even govern the design of future experiments based on principles of internal
model uncertainty.
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Introduction

Suppose you are holding an umbrella in a stable upright

position on a rainy day. This is an effortless task, however if

suddenly a seemingly random wind gust perturbs the umbrella,

you will typically stiffen up your arm trying to reduce the effects of

the ‘‘unpredictable’’ perturbation. It is well established that the

central nervous system (CNS) manages to change the mechanical

properties (i.e., joint impedance) of limbs by co-activating

antagonistic muscle pairs in response to specific task requirements.

This is commonly referred to as impedance control [1], which has

been explained as an effective strategy of the nervous system to

cope with kinematic variability due to neuromuscular noise and

environmental disturbances. Coming back to our umbrella

example: If over time you realize the wind keeps blowing from

the same direction, you expectedly will become more certain about

the wind’s destabilizing effect on your arm and you will gradually

reduce the stiffness and you will possibly try to place the umbrella

in a new stable position. This simple example shows intuitively

how co-activation is linked to uncertainties that you may

experience in your limb dynamics, and the main objective in this

work is to develop a computational model that unifies the concepts

of learning, uncertainty and optimality in order to understand

impedance control in a principled fashion.

A large body of experimental work has investigated the motor

learning processes in tasks under changing dynamics conditions

[2,3,4], revealing that subjects generously make use of impedance

control to counteract destabilizing external force fields (FF).

Indeed impedance modulation appears to be, to some extent,

governed by preservation of metabolic cost [2] in that subjects do

not just naively stiffen up their limbs but rather learn the optimal

mechanical impedance by predictively controlling the magnitude,

shape, and orientation of the endpoint stiffness in the direction of

the instability. In the early stage of dynamics learning, humans

tend to increase co-contraction and as learning progresses in

consecutive reaching trials, a reduction in co-contraction along

with a simultaneous reduction of the reaching errors made can be

observed [4]. These learning effects are stronger in stable FF (i.e.,

velocity-dependent) compared to unstable FF (i.e., divergent),

which suggests that impedance control is connected to the learning

process with internal dynamics models and that the CNS employs

co-activation to increase task accuracy in early stages of learning,

when the internal model is not adequately accurate yet [5,6].

Notably limb impedance is not only controlled during

adaptation but also in tasks under stationary dynamics conditions.

Studies in single and multi-joint limb reaching movements

revealed that stiffness is increased with faster movements [7,8] as

well as with higher positional accuracy demands [9,10]. Under

such conditions, higher impedance is linked to reducing the

detrimental effects of neuromotor noise [11], which exhibits large

control signal dependencies [12]. Similar to our umbrella example,

in the stationary case, the impedance can be linked to uncertainty

which here however arises from internal sources.

Many proposed computational models have focused on the

biomechanical aspects of impedance control [13,14] or have

provided ways to reproduce accurately observed co-activation

patterns for specific experiments [4,15]. While such models are
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important for the phenomenological understanding of impedance

control, they do not provide principled insights about the origins of

a wider range of phenomena, i.e., they cannot predict impedance

control during both, stationary and adaptation experiments.

Furthermore, it is not clear how impedance control can be

formalized within the framework of optimal control, which has

been immensely successful in the study of neural motor control.

More specifically impedance control (i.e., muscle co-contraction)

and energy preservation seem to be opposing properties and it has

not been shown yet from a computational perspective how these

properties can be unified in a single framework.

Here we develop a new computational theory for impedance

control which explains muscle co-activation in human arm

reaching tasks as an emergent mechanism from the first principles

of optimality. Our model is formalized within the powerful theory

of stochastic Optimal Feedback Control (OFC) [16]. However unlike

previous OFC formulations that require a closed analytical form of

the plant dynamics model, we postulate that this internal dynamics

model is acquired as a motor learning process based on continuous

sensorimotor feedback. From a computational perspective, this

approach offers three significant improvements over state-of-the art

OFC models for neuromotor control:

1. We can model adaptation processes due to modified dynamics

conditions from an optimality viewpoint, without making prior

assumptions about the source or nature of the novel dynamics.

2. Dynamics learning further provides us with means to model

prediction uncertainty based on experienced stochastic movement

data; we provide evidence that, in conjunction with an

appropriate antagonistic arm and realistic motor variability

model, impedance control emerges from a stochastic optimi-

zation process that minimizes these prediction uncertainties of

the learned internal model.

3. By formalizing impedance control within the theory of

stochastic OFC, we overcome the fundamental inability of

energy based optimization methods to model co-contraction.

Notably, in our model, co-contraction is achieved without

changing the standard energy based cost function since the

uncertainty information is contained in the learned internal

dynamics function as a stochastic term. Therefore, the trade-off

between energy preservation and co-contraction is primarily

governed by the learned uncertainty of the limb system and by

the accuracy demands of the task at hand.

We verify our model by comparing its predictions with two

classes of published impedance control experiments: Firstly,

stationary reaching experiments where accuracy or velocity

constraints are modulated and secondly, tasks involving adaptation

towards external FF. The results from single-joint elbow motion

show, as predicted by the theory, that we can replicate many well-

known impedance control phenomena from the first principles of

optimality and conceptually explain the origins of co-contraction in

volitional human reaching tasks.

Results

Stochastic OFC has been shown to be a powerful theory for

interpreting biological motor control [16–19], since it unifies motor

costs, expected rewards, internal models, noise and sensory

feedback into a coherent mathematical framework [20]. For the

study of impedance control, optimality principles are well motivated

given the fact that humans show energy and task optimal impedance

modulation [2]. Formulating a reaching task in this framework

requires a definition of a performance index (i.e., cost-function) to

minimize for, typically including reaching error, end-point stability

and energy expenditure. Other proposed cost functions often

describe kinematic parameters only [21] or dynamics parameters

based on joint torques [22], both of which do not allow a study of

joint impedance at the level of muscle activations.

In addition to the cost function, an internal model needs to be

identified, which represents the (possibly stochastic) dynamics

function of the controlled arm (see Methods). Indeed, internal

models play a key role in efficient human motor control [23] and it

has been suggested that the motor system forms an internal

forward dynamics model to compensate for delays, uncertainty of

sensory feedback, and environmental changes in a predictive

fashion [24,25]. Following this motivation, we build our internal

dynamics model based on a motor learning process from

continuous sensorimotor plant feedback. Such a learned internal

model offers two advantages: First, it allows for model adaptation

processes by updating the internal model with newly available

training data from the limbs [26]. Second, this training data

contains valuable stochastic information about the dynamics and

uncertainties therein. As motivated in the introduction, the

uncertainty could originate from both internal sources (e.g., motor

noise) and from environmental changes during adaptation tasks.

The crucial point here is that learning a stochastic internal model

enables a unified treatment of all the different types of perturbations,

the effects of which are visible as predictive uncertainties.

By incorporating this model into the optimal control framework

(Fig. 1), we can formulate OFC with learned dynamics (OFC-LD)

which, besides minimizing energy consumption and end point

error, incorporates the prediction uncertainties into the optimiza-

tion process [27]. Such an assumption is appropriate since humans

have the ability to learn not only the dynamics but also the

stochastic characteristics of tasks, in order to optimally learn the

control of a complex task [28,29]. Algorithmically OFC-LD relies

on a supervised learning method that has the capability to learn

heteroscedastic (i.e., localized) variances within the state-action

space of the arm (see Methods).

Modelling plausible kinematic variability
The human sensorimotor system exhibits highly stochastic

characteristics due to various cellular and behavioral sources of

variability [30] and a complete motor control theory must contend

with the detrimental effects of signal dependent noise (SDN) on

task performance. Generally speaking SDN in the motor system

leads to kinematic variability in the arm motion and in attempts to

incorporate this stochastic information into the optimization

process, earlier models assumed a noise process, what we here

refer to as standard SDN, that monotonically increased with the

control signal [12,31]. Those models have been successful in

reproducing important psychophysical findings [32,33]; however,

in essence they simply scale the resulting kinematic variability (KV)

with the control signal’s magnitude and ignore the underlying

noise-impedance characteristics of the musculoskeletal system

[34,35]. Consequently such methods, like all energy based

methods, are only concerned with finding the lowest muscle

activation possible, penalizing large activations and disallowing co-

contraction. Generally, we define co-contraction as the minimum

of two antagonistic muscle signals c~ min (u1,u2) [5]. However,

experimental evidence suggests that the CNS ‘‘sacrifices’’ energetic

costs by co-contracting under certain conditions to increase

impedance. But how can we model plausible kinematic variability

arising from SDN?

Kinematic variability in human motion originates from a number

of inevitable sources of internal force fluctuations [11,30]. SDN [31]

as well as joint impedance [36] increase monotonically with the level

Limb Impedance and Uncertainty
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of muscle co-activation leading to the paradoxical situation that

muscles are the source of force fluctuation and at the same time the

means to suppress its effect by increasing joint impedance [34,35]:

Since SDN propagates through the muscle dynamics and

impedance of the arm leading to kinematic variability, impedance

can be changed to modulate the kinematic effects of the motor

noise. Consequently, even though higher impedance implies higher

co-activation and thus larger SDN levels in the muscles, in humans

it leads to smaller kinematic variability [34].

In order to account for this important property of human limbs,

detailed muscular simulation models [35] have been proposed that

showed that muscle-co-contraction has a similar effect to a low-

pass filter to the kinematic variability. This is achieved by a

relatively complex motor unit pool model of parallel Hill-type

motor units that model realistic motor variability. In this work,

since we are primarily interested in the computational aspects of

impedance control, we increase the realism of our arm model by

imposing an appropriate model of kinematic variability based on

physiological observations, i.e., that the kinematic variability is

reduced for more highly co-contracted activation patterns (see

Methods and Fig. 2). Please note that this extended SDN models the

kinematic variability that would results from a realistic antagonistic

limb system (that suffers from SDN) and acts as an appropriate

surrogate to employing a very detailed biophysical model. Indeed,

the assumptions made in the extended SDN are supported by

numerous experimental and computational results [34,35] and

furthermore, provide the computational ingredients that enable

stochastic OFC framework to overcome the ‘‘inability’’ to co-

activate anatagonistic muscle pairs. Most importantly, for the

presented optimization and learning framework per se, it is

irrelevant how the kinematic variability is modeled within the

simulation (i.e, extended SDN versus highly detailed simulation

model) since the learner acquires the stochastic information from

plant data directly. For illustrative purposes, we present the

differences between kinematic variability that arise from standard

SDN (Fig. 2a, b) and from extended SDN (Fig. 2c, d) as

produced by a single joint two-muscle model of the human elbow.

Uncertainty driven impedance control
In the case when the internal model is learned from a plant with

stochastic characteristics similar to the extended SDN model, the

prediction uncertainty reflects the limb’s underlying noise-impedance

characteristics, i.e., the fact that co-contraction reduces variability.

The optimal control policy therefore should favor co-contraction

in order to reduce the negative effects of the SDN.

In order to test this hypothesis, we compared two stochastic

OFC-LD solutions using internal dynamics models learned from a

plant that either exhibits standard (Fig. 3a) or extended SDN

(Fig. 3b). The optimal strategy found in this case is to try to avoid

large commands u mostly at the end of the movement, where

disturbances can not be corrected anymore. Notably, as is evident

from Fig. 3a (right), there is still no co-contraction at all. In the

extended noise scenario, a solution is found that minimizes the

negative effects of the noise by increasing co-contraction at the end

of the motion (see Fig. 3b (right)). The results reveal that the

extended SDN performs significantly better than the standard

SDN in terms of end point accuracy and end point velocity

(Fig. 3c). By minimizing the uncertainty in a scenario with a

neurophysiologically realistic model of kinematic variability,

impedance control naturally emerges from the optimization,

producing the characteristic tri-phasic control signals observed in

human reaching [37]. Next we present the model’s prediction on a

set of well known impedance control phenomena in human arm

reaching under stationary dynamics conditions.

Impedance control for higher accuracy demands
Although energetically expensive, co-contraction is used by the

motor system to facilitate arm movement accuracy in single-joint

[34] and multi joint reaching [9]. Experimentally, an inverse

relationship between target size and co-contraction has been

reported. As target size is reduced, co-contraction and joint

impedance increases and trajectory variability decreases. As in the

CNS, our model predicts the energetically more expensive strategy

to facilitate arm movement accuracy. Fig. 4 shows the predictions

of our model for five conditions ranging from low accuracy

demands (A) to high accuracy demands (E) (see Methods). In

condition (A), very low muscle signals suffice to satisfy the low

accuracy demands, while in the condition (E), much higher muscle

signals are required, which consequently leads to higher co-

contraction levels. A similar trend of increased muscle activation

has been reported experimentally [38]. From an optimal control

perspective, an increase in accuracy demands means also that

Figure 1. Schematic representation of our OFC-LD approach. The optimal controller requires a cost function, which here encodes for
reaching time, endpoint accuracy, endpoint velocity (i.e., stability), and energy efficiency. Further a forward dynamics function is required, which in
OFC-LD is learned from plant feedback directly. This learned internal dynamics function not only allows us to model changes in the plant dynamics
(i.e., adaptation) but also encodes for the uncertainty in the dynamics data. The uncertainty itself, visible as kinematic variability in the plant, can
originate from different sources, which we here classify into external sources and internal sources of uncertainty. Most notably OFC-LD identifies the
uncertainty directly from the dynamics data not making prior assumptions about its source or shape.
doi:10.1371/journal.pone.0013601.g001
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influence of the stochasticity in the dynamics is weighted higher,

which leads to a reduction of the relative importance of the energy

efficiency in the cost function.

Impedance control with increased velocities
Next we test our model predictions in conditions where the arm

peak velocities are modulated. Humans increase co-activation as

well as reciprocal muscle activation with maximum joint velocity

and it was hypothesized that the nervous system uses a simple

strategy to adjust co-contraction and limb impedance in

association with movement speed [8,39]. The causalities here

are that faster motion requires higher muscle activity which in turn

introduces more noise into the system, the negative effects of which

can be limited with higher joint impedance. Assuming that the

reaching time and accuracy demand remains constant, peak

velocities can be modulated using targets with different reaching

distance (see Methods). The results in Fig. 5 show that the co-

contraction increases for targets that are further away and have a

higher peak velocity. The reaching performance remains good for

all targets, while there are minimal differences in end-point and

end-velocity errors between conditions.

The presented stationary experiments exemplified how the

proposed stochastic OFC-LD model can explain the emergence of

impedance control from a computational perspective. In both

experiments, OFC-LD increasingly makes use of co-contraction in

order to fulfill the changing task requirements by choosing ‘‘more

certain’’ areas of the internal dynamics model. While in the first

case, this is directly caused by the higher accuracy demand, in the

second case, the necessarily larger torques would yield less

accuracy without co-contraction. Typically, ‘‘M-shaped’’ co-

contraction patterns are produced, which in our results were

biased towards the end of the motion. The bias can be attributed

to the nature of the finite-horizon optimal control solution, which

penalizes the effects of noise more towards the end of the motion,

i.e., near the target state. Notably, M-shaped co-activation

patterns have been reported experimentally [40] linking the

magnitude of co-activation directly to the level of reciprocal

muscle activation.

Impedance control during adaptation
Adaptation paradigms, typically using a robotic manipulandum,

have been a very fruitful line of experimental research [41]. In

Figure 2. Illustration of the effects of standard and extended SDN on kinematic variability in the end-effector. Standard SDN scales
proportionally to the muscle activation, whereas the extended SDN takes into account the stabilizing effects of higher joint impedance when co-
contracting (see Methods), producing a ‘‘valley of reduced SDN’’ along the co-contraction line u1~u2 . The colors represent the noise variance as a
function of muscle activations, whereas the dark lines represent muscle activations that exert the same joint torque computed for joint angle position
q~p=4. (a) Only muscle u1 is activated, producing t~40 Nm joint torque with a Gaussian kinematic variability of N(0,0:1). (b) The same torque with
higher co-contraction produces significantly higher kinematic variability of N(0,0:15) under standard SDN. (c) Same conditions as in (a) in the case
where only muscle u1 is activated. In contrast to (b) the extended SDN in (d) favors co-contraction leading to smaller kinematic variability of N(0,0:05)
and to more stable reaching.
doi:10.1371/journal.pone.0013601.g002
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such setups, subjects are first thoroughly trained under normal

reaching conditions (null field (NF)) and then, their adaptation

process to changed dynamics (e.g., novel FF) is studied in

consecutive reaching trials. While we have already linked

uncertainties from internal sources to impedance modulation,

the force field paradigm introduces additional ‘‘external’’ uncer-

tainties of often larger magnitude. As we show next, in the spirit of

the umbrella example from the introduction, the notion of internal

model uncertainties becomes important for impedance control

during adaptation.

A particular benefit of our model is that it employs an entirely

data driven (learned) internal dynamics and noise model, meaning

it can model changes in the environmental conditions. In the FF

catch trial (the first reach in the new FF condition), the arm gets

strongly deflected, missing the target because the internal model
~ff(x,u) cannot yet account for the ‘‘spurious’’ forces of the FF.

However, using the resultant deflected trajectory as training data

and updating the dynamics model online brings the arm nearer to

the target with each new trial as the internal model predictions

become more accurate for the new condition.

Our adaptation experiment starts with 5 trials in a NF

condition, followed by 20 reaching trials in the FF condition (see

Methods). For each trial, we monitored the muscle activations, the

co-contraction and the accuracy in the positions and velocities.

Since the simulated system is stochastic and suffers from extended

SDN, we repeated the adaptation experiment 20 times under the

same conditions and averaged all results. Fig. 6 aggregates these

results. We see in the kinematic domain (left and middle plots) that

the adapted optimal solution differs from the NF condition,

suggesting that a re-optimization takes place. After the force field

has been learned, the activations for the extensor muscle u2 are

lower and those for the flexor muscle u1 are higher, meaning that

the optimal controller makes use of the supportive force field in

positive x-direction. Indeed these results are in line with recent

findings in human motor learning, where Izawa and colleagues

[42] presented results that suggest that such motor adaptation is

not just a process of perturbation cancellation but rather a re-

optimization w.r.t. motor cost and the novel dynamics.

To analyze the adaptation process in more detail, Fig. 7a
presents the integrated muscle signals and co-contraction, the

resultant absolute end-point and end-velocity errors and the

prediction uncertainty of the internal model (i.e., heteroscedastic

variances) during each of the performed 25 reaching trials. The

prediction uncertainty was computed after each trial with the

updated dynamics along the current trajectory. The first five trials

in the NF condition show approximately constant muscle

parameters along with good reaching performance and generally

low prediction uncertainties. Even in the NF condition, the

Figure 3. Comparison of the results from stochastic OFC using standard SDN (a) and extended SDN (b). We performed 50 OFC reaching
movements (only 20 trajectories plotted) under both stochastic conditions. The shaded green area indicates the region and amount of co-contraction
in the extended SDN solution. The plots in (c) quantify the results (mean +/2 standard deviation). Left: average joint angle error (absolute values) at
final time T = 500 msec. Middle: Joint angle velocity (absolute values) at time T. Right: integrated muscle commands (of both muscles) over trials. The
extended SDN outperforms the reaching performance of the standard SDN case at the expense of higher energy consumption.
doi:10.1371/journal.pone.0013601.g003
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learning further reduces the already low uncertainty. In trial 6, the

FF catch trial, the reaching performance drops drastically due to

the novel dynamics. This also increases the prediction uncertainty

since the input distribution along the current trajectory has

changed and ‘‘blown up’’ the uncertainty in that region.

Consequently, the OFC-LD algorithm now has to cope with

increased uncertainty along that new trajectory. These can be

reduced by increasing co-contraction and therefore, entering lower

noise regions, which allow the algorithm to keep the uncertainty

lower and still produce enough joint torque. For the next four

trials, i.e. trials 7 to 10, the co-activation level stays elevated while

the internal model gets updated, which is indicated by the change

in reciprocal activations and improved performance between those

trials. After the 11th trial, the co-contraction has reduced to

roughly the normal NF level and the prediction uncertainty along

the trajectory is fairly low (,1) and keeps decreasing, which

highlights the expected connection between impedance and

prediction uncertainty. A further indication for the viability of

our impedance control model is supported with a direct

comparison to the deterministic case. We repeated the same

adaptation experiment using a deterministic OFC-LD implemen-

tation, meaning the algorithm ignored the stochastic uncertainty

information available for the optimization (Fig. 7b). For the

deterministic case, one can observe that virtually no co-contraction

during adaptation is produced. This leads generally to larger

errors in the early learning phase (trial 6 to 10), especially in the

joint velocities. In contrast, for the stochastic algorithm, the

increased joint impedance stabilizes the arm better towards the

effects of the FF and therefore, produces smaller errors.

The comparison of the stochastic versus deterministic adaptation

example highlights the necessity and importance of the optimal

controller’s ability to learn the stochastic information structure of

the motor system in the NF condition from observations, i.e., the

structure of the kinematic variability resulting from the extended

SDN, such that it can be used to achieve more stable reaching

performance during adaptation tasks.

Discussion

We present a computational model for joint impedance control

that is stable towards internal and external fluctuations. Our

model is based on the fundamental assumption that the CNS,

besides optimizing for energy and accuracy, minimizes the

expected uncertainty from its internal dynamics model predictions.

Indeed this hypothesis is supported by numerous experimental

findings in which the CNS sacrifices energetic costs of muscles to

reach stability through higher joint impedance in uncertain

conditions. We showed that, in conjunction with an appropriate

antagonistic arm and SDN model, the impedance control strategy

emerges from first principles as a result of an optimization process

that minimizes for energy consumption and reaching error. Unlike

previous OFC models, here, the actor utilizes a learned dynamics

model from data that are produced by the limb system directly.

The learner incorporates the contained kinematic variability, here

also termed noise, as prediction uncertainty which is represented

algorithmically in form of heteroscedastic (i.e., localized) variances.

With these ingredients, we formulated a stochastic OFC

algorithm, called OFC-LD that uses the learned dynamics and

Figure 4. Experimental results from stochastic OFC-LD for different accuracy demands. The first row of plots shows the averaged joint
angles (left), the averaged joint velocities (middle) and the averaged muscle signals (right) over 20 trials for the five conditions A, B, C, D, and E. The
darkness of the lines indicates the level of accuracy; the brightest line indicates condition A, the darkest condition E. The bar plots in the second row
average the reaching performance over 20 trials for each condition. Left: The absolute end-point error and the end-point variability in the trajectories
decreases as accuracy demands are increased; Middle: End-point stability also increases (demonstrated by decreasing error in final velocities); Right:
The averaged co-contraction integrated during 500 msec increases with higher accuracy demands, leading to the reciprocal relationship between
accuracy and impedance control as observed in humans.
doi:10.1371/journal.pone.0013601.g004
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the contained uncertainty information. This generic model for

impedance control of antagonistic limb systems is solely based on

the quality of the learned internal model and therefore, leads to the

intuitive requirement that impedance will be increased in cases

where the actor is uncertain about the model predictions. The

simulated model predictions agree with several well-known

experimental findings from human impedance control and, for

the first time, does so from first principles of optimal control theory.

Even though the proposed framework here makes use of specific

computational techniques for nonlinear OFC (i.e., ILQG) and

heteroscedastic learning (i.e., LWPR), alternative planning and

learning methods could be applied. The key novelty of our

computational model is that it unifies the concepts of energy-

optimality, internal model learning and uncertainty to a principled model

limb impedance control.

In our model, we create a unified treatment of the various

sources of kinematic variability (sensorimotor noise, external

perturbations, systematic load or force fields etc.) by incorporating

this into a perceived error in internal model predictions. Indeed, many

human motor behaviors can be explained by stochastic optimal

control models that minimize the impact of motor noise

[12,43,44]. While exploiting this in our framework, the structured

Figure 6. Optimal reaching movement, before, during and after adaptation. Clearly the solution is being re-optimized with the learned
dynamics (including the FF).
doi:10.1371/journal.pone.0013601.g006

Figure 5. Experimental results from stochastic OFC-LD for different peak joint velocities. The first row of plots shows the averaged joint
angles (left), the averaged joint velocities (middle) and the averaged muscle signals (right) over 20 trials for reaches towards the three target
conditions ‘‘near’’, ‘‘medium’’ and ‘‘far’’. The darkest line indicates ‘‘far’’, the brightest indicates the ‘‘near’’ condition. The bar plots in the second row
quantify the reaching performance averaged over 20 trials for each condition. The end-point errors (left) and end-velocity errors (middle) show good
performance but no significant differences between the conditions, while co-contraction during the motion as expected increases with higher
velocities, due to the higher levels of muscle signals.
doi:10.1371/journal.pone.0013601.g005
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PLoS ONE | www.plosone.org 7 October 2010 | Volume 5 | Issue 10 | e13601



stochasticity provides additional information about the system

dynamics and the emergent impedance control may be a further

indication of the possible constructive role of noise in the

neuromotor system [30]. The methodology we suggest for optimal

exploitation of sensorimotor stochasticity through learning is a

generic principle that goes beyond the modeling of signal

dependent sources of noise but can be generalised to deal with

other kinds of control or state dependent uncertainties. An

example would be uncertainties that depend on the arm position

or current muscle lengths.

In the presented optimal control formulation, the uncertainty of

the internal model predictions are included in the dynamics

formulation as a stochastic term. Alternatively, one could

introduce uncertainty as an additional ‘‘uncertainty term’’ into

the cost function. The advantage of our approach is that

uncertainty or kinematic variability is modeled at its origin, i.e.,

in the dynamics of the system. Therefore, we can not only retain

the original cost function description but also take into account the

time course of the movement and therefore, minimize directly for

the ‘‘detrimental effects’’ of the uncertainty specifically to our

planning time horizon as shown in the stationary experiments.

While we have suggested a computational framework to bridge

the gap between optimal control and co-activation, there is still

limited knowledge about the neural substrate behind the observed

optimality principles in motor control [20]. Our model is a first

attempt to formalize the origins of impedance control in the CNS

from first principles and many modifications could be considered.

For instance, so far only process noise is modeled and observation

noise is ignored entirely. This is a simplification of real biological

systems, in which large noise in the observations is present, both

from vision and proprioceptive sensors. Computationally, there

are methods for solving nonlinear stochastic OFC with partial

observability [27,33], which could be employed for such a

scenario. Experimentally, however, no clear connection between

observation noise and impedance control has been established.

While this work has focused on the origins of impedance

phenomena rather than on a faithful reproduction of published

patterns, the predictions of the adaptation experiments are in

remarkable agreement with previous findings [41,42]. Further-

more, to the best of our knowledge, this is the first computational

model to predict impedance control for both, stationary and

adaptation experiments. Most importantly, our model is able to

qualitatively predict the time course of impedance modulation

across trials depending on the ‘‘learnability’’ of the external

perturbations.

There are several further issues that warrant careful consider-

ation. First, we make the fundamental assumption that the

impedance control is achieved in a predictive fashion, i.e.,

through feedforward commands only, while there is experimental

evidence that task specific reflex modulation also increases limb

impedance in task relevant directions [45]. A viable route for

future studies in this direction is to investigate parallels of the

feedback gain matrix L and reflex modulation observed in

humans. Second, impedance control in humans is not only

achieved through voluntary muscle co-contraction but also

through the anatomical routing of tendons and muscles [46].

Such increase in limb impedance is not governed by neural

commands directly but rather emerges through the inherent

biomechanical limb properties. Such effects could be incorporat-

ed into OFC-LD for example by using models of human limbs

that exhibit more realistic biomechanical properties. The effects

of this would be visible in the training data i.e., a smaller

kinematic variability in certain regions of the state space and

therefore narrower confidence bounds in LWPR.

The results presented in this paper can be expected to scale to

higher dimensional systems, since impedance control seems to

originate from the antagonistic muscle structure in the joint-space

domain [15,39,47]. It is well known that humans also employ

mechanisms other than co-contraction to increase task-specific

limb stability. For example, human subjects extensively use

Figure 7. Adaptation results. (a) Accumulated statistics during 25 adaptation trials using stochastic OFC-LD. Trials 1 to 5 are performed in the NF
condition. Top: Muscle activations and co-contraction integrated during 500ms reaches. Middle: Absolute joint errors and velocity errors at final time
T = 500ms. Bottom: Integrated (internal model) prediction uncertainties along the current optimal trajectory, after this has been updated. (b) The
same statistics for the adaptation using deterministic OFC-LD, meaning no uncertainty information is used for the optimization. This leads to no co-
contraction and therefore worse reaching performance during adaptation.
doi:10.1371/journal.pone.0013601.g007
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kinematic limb relocation strategies to improve end-effector

stiffness for specific tasks [48]. It remains to be seen whether the

minimum uncertainty approach has the capability to explain these

and other important multi-joint impedance phenomena such as

the end-effector stiffness that is selectively tuned towards the

directions of instability [2,10]. Nevertheless our general model of

impedance control may serve as an important step towards the

understanding of how the CNS modulates impedance through

muscle co-contraction.

Methods

An antagonistic arm model for impedance control
The nonlinear dynamics of our human elbow is based on

standard equations of motion. The joint torques t are given by

t~M(q)€qq

with joint angles q, accelerations €qq, inertia matrix M. The joint

torque produced by the antagonistic muscle pair is a function of its

muscle tension t and of the moment arm A, which for simplicity’s

sake is assumed constant. The effective joint torque from the

muscle commands u [ ½0,1�2 is given by

t(q, _qq,u)~{AT t(l,_ll,u):

The muscle lengths l depend on the joint angles q through the

affine relationship l~lm{Aq which for constant moment arms

also implies _ll~A _qq. The constant lm is the reference muscle length

when the joint angle is at its rest position (q~p=2). The muscle

tension follows a spring-damper model

t(l,_ll,u)~k(u)(lr(u){l){b(u)_ll,

where k(u), b(u), and lr(u) denote the muscle stiffness, the muscle

viscosity and the muscle rest length, respectively. Each of these

terms depends linearly on the muscle signal u, as given by

k(u)~diag(k0zku), b(u)~diag(b0zbu), lr(u)~l0zru:

The elasticity coefficient k, the viscosity coefficient b, and the

constant r are given from the muscle model of Katayama and

Kawato [49]. The same holds true for k0, b0 and l0, which are

the intrinsic elasticity, viscosity and rest length for u~0,

respectively. For exact values please refer to the Supplementary

Information S1.

To simulate the stochastic nature of neuromuscular signals,

often models [33] simply contaminate the neural inputs u with

multiplicative noise, scaling the kinematic variability proportional

to u. Such signal-dependent noise cannot account for the complex

interplay of neuromuscular noise, modified joint impedance and

kinematic variability.

We introduce stochastic information at the level of the muscle

tensions by extending the muscle tension function to be

text(l,_ll,u)~t(l,_ll,u)zs(u)j:

The noise formulation on a muscle level (rather than on a limb

level) has the advantage that it can be extended to arm models that

incorporate multiple muscles pairs per actuated joint. The

variability in muscle tensions depending on antagonistic muscle

activations (u1,u2) can in a basic form be modeled as an extended

SDN function:

s(u)~sisotonicDu1{u2DnzsisometricDu1zu2Dm, j*N(0,I2):

The first term (of the distribution’s standard deviation) weighted

with a scalar sisotonic accounts for increasing variability in isotonic

muscle contraction (i.e., contraction which induces joint angle

motion), while the second term accounts for the amount of

variability for co-contracted muscles. The parameters n,m [ <
define the monotonic increase of the SDN, which in the literature

has been reported to range from less than linear (n,mv1), linear

(n,m~1) or more than linear (n,mw1). We set n,m~1:5 and

further make the reasonable assumption that isotonic contrac-

tion causes larger variability than pure isometric contraction

(sisotonic~0:2, sisometric~0:02). Please note the different absolute

value ranges for the isotonic term Du1{u2Dn [ ½0,1� and the

isometric term Du1zu2Dm [ ½0,2m� respectively. In reality, at very

high levels of co-contraction synchronization effects may occur,

which become visible as tremor of the arm [11]. We ignore such

extreme conditions in our model. The contraction variability

relationship produces plausible muscle tension characteristics

without introducing highly complex parameters into the arm

model.

To calculate the kinematic variability, the stochastic muscle

tensions can be translated into joint accelerations by formulating

the forward dynamics including the variability as

€qqext~M{1(text(q, _qq,u)):

Using the muscle model,

text(q, _qq,u)~{AT text(l,_ll,u)~{AT t(l,_ll,u){s(u)AT j

we get an equation of motion including a noise term

€qqext~M{1(t(q, _qq,u){s(u)AT j):

Multiplying all terms leads to following extended forward

dynamics equation

€qqext~€qq{s(u)M{1AT j,

which is separated into a deterministic component f(q, _qq,u)~€qq and

a stochastic part

F(u)~s(u)M{1AT :

As just shown, the extended SDN corresponds to an additional

stochastic term in the joint accelerations which is directly linked to

kinematic variability through integration over time. Please note that

we introduced this simple but realistic noise model as a surrogate for

a more elaborate arm muscle model, which is expected to exhibit

such realistic noise-impedance properties [35] as plant behaviour.

One should also note that the stochastic component in our case

is only dependent on the muscle signals u, because the matrices A
and M are independent of the arm states. However, this can be

easily extended for more complex arm models with multiple links

or state-dependent moment arms, and our learning algorithm

features fully heteroscedastic variances (that is, a possibly state-

and control-dependent noise model).

Finding the optimal control law
Based on the stochastic arm model, let x(t)~ q(t) _qq(t)½ �T denote

the state of the arm model and u(t) the applied control signal at
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time t. We can express the forward dynamics in the presence of

noise as

dx~f(x,u)dtzF(x,u)dv:

Here, dv is assumed to be Brownian motion noise, which is

transformed by a possibly state- and control-dependent matrix

F(x,u). The finite horizon optimal control problem can be stated

as follows: Given the initial state x0 at time t = 0, we seek a

(minimal energy) control sequence u(t) such that the system’s state

is at the target xtar at end-time t~T . The expected cost, given by

the performance index v for such a reaching task (discretized into

N steps, T~N:Dt seconds) is of the form

v~SwpDqT{qtarD
2zwvD _qqT D2zwe

XN

n~0

Du(n)D2DtT:

The first term penalizes reaches away from the target joint angle qtar,

the second term forces a zero velocity at the end time T, and the third

term penalizes large muscle commands (i.e., minimizes energy

consumption) during reaching. The factors wp, wv, and we weight the

importance of each component. Typical values for a 0.5 seconds

simulation are N~50 steps with a simulation rate of dt~0:01.

In order to find the optimal control law we employ an

approximate OFC method because the arm dynamics f is highly

non-linear in x and u and it does not fit into the Linear Quadratic

framework [50]. The iterative Linear Quadratic Gaussian (ILQG)

framework [51] is one of the computationally most efficient

approximate OFC methods currently available and it supports

stochastic dynamics and control boundaries. ILQG iteratively

approximates the nonlinear dynamics and the cost function

around the nominal trajectory, and solves a locally valid LQG

problem to iteratively improve the trajectory. Along with the

optimal open loop parameters �xx and �uu, ILQG produces a feedback

matrix L which serves as locally valid optimal feedback law for

correcting deviations from the optimal trajectory on the plant.

It is important to note that the noise model F(x,u), although not

visible in the aforementioned cost function v, has an important

influence on the final solution because ILQG minimizes the

expected cost and thereby takes perturbations into account. For a

typical reaching-task cost function as described above, this

effectively yields an additional (implicit) penalty term that

propagates the final cost backwards ‘‘through’’ the uncertainty

model. In our case, if at any time the energy cost of activating both

muscles is smaller than the expected benefit of being more stable

(minimizing uncertainty), then ILQG will command co-contrac-

tion. This also explains why our model co-contracts stronger at the

final stages of the movement, where noise has a rather immediate

impact on the end point accuracy.

A learned internal model for uncertainty and adaptation
Assuming the internal dynamics model is acquired from

sensorimotor feedback then we need to learn an approximation

dx~~ff(x,u)dtzw(x,u)dv of the stochastic plant forward dynamics

dx~f(x,u)dtzF(x,u)dv. Such problems require supervised

learning methods that are capable of (i) efficient non-linear

regression in an online fashion (important for adaptation) and (ii)
provide heteroscedastic (i.e., localized) prediction variances in

order to represent the stochasticity in the dynamics. As the source

of stochasticity, we refer to the kinematic variability of the system

described above, which encodes for the uncertainty in the

dynamics: if a certain muscle action induces large kinematic

variability over trials this will reduce the certainty in those regions.

Conversely regions in the state-action space that have little

variation will be more trustworthy.

We use Locally Weighted Projection Regression (LWPR), which is a

non-parametric incremental local learning algorithm that is known

to perform very well even on high-dimensional motion data [52].

Within this local learning paradigm we get access to the

uncertainty in form of heteroscedastic prediction variances

(Supplementary information S2). Once the learning system has been

pre-trained thoroughly with data from all relevant regions and

within the joint limits and muscle activation range of the arm, a

stochastic OFC with learned dynamics (OFC-LD) problem can be

formulated that ‘‘guides’’ the optimal solution towards a maximum

prediction certainty, while still minimizing the energy consump-

tion and end point reaching error.

The LWPR learner not only provides us with stochastic

information originating from internal SDN, but also delivers an

uncertainty measure in cases where the dynamics of the arm

changes. Notably the internal dynamics model is continuously

being updated during reaching with actual data from the arm,

allowing the model to account for systematic perturbations [26],

for example due to external force fields (FF) (Supplementary

information S3). This is an extension to previously proposed classic

optimal control models that relied on perfect knowledge of the

system dynamics, given in closed analytic form based on the

equations of motion.

From a computational perspective, the approximative OFC

methods currently seem to be the most suitable algorithms

available to find OFC laws for nonlinear and potentially high

dimensional systems. A limiting factor in OFC-LD is the dynamics

learning using local methods, which on the one hand is an

important precondition for the availability of heteroscedastic

variances but on the other hand suffers from the curse of

dimensionality, in that the learner has to produce a vast amount of

training data to cover the whole state-action space.

Simulations
Prior to the reaching experiments, we learnt an accurate

forward dynamics model dx~~ff(x,u)dtzw(x,u)dv with move-

ment data from our simulated arm (Supplementary information S4).

Stochastic ILQG with learned dynamics (ILQG-LD) was used to

calculate the optimal control sequence for reaching of duration

T = 500 msec with a sampling rate of 10 msec (dt = 0.01). The

feedback matrix L served as optimal feedback gains of the

simulated antagonistic arm.

Higher accuracy demands. To model different accuracy

demands in OFC, we modulate the final cost parameter wp and wv

in the cost function, which weights the importance of the

positional endpoint accuracy and velocity compared to the

energy consumption. We created five different accuracy

conditions: (A) wp~0:5, wv~0:25; (B) wp~1, wv~0:5; (C)

wp~10, wv~5; (D) wp~100, wv~50; (E) wp~500, wv~250;

The energy weight for each condition is constant (we~1). Start

position was q0~p=3 and the target position was qtar~p=2. For

each condition we performed 20 reaching trials.

Higher velocities conditions. Here we set the start position

to q0~p=6 and define three reaching targets with increasing

distances: qnear~p=3; qmedium~p=2; qfar~2p=3. The cost

function parameters are wp~100, wv~50, and we~1. We

again performed 20 trials.

Adaptation experiments. The reach adaptation experiments

were carried out with a constant force acting on the end-effector

(i.e., hand). Within all reaching trials, the ILQG-LD parameters

were set to: T = 500 msec, wp~100, wv~50, and we~1, q0~p=2,

and qtar~p=3. The force-field trials arm dynamics are simulated
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PLoS ONE | www.plosone.org 10 October 2010 | Volume 5 | Issue 10 | e13601



using a constant force field FF~(10,0,0)T acting in positive x-

direction, i.e., in direction of the reaching movement.
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