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Abstract

Background: Human brain aging has received special attention in part because of the elevated risks of neurodegenerative
disorders such as Alzheimer’s disease in seniors. Recent technological advances enable us to investigate whether similar
mechanisms underlie aging and neurodegeneration, by quantifying the similarities and differences in their genome-wide
gene expression profiles.

Principal Findings: We have developed a computational method for assessing an individual’s ‘‘physiological brain age’’ by
comparing global mRNA expression datasets across a range of normal human brain samples. Application of this method to
brains samples from select regions in two diseases – Alzheimer’s disease (AD, superior frontal gyrus), frontotemporal lobar
degeneration (FTLD, in rostral aspect of frontal cortex ,BA10) – showed that while control cohorts exhibited no significant
difference between physiological and chronological ages, FTLD and AD exhibited prematurely aged expression profiles.

Conclusions: This study establishes a quantitative scale for measuring premature aging in neurodegenerative disease
cohorts, and it identifies specific physiological mechanisms common to aging and some forms of neurodegeneration. In
addition, accelerated expression profiles associated with AD and FTLD suggest some common mechanisms underlying the
risk of developing these diseases.
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Introduction

Human brain aging and neurodegenerative diseases
Among human tissues, the brain in normal aging and in

neurodegenerative disease has received special attention. This

interest stems largely from the observation that as humans age

most develop some degree of cognitive decline. While slight,

differences in performance in tasks of visual and verbal memory

[1,2], abstraction [3], and naming and verbal fluency [4] exist

between aged individuals and their younger counterparts.

Moreover, measurable differences in cognitive performance are

seen in both cross-sectional and longitudinal-design studies [5]. In

daily life, these differences are too small and too common to be

considered pathological. In some aging individuals, however,

pathological decline in cognitive function in the form of a

dementing neurodegenerative illness does develop.

Alzheimer’s disease (AD) is the most well known of these

dementing neurodegenerative diseases. Affecting at least 4.5

million Americans [6], AD causes decline in memory as well as

other aspects of cognition [7]. Although less common, another

neurodegenerative cause of dementia is frontotemporal lobar

degeneration (FTLD). Clinically, patients with FTLD exhibit

progressive decline in behavior, executive function (e.g. ability to

make decisions), and language.

In the case of AD, specific genes and proteins have been

implicated in pathogenesis (reviewed in [8,9]). For example,

important genetic risk factors for AD include APOE genotype,

while rare mutations in PS1, PS2, and APP can cause primarily

familial forms of disease [10]. In addition, specific proteins (beta-

amyloid, tau) certainly play a role in disease pathogenesis,

aggregating in different forms in diseased vs. normal tissue

[11,12]. While substantial evidence implicates these genes and

proteins in AD pathogenesis, their precise functions in the

pathological cascade that leads to AD is still a subject of

considerable debate.

Regarding FTLD, a substantial proportion (precise number?) of

cases are attributable to mutations in either the gene for

progranulin (GRN), which cause disease through a haploinsuffi-

ciency mechanism (reviewed in [13]) or the MAPT gene [14].

Other cases of FTLD remain enigmatic, but, as in AD, the
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aggregation of specific proteins, such as the recently discovered

43kD TAR DNA-binding protein (TDP-43, [15]), appears to play

a role (reviewed in [16,17,18,19]). For both diseases, the clinical

course is progressive and ultimately fatal, and neuropathological

examination reveals extensive neurodegeneration. While the core

area of neurodegeneration differs among the diseases (hippocam-

pal formation in AD, frontal and temporal lobes in FTLD), both

diseases affect the frontal cortex.

The risk of developing a neurodegenerative disease increases

with age. For example, in one US study, the estimated annual

incidence of Alzheimer’s Disease (AD) increased from 0.6% in

individuals aged 65–69 years, to 2% in those aged 75–80 years, to

8.4% in those aged 85 years and older [6]. Not all neurodegen-

erative diseases occur with greater frequency as individuals age,

however. In FTLD, for instance, prevalence may be higher in

individuals aged 60–69 years than in those aged 70–79 years [20].

When evaluated worldwide without reference to cause, however,

rates of dementia consistently increase with age despite variability

between regions of the world and between developed and

developing countries [21].

These findings beg the question of whether ‘‘normal’’ and

‘‘pathological’’ cognitive decline are really on a spectrum, with

one’s position on that spectrum shifting with age. Put another way,

one might ask whether there are underlying processes in common

between aging and neurodegenerative disease. Common mecha-

nisms in aging and neurodegeneration certainly seem plausible.

Indeed, mechanisms such as mitochondrial dysfunction and DNA

damage have been implicated in both aging and neurodegener-

ation (reviewed in [22]). More generally, aging has long been

understood to be accompanied by cumulative insults to cells that

eventually lead to their degeneration and demise.

Profiling gene expression in aging and
neurodegenerative diseases

With the advent of technology allowing for genome-wide

surveys of gene expression, studies of aging have become feasible

at the molecular level. Using gene expression microarrays, genes

associated with the aging process have been identified [23,24,25].

Moreover, these genes have been used as age biomarkers to

establish the physiological age of organisms [26,27], detect tissue-

specific aging differences [24,28,29,30] and study the biology of

aging-related diseases [31,32].

These advances also make it possible to address the question of

whether aging and neurodegeneration are mechanistically similar

in a novel way. Clinical and pathological descriptors are fairly

downstream phenotypes for a process, be it neurodegeneration or

aging. In contrast, global mRNA expression profiles are very

upstream phenotypes that hint at specific biological mechanisms.

Indeed, we and others have shown that extensive transcriptional

changes occur in brain tissue from patients with AD [31,33], and

FTLD [16,34], with specific molecular pathways implicated in

both diseases (reviewed in [16]). Although these microarray studies

have attempted to control for the effect of age on gene expression,

a question that remains unanswered (and largely unasked) is that of

how similar the transcriptional changes that occur with aging are

to the transcriptional changes that occur with specific neurode-

generative diseases.

Outline of the paper
In this study, we developed a method using global gene

expression data to accurately determine the age of a normal brain

sample. We then employed this method to ask whether samples

from patients with neurodegenerative diseases look ‘‘older’’ at a

molecular level than their age-matched non-diseased counterparts.

We examined neurodegenerative diseases that increase in

incidence with age (e.g. AD), and those in which the relationship

between age and disease incidence is unclear (e.g. FTLD). We

found that both neurodegenerative diseases, in specific regions of

the brain, show characteristics of accelerated aging.

Results

Age prediction using brain gene expression
We used three reference datasets of gene expression in normal

human brain to train and test our age predictor using datasets

D1,D3 in Table 1. As described in the Methods section, error in

age prediction was estimated using data from 80% of the subjects

to predict ages in the remaining 20%. We found that age

prediction by global gene expression was accurate within 10.5 to

16 years of the actual age of the subject, with variation in the

error depending on the brain region used (Table 2). When we

randomly permuted the ages of the individuals in each brain

dataset (1000 permutations performed), no more than 0.5% of

the permutations had age prediction errors that were less than

our observed error of 10.5,16 years. We also found that the

difference of actual and predicted median age on the same group

of subjects (between 5 and 6 subjects in the 20% partition) by

cross validation is between 5.41 and 8.83 years. The decrease in

error is proportional with the square root of sample size minus 1

and is similar to the behavior of standard deviation as one moves

from estimating individuals to estimating population behavior.

We estimate the error will be between 2.24 and 3.41 years when

estimating the median age of 23 AD samples. Therefore, our age

predictor performed significantly better than would be expected

by random chance, and can be used to study the population

accurately.

Region-specific correlations between age and gene
expression levels in human frontal cortex

As described in the Methods section, we tested our age predictor

using three independent normal human brain datasets. These

profiled gene expression in three different areas of the frontal

cortex: the rostral part of the frontal cortex (roughly BA10, D1)

[24], dorsolateral prefrontal cortex (BA9, D2), and orbital

prefrontal cortex (BA47, D3) [28] (Figure 1). Subjects in each

dataset were between 20 and 95 years old, with individuals in

every decade. We ran linear regressions on the three datasets and

applied a nominal p value cut-off at 0.01 to obtain three age-

correlated gene lists. We examined the overlaps among the three

datasets (D1,D3), and found that the identities of the age-

correlated genes in the three regions were very different (Figure 2).

Out of over 810 genes with age-correlated gene expression in at

least one Brodmann Area, only 40 genes showed age-correlated

gene expression in both BA9 and BA47, and only 39 genes showed

age-correlated gene expression in both BA9 and BA10. BA47 and

BA10 had the least overlap, with only 15 genes showing age-

correlated gene expression in both areas.

For each of the three datasets, we analyzed the biological

significance of the age-correlated genes using Gene Set Enrich-

ment Analysis (GSEA) [35]. We focused on Category 5 (Gene

Ontology, GO) and analyzed genes positively correlated with

aging (i.e. greater age = greater expression) and genes negatively

correlated with aging (i.e. lesser age = greater expression) separate-

ly. As shown in Table S1, we found that age-correlated genes in

dataset D2 (BA9) were functionally more similar to D3 (BA47). Of

note, many genes negatively correlated with age appeared to be

involved in mitochondrial function.

Gene Expression of Brain Aging
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Application of age predictor to neurodegenerative
disorders

Having demonstrated that estimation of chronological age using

global brain gene expression is possible in normal individuals, we

next turned our attention to samples from individuals with

neurodegenerative diseases. We examined two different neurode-

generative diseases: AD, a disease highly associated with aging;

and FTLD, a disease possibly associated with aging. For the

analysis of microarray datasets pertaining to these two neurode-

generative disorders, we matched the brain region of reference

data (used to build the predictor) and target data (control and

patient gene expression profiles) (Figure 1). We did this because of

the regional differences in age-correlated gene expression

described in the previous section. See Table 1 for pairing of

reference and target datasets.

Applying our age predictor to AD, we found that brain samples

from AD patients had an ‘‘older’’ expression profile than control

samples of the same chronological age. The median chronological

age for the AD patients (23 individuals between 68 and 90 years,

D5 in Table 1) was 79 years. However, by global gene expression

trained on region-matched normal controls (D2 in Table 1), the

median predicted age for the AD cohort was 83.89 years. In

contrast, neurologically normal control samples from the same

microarray study (11 individuals between 63 and 102 years, D5 in

Table 1) showed minimal differences in median chronological age

(79 years) and age as predicted by gene expression (78.55 years).

The difference between chronological and predicted ages in AD

was highly significant (p = 0.0002), whereas the difference in

chronological and predicted ages in normal controls was not

(p = 0.97) (Figure 3). Taken together, these data indicate that AD

superior frontal gyrus samples show a prematurely aged global

gene expression profile. Global gene expression trained on BA10

(D1 in Table 1) and similar prediction on AD patients also led to

the same conclusion (Figure S1).

Having seen an ‘‘older’’ expression profile in AD brains

compared to normal controls, we next evaluated FTLD, one of

the most common causes of dementia after AD. Specifically, we

considered the form of FTLD with underlying TDP-43 pathology

(FTLD-TDP), which is the most common neuropathological

substrate of the clinical entity FTLD [18,36]. A significant

proportion of FTLD-TDP is caused by mutations in the GRN

gene [13], and we have previously demonstrated that FTLD-TDP

with GRN mutations has a frontal cortex gene expression profile

distinct from FTLD-TDP without GRN mutations [16]. We

therefore analyzed the two subgroups of FTLD-TDP, cases with

and without GRN mutations, separately. As with AD, we matched

brain regions used in our training set and test set (D1 and D4,

respectively, in Table 1) and normalized across datasets using the

expression of housekeeping genes.

Despite small sample sizes (6 FTLD-TDP patients with GRN

mutations, 10 FTLD-TDP patients without GRN mutations), we

found that both subgroups had a significantly ‘‘older’’ gene

expression profile than neurologically normal controls of the same

chronological age. Specifically, FTLD-TDP patients with GRN

mutations had a median chronological age of 73.5 years but a

median predicted age of 102.18 years as estimated by frontal

cortex global gene expression (p = 0.031). FTLD-TDP patients

without GRN mutations had similarly ‘‘aged’’ brain gene

expression, with a median chronological age of 63.5 years but a

median predicted age of 84.12 years (p = 0.002). In contrast,

neurologically normal controls from the same dataset (8

individuals ranging from 47 to 92 years of age, D4 in Table 1)

had a median chronological age (72 years) that was not

significantly different from median predicted age (66.77 years,

Table 1. Microarray data sets used in this paper and corresponding human brain regions.

Brain regions Normal FTLD AD

Rostral aspect of frontal D1: 29 [24] D4: [16]* D5: [33]

cortex (,BA10) Age: 26,95; F: 11; M: 18 GRN+: 6 AD : 23

GEO#: GDS707 Age: 62,79; F: 3; M: 3 Age: 68,90; F: 10; M: 13

GRN2: 10 Ctrl: 11

Age: 48,77; F: 6; M: 4 Age: 63,102; F: 4; M: 7

Ctrl: 8 GEO#: GSE5281

Age: 47,92; F: 3; M: 5 (Superior frontal gyrus covers

GEO#: GSE13162 both BA9 and BA10)

Dorsolateral prefrontal D2: 29 [28]*

cortex (BA9) Age: 25,79; F: 7; M: 22

BA47 D3: 27 [28]*

Age: 28,77; F: 6; M: 21

*obtained from the authors directly.
doi:10.1371/journal.pone.0013098.t001

Table 2. Significance of the error by obtaining 1,000
randomized cross-validation errors with age information
randomly shuffled; the significance of the prediction error is
the fraction of the 1,000 randomized errors lower than the
actual cross-validation error.

D1 (BA10) D2 (BA9) D3 (BA47)

Error in age prediction 16.0967.69 11.1565.62 10.4966.92

(five-fold cross validation)

Difference of median of age 7.92 8.83 5.41

(with actual age)

Median of difference of age 6.86 8.20 6.21

(with actual age)

Permutation test P values 0 0.005 0.002

doi:10.1371/journal.pone.0013098.t002

Gene Expression of Brain Aging
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p = 0.641) (Figure 4). Thus, global gene expression in both FTLD-

TDP and AD brain appears markedly ‘‘older’’ than the actual

chronological age of patient samples.

Overlap between age-correlated genes and differentially
expressed genes in neurodegenerative disorders

We next evaluated the overlap of aging-correlated genes

(nominal p,0.005) and AD- or FTLD-TDP-associated genes,

(nominal p,0.001) in the same or similar regions of the brain

(Table S2). As would be predicted by our findings of a

‘‘prematurely aged’’ gene expression profile in AD, we found

a statistically significant overlap of age-correlated genes and

AD-associated genes (p = 3.3461024 by Fisher’s exact test).

Similarly, in FTLD-TDP, where we also found a ‘‘prematurely

aged’’ gene expression profile, we observed a statistically

significant overlap of age-correlated genes and FTLD-TDP-

associated genes in both FTLD-TDP patients with GRN

mutations (p = 2.0261026 by Fisher’s exact test) and FTLD-

TDP patients without GRN mutations (p = 1.2161024 by

Fisher’s exact test).

Towards the discovery of common mechanisms in aging
and FTLD

Our finding of prematurely aged gene expression in FTLD-

TDP and AD implies that aging and these neurodegenerative

diseases have mechanisms in common and leads to the question of

what these common mechanisms might be.

Having demonstrated in the previous section that a significant

overlap exists between genes associated with aging and with

FTLD-TDP, we evaluated the identity of those genes showing

differential expression in both aging and FTLD-TDP. The

rationale for doing so was to find genes and pathways shared

between physiologic aging and pathophysiologic mechanisms in

FTLD-TDP. Because of the large number of genes with altered

expression in FTLD-TDP, we used relatively stringent statistical

(p,0.001) and fold-change (FC.2) cut-offs to identify genes

robustly associated with disease [16]. 17 genes (Table S3) showed

differential expression in both aging and FTLD-TDP. For 16 of

these genes, the direction of age-associated gene expression (e.g.

Figure 1. Microarray data sets used in this paper and corresponding human brain regions. Regions and abbreviations: SFG, superior
frontal gyrus; BA10, rostral aspect of frontal cortex; BA9, dorsolateral prefrontal cortex; and BA47, orbital prefrontal cortex. See Table 1 for detailed
information of correspondence between brain regions and data sets used in this study. The brain illustration is downloaded from wikipedia.org, a
reproduction based on the 1918 edition Gray’s Anatomy. The image is in the public domain; see Licensing on http://en.wikipedia.org/wiki/
File:Gray728.svg.
doi:10.1371/journal.pone.0013098.g001

Figure 2. Venn diagram of three human brain regions. Age-
correlated genes (p#0.01) in three human brain regions are very
different. Shown are the numbers of genes with age-correlated
expression in each brain region.
doi:10.1371/journal.pone.0013098.g002

Gene Expression of Brain Aging
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higher in aged individuals vs. younger ones) was the same as the

direction of FTLD-TDP-associated gene expression (e.g. higher in

FTLD-TDP patients vs. controls) (Table S3).

Among these genes, HSPA2 encodes a heat-shock protein of the

70kD family, which operates as a molecular chaperone in response

to cellular stress. LAMP2 encodes a protein that functions

specifically in the maintenance of lysosomes and more generally

in the regulation of autophagy. Autophagy (reviewed in [37,38])

and heat-shock proteins (reviewed in [39]) have been implicated in

both aging and neurodegeneration, corroborating our general

result that some neurodegenerative diseases have mechanisms in

common with aging.

Discussion

In this paper, we developed a computational method for

assessing an individual’s ‘‘physiological brain age’’ based on global

mRNA expression. We applied our method to five human brain

microarray datasets and found that global gene expression can be

used to predict the chronological age of a normal brain sample.

Figure 3. Comparison between actual and predicted ages of controls and AD patients. We compared observed and predicted ages for
controls and AD patients. While the difference between observed and predicted age was not significant for controls, AD patient samples had a
significantly older predicted age compared to the actual observed age. (Top) Numbers of subjects, medians of ages, and P-values for Wilcoxon test
are shown. (Bottom) Box and whiskers plots of observed and predicted ages for controls and AD patients. Box represents median (bar) and
interquartile range, while whiskers represent range of all values excepting outliers (shown as open circles). Reference data set used for training our
age predictor was D2 (BA9), and genes used for age prediction were selected using a nominal p-value cut-off of 0.005.
doi:10.1371/journal.pone.0013098.g003

Gene Expression of Brain Aging
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We further found that age-correlated gene expression differs

among different regions of brain. Finally, we applied our age-

prediction method to demonstrate that the neurodegenerative

diseases FTLD-TDP and AD exhibit prematurely aged gene

expression profiles in specific brain regions.

Among normal samples, our model was able to predict the

chronological age of a sample within approximately 11 years in

two datasets (D2 and D3). Others have found a similar degree of

error using global gene expression to predict age [28] in datasets

obtained under the same experimental conditions on the same

microarray platforms. Our methodology therefore allows for a

comparable degree of accuracy in age prediction under the much

noisier conditions introduced by independently obtained datasets.

This advantage is important when considering applications of

cross-dataset analyses.

It is worth noting here that the difference in age predicted by

global gene expression and chronological age for a given sample

may not simply be due to error in prediction methodology. That

is, an individual’s physiological age – defined as that age most

accurately representing the sum of insults to cells, tissues, and

organs that make up the individual – may not coincide exactly

with his or her chronological age. One would expect gene

Figure 4. Comparison between actual and predicted ages of controls and FTLD-TDP patients. We compared observed and predicted
ages for controls and FTLD-TDP patients with (GRN+) and without (GRN2) GRN mutations. While the difference between observed and predicted age
was not significant for controls, FTLD-TDP patient samples had significantly older predicted ages compared to actual observed ages, regardless of
GRN mutation status. (Top) Numbers of subjects, medians of ages, and P-values for Wilcoxon test are shown. (Bottom) Box and whiskers plots of
observed and predicted ages for controls and FTLD-TDP patients. Box represents median (bar) and interquartile range, while whiskers represent
range of all values excepting outliers (shown as open circles). Reference data set used for training our age predictor was D1 (BA10), and genes used
for age prediction were selected using a nominal p-value cut-off of 0.005.
doi:10.1371/journal.pone.0013098.g004

Gene Expression of Brain Aging
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expression profiles to reflect this concept of physiological age and,

as such, to only approximate the chronological age even in the

case of a perfect method. This point was elegantly illustrated in a

recent study of global gene expression at different time points

across the lifespan of the nematode worm [40], where behavioral

phenotypes were used as proxies for physiological age in addition

to straightforward comparison with chronological age.

Our finding that different regions of human brain exhibit

different patterns of age-correlated gene expression corroborates

work by others [41] demonstrating prominent differences in age-

related gene expression between samples from the superior frontal

gyrus and precentral gyrus. Such a finding is not surprising given

the different connections and functions of even neighboring brain

regions, but it does mean that attention must be paid to regional

differences when interpreting mRNA expression profiling data.

Using our age prediction method, we showed that AD and

FTLD-TDP patient brains exhibit prematurely aged gene

expression profiles. Such a finding supports the intuitive notion

that aging and at least these two neurodegenerative diseases have

mechanisms in common. Although not surprising, our finding is

nonetheless important for several reasons. First, we have

established in a quantitative way on a common scale the degree

to which various neurodegenerative diseases resemble aging (e.g.

AD ‘‘adds 5 years’’ to a brain sample). Second, we can identify

specific physiologic/pathophysiologic mechanisms common to

both aging and various neurodegenerative diseases. An example

of such an application is the identification of autophagy and heat-

shock response genes with altered expression in both aging and

FTLD-TDP. The fact that a substantial body of literature already

exists linking these two biological pathways to both aging and

neurodegeneration lends validity to our approach; other genes and

pathways identified in a similar manner may provide avenues for

future research.

We considered the possibility that our finding of a ‘‘prematurely

aged’’ global gene expression signature is simply an artifact of

neuronal loss. While we cannot completely exclude this possibility,

the fact that we observe such different age-correlated genes in

adjacent areas of frontal cortex (which are similarly affected in

terms of neuronal loss) argues that our findings are unlikely to be

due to neuronal loss alone.

Our finding of prematurely aged gene expression in FTLD-

TDP and AD suggests the possible commonalities between aging

and these neurodegenerative diseases, and supports the notion that

transcriptome profiling can be an informative approach for

investigating these commonalities, when larger datasets for normal

brain aging become available. It remains to be shown how much

the overlap corresponds to any common mechanism between

normal aging and neurodegenerative disorders or common

responses without etiological implications. However, recent

advances in expression quantitative trait linkage (eQTL)

[42,43,44] may eventually provide a causal link connecting some

susceptible loci and changes in gene expression.

Materials and Methods

Data preparation
Microarray datasets used in this paper were either generated by

us as previously described (Chen-Plotkin et al. 2008), downloaded

from GEO (http://www.ncbi.nlm.nih.gov/geo/index.cgi), or ob-

tained from the authors directly. Table 1 summarizes the data

used in this paper. For all datasets, the GCRMA package [45] for

R/Bioconductor [46] was used to generate log-2 expression levels

for probeset IDs from the original .cel files. Ages for healthy

individuals used in this study ranged from 20 to 95 years. For the

purposes of this study, individuals with psychiatric diagnoses from

one dataset [28] were classified with normal controls, as they had

previously been shown not to differ in age-related gene expression

from individuals without psychiatric diagnoses.

Predicting age using microarray experiments
We used linear regression to compute the significance of a

correlation between age and the expression level of a gene,

adjusting for the effect of gender. This approach assumes a linear

relationship between age and log-2 expression level:

Yij~mizb1iAjzb2iSjzb3iA
Male
j zeij ð1Þ

Here Yij is the log-2 gene expression level of probe set i in sample j,

Aj is the age for individual j, Sj is 0 if individual j is female, 1 if he is

male. Aj
Male is the age of individual j if Sj = 1; it is 0 otherwise

(included to test for interaction between age and gender). The

coefficients b1i, b2i, and b3i are regression coefficients reflecting the

rate of change in gene expression with respect to age alone, gender

alone, and age-gender interaction effects, respectively.

The model was computed on normal individuals in different

brain regions (Table 1). To minimize the interaction of gender in

age prediction, we filtered out any genes that have p$0.05 for b2i

and b3i. Then genes significantly correlated with age (p#0.005 for

b1i were used in the predictor to estimate the physiological age of

control subjects and subjects with neurodegenerative disease in the

corresponding brain regions D1, D2, D3. We used five-fold cross

validation to estimate the error of our age predictor; see

Supplemental Methods S1 for more details.

In order to apply our age predictor across diverse microarray

experiments, we needed to address two issues: microarray platform

differences and baseline differences attributable to variations in

experimental technique. To address the former, we used the best-

match probeset ID tables provided by Affymetrix (https://www.

affymetrix.com/support/technical/comparison_spreadsheets.affx)

to match probeset IDs on different human genome microarrays

used in this paper. For the latter, we assumed that the difference

between two microarray experiments is a constant offset. We

adjusted this baseline difference by estimating the difference

between the expression levels of housekeeping genes common to

the two datasets. 575 established housekeeping genes [47] were

used in this calibration. We found that the difference between

median predicted age and median actual age were 3.01 years and

2.99 years, and none were significant by Wilcoxon’s test (Figure

S2). This suggests that experimental baseline differences between

microarray studies can be ignored. See Supplemental Methods S1

for details and validation of the calibration procedure.

Application of age-predictor to disease datasets
For each neurodegenerative disease studied, we trained our age

predictor on a reference dataset assaying gene expression in

normal controls from the same brain region used in the target

dataset (microarray dataset consisting of diseased individuals and

their neurologically normal controls). We then applied the age

predictor to two different test sets: the normal controls within the

target dataset and the diseased individuals within the target

dataset. We calculated the median predicted age for each test set

and compared it to the median chronological age for the same test

set. We then evaluated the significance of the difference between

predicted ages and chronological ages in the test set using a paired

Wilcoxon test. We examined the overlap between differentially

expressed genes in neurodegenerative disorders age-correlated

genes in region-matched normal brain aging. The significance of
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overlap was evaluated using Fisher’s exact test. The lists of genes

both differentially expressed in neurodegenerative diseases (AD,

FTLD-TDP) and correlated with age can be found in Table S3,

Table S4 and Table S5.
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