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Abstract

Background: Transcription is affected by nucleosomal resistance against polymerase passage. In turn, nucleosomal
resistance is determined by DNA sequence, histone chaperones and remodeling enzymes. The contributions of these factors
are widely debated: one recent title claims ‘‘… DNA-encoded nucleosome organization…’’ while another title states that
‘‘histone-DNA interactions are not the major determinant of nucleosome positions.’’ These opposing conclusions were
drawn from similar experiments analyzed by idealized methods. We attempt to resolve this controversy to reveal
nucleosomal competency for transcription.

Methodology/Principal Findings: To this end, we analyzed 26 in vivo, nonlinked, and in vitro genome-wide nucleosome
maps/replicates by new, rigorous methods. Individual H2A nucleosomes are reconstituted inaccurately by transcription,
chaperones and remodeling enzymes. At gene centers, weakly positioned nucleosome arrays facilitate rapid histone
eviction and remodeling, easing polymerase passage. Fuzzy positioning is not due to artefacts. At the regional level,
transcriptional competency is strongly influenced by intrinsic histone-DNA affinities. This is confirmed by reproducing the
high in vivo occupancy of translated regions and the low occupancy of intergenic regions in reconstitutions from purified
DNA and histones. Regional level occupancy patterns are protected from invading histones by nucleosome excluding
sequences and barrier nucleosomes at gene boundaries and within genes.

Conclusions/Significance: Dense arrays of weakly positioned nucleosomes appear to be necessary for transcription. Weak
positioning at exons facilitates temporary remodeling, polymerase passage and hence the competency for transcription. At
regional levels, the DNA sequence plays a major role in determining these features but positions of individual nucleosomes
are typically modified by transcription, chaperones and enzymes. This competency is reduced at intergenic regions by
sequence features, barrier nucleosomes, and proteins, preventing accessibility regulation of untargeted genes. This
combination of DNA- and protein-influenced positioning regulates DNA accessibility and competence for regulatory protein
binding and transcription. Interactive nucleosome displays are offered at http://chromatin.unl.edu/cgi-bin/skyline.cgi.
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Introduction

Nucleosomal resistance against RNA polymerase II (Pol II)-

induced remodeling and eviction may regulate the speed of

transcription. What determines the strength of nucleosome positions

is a subject to intense debate. Fundamentally ‘‘DNA-encoded nucleosome

organization’’ is advocated by Kaplan et al. [1] in the Segal, Widom

and Lieb laboratories, while ‘‘intrinsic histone-DNA interactions’’ are

considered only as minor determinants of the in vivo nucleosome

positions by Zhang et al. [2] in Struhl and Liu’s laboratories. Most

notably, Kaplan et al. [1] strongly correlated in vitro reconstruction

with the five base pair (bp) sequence preferences of nucleosomes

(r = 0.83). Zhang et al. [2] estimated that intrinsic histone-DNA

interactions account for only ,20% of the in vivo positions because

‘‘nucleosomes assembled in vitro have only limited preference for

specific translational positions and do not show the patterns

observed in vivo.’’ These opposing conclusions were drawn from

compatible experiments but incompatible data analysis. These

experiments shared an identical concept: reconstitute nucleosomes

in vitro from purified chicken or Drosophila histones and yeast DNA.

The differences were limited to experimental implementations and

interpretations. As Zhang et al. pointed out, their group used a
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nonlimiting histone:DNA ratio of 1:1 to simulate the high in vivo

nucleosome occupancy, while Kaplan et al. used a lower ratio of

0.4:1 that allowed the limiting histones to occupy the highest affinity

DNA loci and leave many less affine in vivo loci vacant. Because

higher affinity reduces the probability of inaccurate remodeling, this

competition inflated the correlation between in vivo and in vitro

nucleosome occupancy (‘‘histone density’’, from 0.54 in Zhang et al.

to 0.74 in Kaplan et al.).

This debate resurfaced on Correspondence pages of Nature

Structural and Molecular Biology. Kaplan et al. [3] now published

numerical estimates for the DNA’s influence on nucleosome

positioning. Depending on the methods and parameter values

used, this ranges as wide as 34–57%. In their reply, Zhang et al.

[4], and in a separate comment, Franklin Pugh [5] raised

objections against using nucleosome occupancy to estimate

nucleosome positioning. Zhang et al. [4] reiterated that as few

as ‘‘,20% of the in vivo positioned nucleosomes are positioned

due to intrinsic histone-DNA interactions.’’ The most notable

progress is some departure from the ‘‘code’’ concept for

nucleosome positioning: now Kaplan et al. [3] ‘‘leave for others

to debate’’ whether the influence of DNA on many aspects of the

in vivo nucleosome organization reflects the use of a code.’’

By partially resolving this controversy, we aimed to improve our

understanding of the chromatin’s competency for transcription. In

doing so, we carefully avoided directly estimating the influence of

intrinsic histone-DNA affinities on nucleosome positioning be-

cause of their extreme sensitivity for the choice of methods and

parameter values. In a more robust approach, we compared

nucleosome occupancy and dynamics patterns between different

gene and genomic regions (GGRs). We observed similar

occupancy and dynamism patterns both in vivo or in vitro under

diverse conditions across twenty six high-coverage maps of

nucleosomes in the yeast Saccharomyces cerevisiae [1,2,6,7,8,9]. These

maps were generated by Chromatin ImmunoPrecipitation (ChIP-

seq) or micrococcal nuclease digestion (MNase-seq) and deep

sequencing [10]. We analyzed signal and noise using admittedly

unattractive but unbiased displays and statistics of the sequencing

tag density profiles of the genome. We also introduce here a robust

algorithm for calling nucleosome peaks. Specifically, we examined

how nucleosomes were remodeled during transcription or by

histone chaperones [11] and chromatin remodeling enzymes [12].

We compared in vivo positions to positions of nucleosomes

reconstituted from purified DNA and histones in yeast [1,2] and

sheep [13,14].

To allow Pol II passage, DNA replication and DNA repair,

nucleosomes need to be evicted or remodeled at least partially or

temporarily. In vitro, Pol II can pass through nucleosomes by

forming DNA bubbles [15,16] but in vivo, the Pol II complex may

force histone octamers to completely dissociate from the DNA

[17]. Alternatively, the FACilitator of Transcription (FACT)

complex can evict only a single H2A–H2B dimer [18]. In either

case, nucleosomes are reconstructed within a minute if FACT,

SWI/SNF, and the histone chaperone ACT1 are present

[19,20,21]. Independently of transcription, nucleosome octamers

and hexamers can slide on the DNA either spontaneously or

assisted by powerful ATP-dependent chromatin remodeling

complexes [22]: RSC in yeast and ACHF in human can reposition

nucleosomes to DNA loci that are thousand times less affine to

histones than the original loci [23].

Traces of remodeling are reproducible in the nucleosome maps.

We found that high-level nucleosome occupancy is similar in vivo

and in maps of nucleosomes reconstituted by salt dialysis, showing

that occupancy at the level of most GGRs is strongly influenced by

the sequence of DNA. Weak histone-DNA affinities appear to

facilitate nucleosome remodeling at transcriptional landmarks

even when reconstituted in vitro in the absence of the

transcriptional apparatus. However, at the level of individual

nucleosomes, inaccurate in vivo remodeling and sliding are likely

due to transcription, remodeling enzymes or chaperones [24,25].

Remodeling signals can be deconvoluted from the considerable

noise. Fuzzy reconstitutions are shown by the reproducibility,

width and height of these peaks. Our minimally biased peak

calling algorithm allowed us to overlay peak distributions on

GGRs and to identify statistically significant trends and patterns

from 26 experiments/replicates. We found that in vivo, most

nucleosomes reposition in a range of 156–174 bp compared to the

,147-bp footprint of a single histone octamer on DNA in

crystallographic studies [26]. Nucleosomes slide and/or reposition

more intensively in vivo in the presence of chaperones and

remodeling enzymes than in nonlinked experiments, where

histones were not cross-linked to their in vivo loci by formalde-

hyde. The fuzziest peaks were formed by nucleosomes reconsti-

tuted from purified histones and DNA either in yeast [1,2] or

sheep [13,14,27]. Intensive eviction and fuzzy remodeling at the

centers of transcriptionally active genes indicate Pol II-complex-

mediated remodeling. This remodeling is subject to at least two

constraints. First, most individual nucleosomes reposition around

well-defined centers and seldom invade ranges of other nucleo-

somes. Second, nucleosome remodeling is also constrained to gene

boundaries or shorter limits, possibly to prevent the accessibility

regulation of untargeted genes.

Results

Reproducible, regional nucleosome occupancy patterns
are due to intrinsic histone-DNA affinities

We define protein-influenced positioning as the combined

effects of the transcriptional apparatus, chaperones and remodel-

ing enzymes. The extent to which transcriptional competency is

influenced by the DNA versus proteins by can be estimated by

comparing in vivo and in vitro maps [1,2]. To resolve the

published opposing conclusions, we perform such comparisons

both at the levels of GGRs and at the level of individual

nucleosomes. These comparisons are based both on nucleosome

occupancy and the width of the nucleosome peaks. Occupancy

roughly indicates the fraction of a region occupied by nucleosomes

in the average of multiple cells. This robust measure does not

depend on peak calls and works well even on maps generated from

end-primed short reads. To allow comparisons of diverse

experiments, we define standardized nucleosome occupancy as the

difference between the average density of sequencing tags over a

region and the genome-wise average divided by the genome-wide

standard deviation of tag density. Conveniently, standardization

leads to zero mean and unit standard deviation over the genome

(see Methods and Figures 1–2). Standardization also mitigates

extremely high read-density peaks caused by amplification bias

[28], low sequence complexity or frequent sequence motifs.

Because correction for such biases, to our best knowledge, remains

an open problem, we cannot meaningfully estimate occupancy on

a zero-to-one scale. Another issue is the division by genome-wise

standard deviations that differ between experiments. This was

necessary for visualization purposes but it may have inflated the

similarity between experiments on Figure 1. Fortunately, we

performed the statistical tests on raw, unstandardized occupancy

distributions to find unbiased, significant differences between

GGRs within the same experiment.

The nucleosome occupancy of most GGRs is specific and highly

reproducible across the majority of experiments. This reproduc-
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ibility is moderately biased by standardization. It is highly visible

on heat maps of nucleosome occupancy where experiments are

represented as rows and GGRs as columns (Figure 1). The striking

column-wise patterns indicate the reproducibility of the GGR-wise

occupancy across many experiments. Most notably, the occupancy

of gene centers exceeds the genomic average by ,0.2 standard

deviation (sd) units. The exceptions are the H2A.Z nucleosomes

[7], known to be depleted in translated regions and the experiment

with low-concentration MNase that creates artificial coverage at

linker regions [9]. At exons and certain noncoding transcripts,

occupancy was ,0.1 sd unit higher than in the genomic average.

This indicates that nucleosome presence is necessary for

transcription, and temporarily or partly evicted nucleosomes

may be fully reconstituted following Pol II passage. In contrast, the

occupancy of the 6300 bp neighborhoods of TIS and STOP

codons are close to the genomic average. Possibly due to Pol II

pausing or slow progression immediately downstream of the TIS

[29], nucleosomes or potential agents anchoring them in the 59

untranslated region and in the first third of the coding region may

have the strongest role in downregulating transcription. Below we

support these results by nucleosome dynamics results using

consistently called nucleosome peaks.

AT-rich regions are known to disfavor nucleosomes [30],

therefore a considerable nucleosome depletion at replication

origins (,20.5 sd units below the genomic average) is in

accordance with earlier small-scale experiments [31] . We also

confirmed significant depletion at intergenic regions (,20.2–

20.3 sd units, p,102300,Wilcoxon-Mann-Whitney (WMW) test

performed on the raw, unstandardized data, see Methods), in

particular at all regulatory regions such as promoters [7,32,33],

transcription factor binding sites and DNase hypersensitive regions

[34]. Significantly high occupancy was confirmed for H2A.Z

nucleosomes at promoter termini and introns, in the vicinity of

TSS, TIS and STOP codons (Figures 1–2).

Figure 1. Standardized nucleosome occupancy at GGRs. Sequencing tag density values are standardized to zero mean and unit standard
deviation. General nucleosomes are abundant in exons, and conserved regions. H2A.Z nucleosomes are overrepresented around the TIS, upstream of
the STOP codons and in introns. Experiments are coded as follows: the first letter indicates the last or the last two authors (‘‘P’’ for Pugh [7,8], ‘‘S’’ for
Segal [1,6], ‘‘F’’ for Friedman [9],‘‘A’’ for Allan [14,27], ‘‘SL’’ for Liu and Struhl [2]); the second letter indicates the deep sequencing platform (‘‘R’’ for
Roche/454 and ‘‘I’’ for Illumina/Solexa); ‘‘H2A.Z’’, ‘‘H3’’ or ‘‘H4’’ stands for the specificity of the antibody used; and the carbon source is indicated by
‘‘YPD’’ for glucose, ‘‘EtOH’’ for ethanol and ‘‘Gal’’ for galactose. ‘‘cl’’ indicates histones cross-linked to the DNA in vivo, ‘‘nc’’ indicates the no cross-
linking, both followed by replicate numbers. The number after ‘‘MNase’’ indicates the micromolar concentration of the enzyme, and the number after
RNAP (Pol II) show the minutes after heat inactivation of the thermo-sensitive Pol II mutant [9]. ‘‘Invitro’’ refers to the Segal group’s in vitro
reconstitutions, [1] ‘‘Salt’’ indicates reconstitution followed by salt extraction, and ‘‘ACF1’’ stands for reconstitution in the presence of the Drosophila
ACF1 and Nap1 histone chaperones [2]. . ‘‘Regev’’ indicates the deep sequencing transcriptome published by the Regev laboratory [37], ‘‘cons. mst.
stands for the most conserved regions, cons.mZ for multiZ conserved regions, phastcon. for phastcons regions [36].
doi:10.1371/journal.pone.0012984.g001
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Wide nucleosome peaks indicate fuzzy remodeling of
H2A nucleosomes

A simple visual inspection at our web site (http://chromatin.

unl.edu/cgi-bin/skyline.cgi) reveals that sequencing tags mapped

to the genome form peaks diverse in shape, width and height.

Most of these peaks extend considerably wider than the single-

nucleosome footprint obtained in crystallographic studies [26].

This is primarily due to fuzzy remodeling as opposed to

incomplete digestion and other experimental issues. We confirm

that by systematic comparisons to those nucleosomes where the

canonical H2A subunits are replaced by variant H2A.Z subunits

(Figure 3, for details, see the section ‘‘Are wide nucleosome peaks

due to remodeling or experimental noise’’ below). Most H2A.Z

nucleosomes are well-positioned [7], their average width barely

exceeds the 147 bp footprint of a single histone octamer.

While Roger Kornberg and coworkers advocated nucleosome

positioning by remodeling agents and random factors

[24,25,35,36], advocates of DNA-encoded positioning idealized

nucleosome peaks to the width of the single-nucleosome footprint

by loess normalization or wavelets [7,8,37]. Unbiased remodeling

information needs to be preserved because each ChIP/MNase-seq

DNA segment whose tags form a nucleosome peak may represent

a different cell, and nucleosomes in different cells may occupy

somewhat different genomic loci. To take this into account,

Weiner et al. identified peaks by template filtering using seven

templates [9]. As a further improvement, we introduce a

consistent, template-free, and fully reproducible peak calling

algorithm that is minimally biased by hypotheses about peak

width, shape and other parameters (see Methods). Consistent calls

across the whole genome and experiments allowed us to compare

Figure 2. Patterns of standardized nucleosome occupancy across all yeast genes. Lower occupancy shows incomplete nucleosome
reconstruction at the mid-thirds of abundantly transcribed genes. The 6300 bp neighborhoods of TIS and STOP codon display higher nucleosome
coverage. Genes are ordered by median transcript level in a compendium of gene expression experiments [41] with the most actively transcribed
genes at the top. We show the Segal laboratory’s in vivo Illumina experiment with galactose carbon source [1].
doi:10.1371/journal.pone.0012984.g002

Transcription & Nucleosomes

PLoS ONE | www.plosone.org 4 September 2010 | Volume 5 | Issue 9 | e12984



in vivo, nonlinked and in vitro nucleosome peaks. We also

compared results of the Illumina vs. Roche/454 sequencing,

growth media experiments, and replicates that quantify biological

and technological variation. Users can access interactive, visual

displays of peak calls and the undistorted density profiles of

sequencing tags at our web server: http://chromatin.unl.edu/cgi-

bin/skyline.cgi.

Nucleosome remodeling and transcription
Our results confirmed the sharp contrast between the two basic

classes of nucleosomes. H2A.Z nucleosomes are typically located

around promoter regions. H2A.Z peaks are tall, well-defined, and

barely exceed the 147 bp width of the single-octamer footprint

[26] (Figure 3). In contrast, most nucleosomes with the canonical

H2A subunits form wide, irregular peaks with multiple rises and

drops in the tag density profile (Figures 4–5, S1, S2, S3, S4, S5).

These patterns manifest on the gene for cytosolic aldehyde

dehydrogenase 6 (ALDH6, Figure 4 [38]). Notwithstanding

constitutive expression, four-to-five peaks cover most of ALDH6

gene, all negative for the H2A.Z variant. Peaks are moderately

reproducible in vivo but separate better in nonlinked experiments.

This indicates that intrinsic histone-DNA affinities play minor

roles in positioning individual H2A nucleosomes in vivo, and that

these positions are frequently modified by the transcriptional

apparatus, chaperones and remodeling enzymes. Reconstitutions

from purified DNA and histones [2] produced extremely fuzzy

peaks. Within a peak, multiple summits in tag density indicate

competing maxima of histone-DNA affinity, and nucleosomes

appear to jump from one competing maximum to another. The

histone chaperone ACF1 tends to further delocalize the nucleo-

some peaks in vitro. In our opinion, however, this observation does

not exclude primarily DNA-influenced nucleosome positioning

because positioning to the maxima of histone-DNA affinity may

require remodeling enzymes. In vivo, fuzzy positioning is apparent

in the gene for ADE12, adenylosuccinate synthase, particularly at

the middle of the coding sequence (Figure 5). Mid-gene

remodeling is abundant at the gene for the MED2 subunit of

the Pol II mediator complex (Figure S1); SMC5, structural

maintenance of chromosomes (Figure S2); LDB17 (Figure S3); or

the SR077 gene (Figure S4).

These individual observations are generalized by genome-wide

statistics. A quarter of the in vivo H2A-peaks extend to 159–

179 bp or wider (Figure 6, Table 1), and the widest 10% of peaks

span to 177–200 bp or wider. Nonlinked nucleosomes form

Figure 3. Reproducible positioning of four H2A.Z nucleosomes at chromosome XIV. H2A.Z nucleosomes are indicated on the same loci in
vivo, nonlinked and in the salt extraction reconstitution experiment as well. The only exception is the reconstitution with the ACF1 histone scaffold,
which interfered with accurate, DNA-influenced positioning. The density of sequencing tags is shown by black lines. Peak location calls are displayed
as gray rectangles and green outlines indicate the single octamer footprint. Red dots represent the peak’s center of gravity. These H2A.Z peaks barely
extend beyond the single octamer footprint, in sharp contrast to the nucleosomes in the middle of the coding regions.
doi:10.1371/journal.pone.0012984.g003

Transcription & Nucleosomes

PLoS ONE | www.plosone.org 5 September 2010 | Volume 5 | Issue 9 | e12984



somewhat narrower peaks (average: 158–163 bp, p,102300,

WMW test). Each of these peaks consists of hundreds of

sequencing tags. In turn, these tags come from a still considerable

number of DNA segments, each representing a different yeast cell.

Therefore peak widths reveal the positional variation of the

histones on the DNA subject to experimental noise such as

incomplete digestion by the MNase enzyme.

Our results indicate that positional variation is caused primarily

by transcription-related nucleosome remodeling and eviction. This

would imply higher dynamism at genic regions where Pol II is

most active. Indeed, GGRs have very specific positioning strength

patterns that are reproducible across most experiments (Figure 7),

much like the patterns of nucleosome occupancy above. Unusually

wide nucleosome peaks (denoted by hot colors) are particularly

abundant at the centers of the transcriptionally active genes and at

conserved noncoding DNA elements [39], while narrow peaks

(blue colors) are concentrated in promoter and intergenic regions.

Most H2A.Z nucleosomes form narrow peaks, close to the single-

octamer footprint. In vivo, peaks expanded wider (169622 bp)

than in the 6300 bp neighborhood of the TSS, TIS or STOP

codons (160621, 151614 and 155614 bp, respectively, all with

p,102300, WMW test; Figure 7). Peaks span wider in protein-

coding genes and deep sequencing transcripts [40] than in

intergenic regions or the few introns in yeast. The top expression

quartile of genes from [41] harbors somewhat wider peaks than

the lowest quartile (means: 176 vs. 172 bp, respectively, p = 0.002;

Figure 8). From the extended peaks, particularly at the centers of

transcriptionally active genes, we infer that nucleosomes are

reconstituted with an inaccuracy of ,20 bp. The more accurately

positioned nucleosomes, however, stop repositioning near the

intergenic regions.

The variable strength of DNA-influenced positioning is most

visible on the in vitro nucleosome reconstitutions from purified

ovine b-lactoglobulin DNA and chicken erythrocyte histones in

the absence of histone chaperones and remodeling enzymes

[13,14,27] (Figure S5). Intrinsic histone-DNA affinities are likely to

be responsible for the high summits in these exceptionally high-

coverage experiments. However, most peaks are not separated well

from each other and many peaks appear to be merged. Similar,

often fuzzy positioning was revealed by yeast reconstitution

experiments (Figures 3–5 and S1, S2, S3, S4) [1,2].

Are wide nucleosome peaks due to remodeling or
experimental noise?

We have been concerned regarding experimental error in

chromatin immunoprecipitation followed by deep sequencing

[ChIP-seq, 10,42] and in the differential digestion of the excess

DNA by micrococcal nuclease (MNase) [43]. Field et al. [6] found

Figure 4. Nucleosome peaks at the constitutively expressed gene for cytosolic aldehyde dehydrogenase (ALD6). The peaks between
the relative positions of 200 to 760 bp and 960 to 1560 bp show extensive sliding or remodeling. Nucleosome positioning is more statistical in vivo
than in the nonlinked experiments, particularly in the mid-third of the coding region.
doi:10.1371/journal.pone.0012984.g004
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that in over a million of MNase cleavage sites, sequence-specific bias

is limited to primarily two consecutive base pairs, and the preferred

sequences can be found in nearly all short DNA segments. A more

realistic concern is that linker histones, chaperones and remodeling

agents may block interactions between the DNA and MNase,

leading to incomplete digestion [44]. Hence too low or too high

MNase concentrations lead to overly wide or overly narrow peaks in

the density profiles of the ChIP-DNA or MNase-DNA sequencing

tags [9]. Fortunately, that does not affect comparisons between

experiments using similar MNase concentrations or comparisons of

regions within one experiment.

The effects of limited nuclease accessibility, incomplete

cleavage and bias. One could argue that crowding with other

nucleosomes or nonhistone proteins could limit the accessibility of

DNA for MNase digestion and that the observed wide peaks were

only artifacts of crowding. Let us examine this argument using in

vitro nucleosome reconstitutions and well-separated nucleosomes.

Nucleosome peaks span wide even when accessibility is

not limited by nonhistone proteins. In vitro reconstituted

nucleosomes have not been associated with or positioned by

nonhistone proteins. Our algorithm called peaks in the extremely

high-density tag profiles of the sheep b-lactoglobulin gene

[13,14,27] and in yeast [2]. In the experiments with short

Illumina tags, the average nucleosome peak extended to

174639 bp and a quarter of peaks spanned wider than 190 bp.

The long tags in the Roche/454 experiments resulted in even

more extended peaks (Figure 6, Table 1). These extended peaks

cannot be due to crowding or other effects of nonhistone proteins.

Reduced accessibility due to nucleosome crowding. One

could also argue that typically short linker regions between H2A

nucleosomes (38655 bp) limit nuclease access to DNA and the

resulting incomplete digestion creates artificially extended peaks.

One could also argue that H2A.Z peaks are digested short because

their long linker regions (886247 bp) allow more access for

digestion than the short linkers for H2A nucleosomes. To evaluate

these arguments, we selected such H2A nucleosomes that are

separated by long linkers (88 bp or more) on both sides and that,

unless protected by nonhistone proteins, are accessible to MNase

digestion. Because these accessible H2A nucleosomes still extend

to as wide as 170654 bp, at practical MNase concentrations,

crowding with histones or other DNA-bound proteins are not

likely to have major effects for extended peaks. Lowering MNase

concentration from 10 mM/L to 2 mM/L did increase the length

of core DNA segments both in yeast [9] and in Caenorhabditis elegans

[45]. In the latter, decreasing the temperature also produced

longer DNA segments but Johnson et al. [45] estimated that at

room temperature and practical MNase levels under- and

overdigestion ranges to as low as a few base pairs.

Figure 5. In vivo, nucleosomes occupy alternative positions, particularly in the middle of the ADE12 gene that codes for
adenylosuccinate synthase. Better focused positioning is observed in nonlinked experiments and in reconstitutions following salt extraction.
Reconstitutions with the ACF1 chaperone produce fuzzier positioning.
doi:10.1371/journal.pone.0012984.g005
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As a final test, we benchmarked the reproducibility of those

nucleosomes that contained the H2A.Z variant subunits [46], and

were mapped using selective antibodies [7]. We selected all the

297 peaks with high average tag densities ($20x) so as to reduce

the effect of limited H2A.Z specificity of the antibodies. These

peaks are practically as wide (median: 149 bp) as the single-core

footprint both in vivo and in nonlinked experiments (Figure 6).

Many of them guard promoter regions against nucleosome

invasion [8,47] because they are firmly anchored to the DNA

either by intrinsic histone-DNA affinity or by chaperones. Indeed,

a total of 225–258 peaks overlapped with peaks in 21 high-

coverage experiments (Table S1). Somewhat fewer (190) overlaps

were found with the template-filtered peaks of the RNA-Pol II

mutant after 120 minutes following induction [9].

We observed a reproducibility of 13.5 bp being defined as the

median positional difference between known H2A.Z peaks and

overlapping peaks in all other in vivo experiments. Consequently,

peaks wider than 161 bp are highly likely to represent dynamic

nucleosomes. Because this 13.5-bp reproducibility is acceptable

but not negligible, we tested the contribution of nonhistone

proteins to the location of H2A.Z-overlapping peaks by comparing

in vivo and nonlinked nucleosomes. The latter are more

reproducible (7.5 bp) but nucleosomes in vitro reconstitute into

more fuzzy positions. The 6-bp difference from in vivo and

nonlinked experiments is highly significant (p,102300, WMW test)

and shows a major role for chaperones [48] in positioning H2A.Z

nucleosomes, which is confirmed by the in vitro reconstitutions in

the presence of ACF1 and Nap1 [2]. We estimate that the total

average inaccuracy caused by incomplete or biased cleavage,

amplification bias and the bona fide mobility of H2A.Z

nucleosomes is as low as ,7.5 bp. Cleavage, amplification bias

and limited DNA accessibility for MNase digestion combined are

not the primary determinant of the extended peaks. Instead, we

hypothesize that the extended peaks are primarily due to statistical

(re)positioning [24,25] or sliding [49] of nucleosomes. This

hypothesis is supported by the significantly wider peaks found at

the centers of highly transcribed genes compared to at either

terminus or at intergenic regions.

Remodeling stops at gene boundaries
Preserving regional differences in nucleosome occupancy and

dynamism would not be possible without agents that arrest the

progression of remodeling. These agents include nucleosome-

excluding sequences on the DNA, histones or other DNA-

associated proteins. Another reason for the spatial limits to

nucleosome remodeling is the arrest and detachment of the

transcriptional machinery at the 39 termini of genes. The third

reason for spatial limitations relates to effects of nucleosome

presence and mobility to gene regulation [21]. To prevent

regulating untargeted neighboring genes, remodeling events need

to be contained within the limits of the target gene. The earlier

proposed ‘‘barrier’’ nucleosomes guard only promoter regions

against invasions of dynamic nucleosomes [8,47]. We also found

barrier nucleosomes within and downstream of the coding

Figure 6. Nucleosome remodeling as reflected by the width distributions of nucleosome peaks. H2A.Z nucleosomes (less than 10% of
the total) form regular peaks but most general nucleosome peaks span considerably wider than the single octamer footprint of 147 bp. In vivo peaks
are significantly wider than nonlinked peaks. Reconstituted nucleosomes frequently delocalize to ill-defined peaks wider than 200 bp. Note that
peaks in end-primed experiments with short reads (diverse MNase levels and RNA Pol II mutants) were called by template filtering and hence not
comparable to the other experiments.
doi:10.1371/journal.pone.0012984.g006
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sequences. These well-positioned nucleosomes are reproducible

across all the thirteen high-density in vivo Illumina experiments

with random priming in 58% of the genes (Figures 3–5 and S1, S2,

S3, S4, S5). Across seven or more experiments, 85% of genes

contained at least one well-positioned nucleosome (Table S1).

Across the entire yeast genome, almost every 2000-bp segment

with two or more dynamic nucleosomes also contains at least one

well-positioned nucleosome, whether removable or permanent. As

few as 288 segments lacked well-positioned nucleosomes in each of

Kaplan et al.’s [1] thirteen Illumina experiments. Several of these

are nucleosomes are frequently evicted as shown by the low

density of their peaks (only ,2.5 times higher than at the linker

regions). Arrays of well-positioned nucleosomes may arrest

nucleosome remodeling at gene boundaries and hence prevent

accessibility regulation of neighboring genes.

Discussion

We offer partial reconciliation for the controversy between two

claims: ‘‘… DNA-encoded nucleosome organization…’’ and

‘‘intrinsic histone-DNA interactions are not the major determinant

of nucleosome positions in vivo.’’ Note that Kaplan et al.’s

observed high correlation between in vivo and in vitro positions

does not necessarily indicate well-positioned nucleosomes: two

maps with similarly fuzzy remodeling patterns (dynamism) also

produce high correlation. Indeed, most nucleosomes are dynamic

even in Kaplan et al.’s in vitro reconstitutions where the 0.4:1

histone:DNA ratio allowed that histones occupy only the most

affine and hence least dynamic positions. Dynamism is even more

prevalent in Zhang et al.’s experiments with nonlimiting

histone:DNA ratios (Table 1, Figures 1–3, S1, S2, S3, S4, S5).

Table 1. The prevalence of extended nucleosome peaks.

Experiment Peak width, bp Number of peaks Mean peak coverage

Mean Median 75th 90th std

percentile

P-R-H2A.Z 152 149 158 171 13 2,873 21

P-R-H3 157 152 163 179 18 4,833 43

P-R-H4 156 151 163 177 17 4,504 29

S-R 160 157 164 174 18 23,530 9

S-I-YPD-cl2 161 153 164 183 25 12,753 87

S-I-YPD-cl3 167 157 172 198 28 16,566 55

S-I-EtOH-cl1‘ 157 149 159 177 20 14,934 114

S-I-EtOH-cl2 174 161 179 227 37 19,223 82

S-I-Gal-cl1 168 158 172 200 32 23,023 94

S-I-YPD-nc1 158 151 160 180 19 18,747 107

S-I-YPD-nc2 160 153 163 185 22 17,029 130

S-I-YPD-nc3 162 154 167 190 24 18,181 124

S-I-YPD-nc4 163 154 167 192 25 17,498 128

S-I-EtOH-nc1 160 151 163 187 23 21,523 98

S-I-EtOH-nc2 163 154 167 192 25 17,432 108

S-I-Gal-nc1 162 153 166 191 24 22,866 85

S-I-Gal-nc2 160 153 164 186 21 19,807 132

F-I-MNase-02* 150 147 159 173 14 31,261 29

F-I-MNase-10* 150 147 159 1173 14 32,048 15

F-I-MNase-15* 152 149 165 175 15 26,432 49

F-I-RNAP-0* 136 137 149 163 20 62,538 31

F-I-RNAP-20* 132 131 147 161 21 62,582 26

F-I-RNAP-120* 134 131 151 169 23 53,686 30

S-I-Invitro-R1 197 185 219 263 40 30,941 82

S-I-Invitro-R2 200 190 224 265 40 28,289 79

SL-I-Salt{ 163 157 166 178 24 34,717 268

SL-I-ACF{ 211 206 235 264 35 13,655 188

A-I-sheep{ 174 169 190 232 39 29 8,793

A-R-sheep{ 209 200 228 276 40 29 1,305

‘The S-I-EtOH-cl1 replicate was more random than the comparable experiments and was excluded from further analyses.
*Peaks in these end-primed experiments are called by Weiner et al.’s (2010) template filtering method.
{In reconstitutions from purified DNA and histones, the highly random protein-influenced positioning frequently makes peak calling uncertain (see Figure S5).
The distributions of peak widths, the numbers of peaks are shown, along with the mean density of uniquely mapping sequencing tags at all peaks. For the
abbreviations of experiments, refer to Figure 1.
doi:10.1371/journal.pone.0012984.t001
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This dynamism manifests at the level of individual H2A

nucleosomes, the transcriptional apparatus, chaperones and

remodeling enzymes cause inaccurate reconstitution or sliding.

At the level of GGRs, however, histone-DNA affinities appear to

be the primary determinant of nucleosome occupancy. Both the

dynamism of individual nucleosomes and the GGR-level affinities

are highly related to transcription. Nucleosomes, like transcription,

are influenced by both DNA-specific features like the location of

exons, promoters and temporal features like the momentary

location and state of the transcriptional apparatus and regulatory

events.

The dynamism of individual H2A nucleosomes is indicated by

extended and low peaks both in vivo and in vitro. At gene centers,

peaks shrink significantly lower than at other regions. Low but

wide peaks indicate fuzzy reconstitution of nucleosomes evicted by

the transcriptional apparatus. These peaks also spanned signifi-

cantly wider in the mid-third of genes than in introns, regulatory

regions, replication origins that are known to be AT-rich and

therefore less likely to coordinate nucleosomes [30], and the rest of

the genome (Figures 4–7, S1, S2, S3, S4, S5). Reconstitution is

particularly inaccurate at highly expressed genes (Figures 2 and 8).

This is in accord with earlier observed removal of at least one

H2A/H2B dimer by the chromatin transcription-enabling activity

(CTEA) complex [CTEA, 15,18,29] to allow Pol II passage and

the fast reconstitution of nucleosomes by CTEA and the FACT

histone chaperone shortly after Pol II passage [29,50]. The

observed extended nucleosome peaks are primarily due to bona

fide biological dynamism, which exceeds the combined bias of

limited DNA accessibility, incomplete MNase cleavage, and

amplification. Among others, this is shown by variant H2A.Z

nucleosomes, which, in contrast to H2A nucleosomes, form

narrow and highly reproducible peaks. Regional patterns of

transcription-specific dynamism are also highly reproducible.

Nucleosome occupancy and dynamism are lower at the first and

last thirds of genes than at the center, both in vivo and in

reconstitution experiments. The high histone-DNA affinity of

these regions may have evolved to facilitate Pol II pausing,

deceleration or delay recovery from pauses, as shown by dual-trap

optical tweezer assay experiments [16].

Most H2A peaks extend almost as wide in nonlinked

experiments than in vivo (Table 1). In the absence of chaperones

and remodeling enzymes, nucleosomes move more freely from one

local affinity maximum to another, although these movements are

not assisted by remodeling enzymes [1,6,51]. The most likely

mechanism for nucleosome dynamism is ATP-independent

histone sliding [52], which intensifies at higher temperatures

[53]. Peaks of H2A.Z nucleosomes, however, are constrained to a

median width equal to the single octamer footprint in vivo, in

nonlinked and reconstitution experiments as well. This stability

and the high positional reproducibility across experiments suggest

that many H2A.Z nucleosomes are localized primarily at tall and

locally unique maxima of histone-DNA affinity [2]. Note that a

low-affinity maximum surrounded by two nucleosome-exclusion

regions would also produce a well-positioned nucleosome.

Alternatively, chaperones like CZF1 [48] may also anchor

nucleosomes to specific loci. Long nucleosome-exclusion regions

such as promoters allow binding of numerous regulatory proteins

and protect from the invasion of other nucleosomes. Most peaks of

barrier nucleosomes rise far above those of dynamic nucleosomes.

This indicates that such barrier nucleosomes are more resistant to

Figure 7. GGRs have characteristic patterns of nucleosome dynamism. We show the 75th percentiles of the peak width distributions. Only
H2A.Z peaks, the heavily size-fractionated P-R-H3 and P-R-H4 experiments, and peaks predicted by template filtering (F-I-MNase10 through F-I-RNAP-
120m) do not exceed width of the single-octamer footprint.
doi:10.1371/journal.pone.0012984.g007
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eviction than H2A nucleosomes and hence are preserved in most

cells at almost identical genomic loci, regardless of cellular and

environmental conditions. The positioning of H2A.Z nucleosomes

is highly reproducible with the sole exception of ACF1-assisted

reconstitution (Figure 3). These peaks are confined to the size of

the single-octamer footprint with a variation of ,9 bp, which may

partly be due to experimental error.

We generalize the barrier hypothesis, which until now, was

limited to H2A.Z nucleosomes [8,47]. Nucleosome movements are

limited, and in vivo, very few nucleosomes reposition in a range

wider than ,195 bp. This and the more or less well-defined peaks

separated by troughs indicate that the probability of repositioning

to new loci drops at some distance from the center. Occasionally,

nucleosomes can invade each other’s range, but this may require

considerable momentum [54]. Surprisingly, remodeling events

extended further than 2,000 bp in as few as 288 cases. On this

basis, we postulate that long chains of remodeling events may be

prevented by compounding energetic costs that contain remodel-

ing within gene boundaries. This containment may prevent

nucleosome invasions that would change the accessibility of

untargeted genes. Relatively well-positioned nucleosomes may be

responsible for Pol II pausing [15,29]. Remodeling can be

weakened, halted or arrested even by a series of dynamic and

eviction-prone nucleosomes not necessarily containing the H2A.Z

variant. Each nucleosome and possibly certain nonhistone proteins

can absorb some sliding and remodeling momentum [36],

depending upon the affinity of the histone octamer to the DNA

segment and upon crowding with other nucleosomes and

chromatin proteins. Individual nucleosomes can frequently be

depositioned, but the remaining nucleosomes can still extinguish

the momentum of remodeling before invading untargeted

regulatory regions. This protection mechanism requires a lower

but still considerable nucleosome presence at intergenic regions as

well.

We conclude that dense arrays of weakly positioned nucleo-

somes appear to be necessary for transcription. The majority of

canonical H2A nucleosomes repositions or slides to somewhat

different genomic loci. Such nucleosome remodeling follows DNA-

influenced, gene-wise patterns and is most intense at the centers of

intensively transcribed genes. The weakness of positioning is partly

due to either low or nonunique local maxima of intrinsic histone-

DNA affinities, and its function is to give way to transcription,

chaperones, and remodeling enzymes. Oscillations are centered at

fixed positions, and their magnitude and frequency may reflect

transcription or regulatory protein binding. Remodeling does not

transgress to neighboring genes and may be weakened and

ultimately arrested by a series of moderately or well-positioned

nucleosomes, chaperones, or possibly by the lack of histone

modifications. This combination of DNA- and protein-influenced

positioning fine-tunes the accessibility of genomic regions and their

Figure 8. Gene-wise patterns of nucleosome repositioning as indicated by peak widths. Color codes indicate standardized nucleosome
occupancy, and white indicates the absence of sequencing tags or nucleosomes callable by our method. The most active repositioning was found in
the mid-third of coding sequences (171644 bp). Significantly narrower peaks were found in the 6300 bp environment of the TIS (162641 bp) or the
STOP codon (161641 bp). Most well-positioned nucleosomes are located in the proximity of TIS and the STOP codons.
doi:10.1371/journal.pone.0012984.g008

Transcription & Nucleosomes

PLoS ONE | www.plosone.org 11 September 2010 | Volume 5 | Issue 9 | e12984



competence for regulatory protein binding and transcription,

affecting Pol II speed and the extent of its pausing.

Methods

We mapped each sequencing tag to the S. cerevisiae genome’s

2006 release [55] using the bowtie tool [56,57]. Tags matching to

multiple genomic loci were discarded. We also eliminated short

Illumina reads with more than two mismatches to the genome and

long Roche/454 tags with more than 2 percent mismatch. To

minimize bias, we have not extended or trimmed the sequencing

tags. We calculated the tag density of a genomic position as the

number of tags that cover the position. Tag density profiles were

calculated for each experiment/replicate for the entire genome.

To allow genome-wide comparisons, we created a consistent

prediction algorithm and tools to call nucleosome peaks from ChIP-

Seq tags (Figures 3–6 and S1, S2, S3, S4, S5). This consistency is a

condition for minimally biased comparisons involving histone

variants and GGRs. Methods designed for transcription factor

binding sites [e.g., 58] are not applicable because nucleosome peaks

vary in width and their sequences are not conserved. Nucleosome

peaks are also diverse in height and shape. The ideal 147-bp wide

rectangle is rather an exception than the rule. Instead of sharp vertical

drops, observed peaks may terminate in gradual slopes (Figures 3 and

S1, S2, S3, S4, S5). These valuable signals are compromised by

smoothing procedures such as wavelets or loess [7,37].

We created a peak calling algorithm for experiments with

random priming with short or long sequencing tags and/or

nucleosome-long sequencing tags. First, each chromosomal

segment bordered by either the end of a chromosome or by

nucleosome-free region(s) into such subsegments that may contain

at most one full, possibly extended nucleosome peak. For each

subsegment, we identify a set of candidate start positions p and end

positions q, for which the subsegment cannot be divided into

additional peaks: 1#p1,q1,p2,q2,…,,pn,qn. Peaks with deep

internal troughs are eliminated as follows. Any peak with a triplet

of positions x, y, and z satisfying pi#x,y,z#qi with a deep trough

y in a density d of sequencing tags

dyƒ(1{a):min(dx,dz)

is eliminated. Here a is the maximal allowed fractional drop in

density inside a peak (by default, a is set to 0.25). We optimize the

widths (the start and end positions) of peaks that pass this filter by

maximizing the objective function below. To prevent overextend-

ing the peaks, the cumulative tag density is assigned decreasing

weight as the width increases:

max
Xe

j~s

dj
:

1{
1

1z
e{sz1

l
e{sz1

0
BBBBB@

1
CCCCCA

Here s and e denote the start and the end positions of the peak

(pi#s,e#qi), respectively. Broad peaks are slightly penalized by the

parameter l. By setting l to 147 bp, we promote conservative width

estimates while still allowing peaks to grow or shrink to any size.

Experimenting with several combinations for a and l, we found that

values of 0.25#a#0.28 and 146#l#149 accounted for the peak

calls with the visually highest quality. As a further quality assurance,

we eliminate potential di- and multi-nucleosomes (widths exceeding

300 bp) and peaks with extreme asymmetry or low density.

Due to premature detachment of the reverse transcriptase from

the ChIP-DNA, nucleosome calls are most accurate in experi-

ments that use random priming (on any sequencing platform)

and/or nucleosome-long reads (on the Roche/454 platform)

[1,6,7,8,14]. Experiments with both end-priming and short reads

[9,32] produce dual peaks (one upstream and one downstream) on

the two DNA strands. Detachment becomes increasingly likely as

the enzyme progresses towards the 39 end [42]. Calling the width

of dual peaks may be biased by the use of peak shape templates

[9].

The consistently predicted peak widths serve as a single-valued,

practical measure for the comparative analyses of nucleosome

dynamics. Standardized nucleosome occupancy roughly indicates

the proportion of cells that harbor nucleosomes at a genomic

locus. Peaks with high amplification bias or extremely high density

are excluded from the analyses. Yeast nucleosome peak calls are

interactively displayed at our web-server: http://chromatin.unl.

edu/cgi-bin/skyline.cgi.

None of the statistical distributions analyzed were normal as

shown by the Lilliefors test. We applied the two-sample Wilcoxon-

Mann-Whitney (WMW) test in all statistical comparisons.

Supporting Information

Figure S1 All nucleosomes are dynamic at the constitutively

expressed MED2 (YDL005C) gene.In particular, the single

nucleosome at relative position 240 and the twin peaks starting

at relative position ,450 are subject to extreme sliding or

remodeling. The MED2 protein is a subunit of the RNA

polymerase II mediator complex, and it is essential for transcrip-

tional regulation.

Found at: doi:10.1371/journal.pone.0012984.s001 (0.95 MB TIF)

Figure S2 Extensive sliding/remodeling at the SMC5

(YOL034W) gene. SMC5 encodes a protein responsible for the

structural maintenance of chromosomes, required for growth and

DNA repair. Note that in most unlinked experiments, peaks are

absent from region 300–1200 and 1700–2500. This suggests that

the nucleosomes anchored by formaldehyde cross-linking to their

in vivo loci are positioned by chaperones or remodeling enzymes.

Found at: doi:10.1371/journal.pone.0012984.s002 (1.21 MB TIF)

Figure S3 Extensive sliding/remodeling at the SMC5

(YOL034W) gene. SMC5 encodes a protein responsible for the

structural maintenance of chromosomes, required for growth and

DNA repair. Note that in most unlinked experiments, peaks are

absent from region 300–1200 and 1700–2500. This suggests that

the nucleosomes anchored by formaldehyde cross-linking to their

in vivo loci are positioned by chaperones or remodeling enzymes.

Found at: doi:10.1371/journal.pone.0012984.s003 (1.03 MB TIF)

Figure S4 The gene for the SRO77 protein with roles in

exocytosis and cation homeostasis. Note the flat distribution of

sequencing tag density at the center of the gene. Although clear

summits are formed, most peaks are not separated from each other

in the cross-linked experiments and in ACF1 reconstitutions.

Found at: doi:10.1371/journal.pone.0012984.s004 (1.25 MB TIF)

Figure S5 Nucleosome reconstitutions from the purified DNA of

the ovine beta-lactoglobulin gene and chicken erythrocyte histones

(Fraser et al., 2009). These extremely high coverage experiments

indicate fuzzy nucleosome positioning even in the absence of

remodeling enzymes and histone chaperones.

Found at: doi:10.1371/journal.pone.0012984.s005 (3.54 MB TIF)

Table S1 The presence of well-positioned (barrier) nucleosomes

in the yeast genes. Experiments with well-positioned nucleosomes
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are shown for each gene. Most genes (including their flanking

intergenic regions) contain one or more well-positioned nucleo-

some(s) in the majority if not all of the 13 Illumina experiments.

Off-target transcriptional regulation is reduced by within-tran-

scribed region ‘‘absorbers’’ of the momentum of histone sliding

and remodeling. Cross-linked studies are color-coded by blue.

Please refer to Figs. S1, S2, S3, S4 for graphical displays.

Found at: doi:10.1371/journal.pone.0012984.s006 (2.74 MB

PDF)
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