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Abstract

The nematode Caenorhabditis elegans is a well-known model organism used to investigate fundamental questions in
biology. Motility assays of this small roundworm are designed to study the relationships between genes and behavior.
Commonly, motility analysis is used to classify nematode movements and characterize them quantitatively. Over the past
years, C. elegans’ motility has been studied across a wide range of environments, including crawling on substrates,
swimming in fluids, and locomoting through microfluidic substrates. However, each environment often requires customized
image processing tools relying on heuristic parameter tuning. In the present study, we propose a novel Multi-Environment
Model Estimation (MEME) framework for automated image segmentation that is versatile across various environments. The
MEME platform is constructed around the concept of Mixture of Gaussian (MOG) models, where statistical models for both
the background environment and the nematode appearance are explicitly learned and used to accurately segment a target
nematode. Our method is designed to simplify the burden often imposed on users; here, only a single image which includes
a nematode in its environment must be provided for model learning. In addition, our platform enables the extraction of
nematode ‘skeletons’ for straightforward motility quantification. We test our algorithm on various locomotive environments
and compare performances with an intensity-based thresholding method. Overall, MEME outperforms the threshold-based
approach for the overwhelming majority of cases examined. Ultimately, MEME provides researchers with an attractive
platform for C. elegans’ segmentation and ‘skeletonizing’ across a wide range of motility assays.
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Introduction

Since its introduction in the laboratory over thirty years ago [1],

the nematode Caenorhabditis elegans has become a ubiquitous model

organism to study fundamental questions in biology [2]. In

particular, C. elegans is now widely used as a platform for drug

screening and development [3,4], as well as for modeling various

aspects of human diseases [5,6]. In the quest to understand the

relationships between genes and behavior, this small, approxi-

mately 1 mm long roundworm offers a number of advantages for

laboratory applications. These include a short life cycle, the

availability of many mutants to explore gene functions, knowledge

of its complete cell lineage [7,8], simplicity of the nervous system

and its wiring [9], and a fully sequenced genome [10].

A widespread strategy to investigate the genetic basis of

behavior is to classify nematode movements and characterize

them quantitatively. Traditionally, motility quantification has been

based on crawling assays [11–14], where C. elegans is observed to

crawl on a substrate (e.g. agar plate). This is shown for example in

Fig. 1(a). In the recent past, however, the number of environments

used for nematode motility assays has vastly expanded. Studies of

C. elegans’ motility behavior now include various swimming assays

[13,15–19], as shown in Fig. 1(b)–(d) and (g). In parallel, with the

widespread availability of microfabrication techniques, nematode

motility assays are increasingly conducted in microfluidic envi-

ronments [20–23]. An example of such environments is shown in

Fig. 1(e) and (f). This latter platform has become particularly

attractive for high-throughput drug screening applications [24,25].

Overall, with the growing variations in environments used for

nematode behavioral assays, users are in need of reliable image

analysis tools capable of extracting quantitative data across a wide

spectrum of experimental mediums.

The analysis of motility behavior has traditionally relied on

qualitative observations to describe C. elegans’ locomotion and

discriminate between wild-type and mutant nematodes. In many

instances, however, qualitative variations between strains are not

apparent to the trained eye (as in [26]). Such limitations have

sprouted the development of automated image analysis systems in

an effort to deliver relevant phenotypic differences between

nematode strains [27–36]. While the bulk of the research effort

has been directed at analyzing locomotive traits of individual

nematodes, some multi-worm tracking and feature extraction

systems have also been developed [37–39]. Yet, the majority of

state-of-the-art image analysis systems are designed for a specific

environment, most commonly crawling [27,30–34,37] or swim-

ming assays [29,39]. These systems induce a tradeoff between

either limiting the range of possible assays a researcher will

investigate for motility analysis or customizing segmentation
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parameter selection across varying environments. However, an

optimal system for the user is one which ideally bypasses such

compromise.

Current image analysis systems provide users with morpholog-

ical and locomotion features to quantify behavioral phenotypes of

C. elegans. Such features include amongst other nematode speed

[36,37], wavelength and frequency of body undulations [29,30],

body curvature [27,31], and omega bends [33]; several of which

make use of nematode centerline data, also known as ‘skeletons’.

In practice, features are extracted from binary images, or

segmentations, separating the nematode from its environment, or

background. Several analysis systems compute binary images by

applying a simple intensity-based threshold at each pixel location

[30,31,35,36,40,41]. Most commonly, this involves having the user

manually select an appropriate range of intensities which

characterizes the nematode. A variation to this approach has

been the use of an adaptive threshold where nematode intensities,

or appearance, are assumed to significantly differ from the average

background intensities [27,33,34]. While these methods have

shown promising capabilities, the range of environments for which

they can be used for is in fact limited. This limitation is illustrated

in Fig. 2 where the pixel intensity distributions of the nematode

and background are respectively plotted for the environments

shown in Fig. 1. Here, distributions are assumed to be Gaussian

and parametrized with the mean and standard deviation of pixel

intensities. In none of the cases shown can a single threshold

separate any pair of distributions without causing significant errors

(Fig. 2). While threshold-based techniques can still be used to

compute accurate segmentations, this requires significant effort on

the user-end to adjust appropriate threshold values along with

other noise canceling schemes (e.g. median filters, morphological

operators, background subtraction, etc.). Altogether, this tedious

process makes thresholding ill-suited for applications in complex

background environments.

More recently, alternative approaches to thresholding tech-

niques have been pursued. For example, the work of Stauffer and

Grimson [42] has been applied to the problem of nematode

segmentation [38,39]. Here, the idea is to systematically learn how

background pixels are individually distributed and use this

information to segment the nematode. The learning process is

done using a set of training images to statistically model the

appearance of the background. Namely, each pixel is modeled by

means of a Mixture of Gaussians (MOG), where the parameters of

the model are learned from the training image set. This approach

has been recently shown to provide excellent results for nematode

segmentation [38,39] as well as for other applications [42–44]. A

major drawback, however, of modeling pixels with MOGs is that

many parameters must be learned; this requires a large set of

nematode-free training images. This condition largely prohibits

extracting nematode segmentations from arbitrary sequences (e.g.

open-access material).

In the present study, we propose a novel framework for image

analysis of C. elegans that is versatile across a wide range of

environments. Moreover, our system is designed to greatly simplify

the burden imposed on the user end; only a single image from a

sequence which includes a nematode in its environment must be

provided. From this input, models for both the background and the

nematode appearance are individually learned using MOGs (see

Methods). These models are then applied to segment the nematode

in subsequent images. Next, we provide an original algorithm for

extracting nematode skeletons for applications to C. elegans’

behavioral assays. Nematode segmentation and skeletonizing

Figure 1. Examples of environments used in C. elegans’ motility assays. (a) Nematode crawling on an agar plate (Video S2). (b) Nematode
swimming in a 5 ml drop of M9 buffer solution (Video S4). (c) Nematode swimming in a solution of gelatin dissolved in M9 (source:
berrigel0.0perc.mov, Supplementary Material in Berri et al. [15]). (d) Nematode swimming inside a fluid-filled chamber (source: SM2.avi,
Supplementary Material in Pierce-Shimomura et al. [13]). (e)–(f) Nematode locomotion in a microfluidic substrate (source: Supplemental Videos 2 and
4 in Lockery et al. [21]). (g) Nematode swimming in a shallow acrylic channel filled with M9 (Video S5). Nematodes shown in (a) through (g) are wild-
type (N2) C. elegans and are all approximately 1 mm long.
doi:10.1371/journal.pone.0011631.g001

Image Analysis of C. elegans
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algorithms have been packaged together in a software for

straightforward use by a broad range of researchers. We test our

image analysis system on representative locomotive environments

(Fig. 1) and compare performances with a state-of-the-art thresh-

olding method (see Results). Finally, we illustrate some examples of

motility metrics (e.g. body curvature) which are commonly sought

from nematode skeleton data (see Discussion). We discuss future

directions for algorithmic improvement (e.g. multi-worm tracking) as

well as new directions for potential applications (e.g. cell tracking).

Methods

The Multi-Environment Model Estimation (MEME) framework

consists of two sequential stages. As a first step, (i) the user

provides information, allowing a model for the nematode and the

background environment to be learned. In the second stage, (ii) the

nematode and background models are used to segment the

nematode and then extract its skeleton for a sequence of images. In

stage (i), the user is required to input a hand-segmentation of the

nematode and its corresponding width for a single image (see Video

S1). This approach can be viewed as a form of ‘‘One Shot

Learning’’ [45,46], where model learning occurs only once, from a

single labeled example. A flowchart of the MEME framework is

schematically shown in Fig. 3.

We briefly introduce the notation used throughout the article.

We define the sequence of images provided by the user as

I~fI1, . . . ,INg for N discrete time steps, where at each time step

t, It [ ½0,255�n|m
; n and m are the width and height of each image,

respectively. We denote the user provided data (U ) as a triple

U~fIU ,SU ,WUg, where IU is an image from I , SU is the

nematode body segmentation and WU is the nematode width

(Fig. 3). We specify the intensity models derived from U as FW for

the worm and FB for the background. For any given image It

included in I , we define the computed segmentation of the

nematode as St and the list of ordered pixel coordinates describing

the nematode skeleton as Lt.

Nematode Segmentation
Our first step is to provide an automatic mechanism to compute

accurate nematode segmentations for a single target using a static

camera (as in [38,39]). To do this, we build on the idea of using

Mixtures of Gaussians (MOG) [42–44] to construct accurate and

robust appearance models for the background and the nematode.

As it is often the case for MOG methods, each pixel in an image is

treated as a random variable which can be modeled by summing

K weighted Gaussian distributions. This can be formally written as

Figure 2. Pixel intensity distributions of nematode and background environment. Plots (a) through (g) correspond to distributions
obtained from the images of Fig. 1. Grayscale pixel intensities vary between 0 (black) and 255 (white). Distributions are assumed to be Gaussian and
parametrized with the mean and standard deviation of pixel intensities.
doi:10.1371/journal.pone.0011631.g002

Figure 3. Multi-Environment Model Estimation (MEME) frame-
work overview. The system consists of two components: (1) a user
input and learning stage and (2) an image analysis stage. In stage (1), the
user provides an image (IU ) and marks the nematode boundary (SU ) and
width (WU ). From this input, appearance models for the nematode (FW )
and background (FB) are learned. In (2), for each image (It) in a sequence,
nematodes are then segmented (St) by using FW and FB. Nematode
skeletons (Lt) are then extracted from these segmentations.
doi:10.1371/journal.pone.0011631.g003

Image Analysis of C. elegans
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P(x)~
XK

i~1

piG(xDmi,Si), ð1Þ

where x is a pixel intensity value, pi,mi and Si are respectively

the weight, mean and covariance of the ith Gaussian distribution

G. These parameters are usually estimated by means of an

Expectation-Maximization (EM) algorithm [47]. The intuition

behind this model is that each individual Gaussian represents the

appearance a particular pixel may take. Therefore, combining

each Gaussian provides a way to model complex pixel observa-

tions. Typically, doing this over all pixels in an image is an

effective way to model background scenes [42–44].

A consequence of this approach is that the number of MOGs

used is considerable (i.e. the total number nm of pixels in an image)

and the number of parameters required is very large (3Knm). In

turn, a substantial number of images is needed to estimate the MOG

parameters accurately as each image only provides a single sample

for each MOG (see [42] for more details). Moreover, the entire

background scene must be visible when attempting to estimate these

parameters, since each image is used to model the background and

not the nematode. This latter condition becomes problematic when

image sequences always contain a nematode in the field of view (e.g.

Supplementary Videos available in references [13,15,21]).

To avoid such drawbacks, we choose instead to model the

nematode appearance (FW ) in addition to the background model

(FB) by means of MOGs. To learn the parameters of FW , we use

the information gathered from the user. Namely, SU provides

the pixel region of IU containing the nematode as delineated by

the user (Fig. 4a). From this region, we randomly select pixel

locations and extract ½d|d� image patches from IU around each

location. These patches are then vectorized and treated as

independent samples. We denote this feature extract process as

f (u,v; I ,d)~x [ Rd2

, where we select a patch around pixels (u,v)
for any given image I . Notice that when d~1, this reduces to

sampling the selected pixels only; Fig. 4(b) shows the histogram of

intensities for the case d~1. In general, applying this transfor-

mation allows for modeling intensities with respect to image

patches, as this approach carries more information than individual

and independent pixels. Computing an appropriate value for d is

done by using a linear model (i.e. d~a1
WU

max (m,n)
za0, where a1

and a0 are constants). The samples extracted are then used to

estimate the parameters of FW by using the EM algorithm.

Figure 4(d) illustrates a visual representation of the estimated

MOGs of FW for K~2 and d~1.

Next, modeling of the background (FB) is done by partitioning

the image (IU ) into ~nn distinct and non-overlapping cells,

C~fC1, . . . ,C~nng, as shown in Fig. 4(c). Each cell (Cc) is then

treated as a random variable and modeled with its own

independent MOG. Hence, FB~fFC1

B , . . . ,FC~nn

B g, where each

pixel in It is associated with a unique FCc

B ; in our implementation,

we choose ~nn~10|10. The parameters of each FCc

B are computed

from extracted samples in the partition Cc. Similarly to building

the nematode model, samples are ½d|d� pixel patches from IU ,

which have been vectorized. Examples of intensity distributions for

Figure 4. User input and nematode segmentation. Figures (a) through (d) illustrate the stages of the segmentation process in MEME for a
sample environment (source: Supplemental Video in Lockery et al. [21]). (a) The user selects the boundary of the nematode on a given image. From
this manual segmentation, the distribution of nematode features can be extracted. (b) Distribution of pixel intensities from the nematode region.
Here, d~1 for illustrative purposes. (c) The background scene is partitioned into a grid, where each cell corresponds to a particular pixel block. Two
arbitrary cells are labeled for clarity; their corresponding intensity distributions are shown in (b). For both the nematode and the cells, MOG
parameters are then learned. (d) Representation of the MOG models for the nematode (FW ) and the two background cells (F C1

B and FC2

B ).
doi:10.1371/journal.pone.0011631.g004
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two arbitrary cells (Fig. 4c) are displayed in Fig. 4(b) along with

their corresponding MOG representations in Fig. 4(d). Two

consequences arise from such partitioning. First, only a total of

3K~nn parameters need to be estimated, as opposed to 3Knm.

Secondly, a single image is sufficient to estimate these parameters,

as background regions covered by the nematode can still be

modeled by neighboring pixels in a cell. This reduces the number

of training images required and relaxes the constraint that training

images must only contain background pixels. Note that when a cell

is reduced to a single pixel (~nn&nm), FB is similar to the model

described in [38,39]. Alternatively, when a cell corresponds to the

entire image (~nn~1), FB is similar to models typically used by

thresholding techniques [27,33,34].

Nematode segmentation for image It can then be computed at

each pixel (u,v), belonging to cell Cc, as

St(u,v)~
1 if r(f (u,v; It,d),c)w1,

0 otherwise,

�
ð2Þ

where

r(x,c)~
FW (x)

FCc
B (x)

~
XK

i~1

pW
i G(xDmW

i ,SW
i )

pCc
i G(xDmCc

i ,SCc
i )

: ð3Þ

The procedure above allows one to compute the nematode

segmentation for a given image It, where K~2 in our system.

Notice that using the ratio of MOGs (see Eq. (3)) is an effective way

to avoid any form of thresholding. This is due to the fact that both

FW and FB are explicitly modeled. Finally, opening and closing

morphological operations are used to smooth nematode segmen-

tations.

Nematode Skeleton
Over the years, a large number of methods have been used to

extract skeletons from segmented nematodes. Methods have

ranged from using specific nematode models [34,38], to

heuristically constructing the nematode’s medial axis

[27,33,35,38,41]. While these various methods have shown

success, they are generally influenced by the quality of the

segmentation. In an attempt to reduce sensitivity to segmentation

noise, we propose an original algorithm which balances geometric

features (i.e. nematode boundary) and global shape (i.e. nematode

undulating posture) in a seamless framework. The proposed

method has the advantage of being intuitive and simple to

implement.

We cast our problem once again in a probabilistic manner such

that the nematode skeleton (Lt) is considered to be a sequence of

discrete unknown skeleton pixel locations (Lt~fl1, . . . ,lMg),
where each location is a point on the skeleton and must be

determined. It is assumed here that either the head or tail pixel

location (l0) is initially known; determining Lt is then viewed as a

sequential Bayesian estimation problem [48–50]. Given the initial

position l0, we infer the location of the next point (l1) by observing

the likelihood of potential locations (e.g. the likelihood of a pixel

being l1) as well as the history of directions between subsequent

pairs of points (e.g. from l0 to l1). The ‘skeleton’ algorithm is

iterative such that a new location along Lt is inferred at each

iteration step (t). To infer all points in Lt, this process is simply

repeated.

First, the input of our algorithm is the segmentation of the

nematode for a given image (St). A skeleton pixel location is

defined as lt~(ut,vt), where ut and vt are pixel locations in St.

Let n be a discrete random vector describing the direction from lt
to ltz1, such that n [ V~f{1,0,1g2

. This corresponds to lt being

one pixel away from ltz1. Let Pt(n) be the corresponding

probability distribution of n at iteration step t. As more skeleton

pixels are inferred, the distribution Pt(n) will evolve. Initially this

distribution is uniform, as no prior information between lt and

ltz1 is known. The initial position (l0) is found by using maximal

response locations when running a coarse corner detector on St.

Selecting the following point on the skeleton can then be

computed by maximizing the Maximum a Posteriori (MAP)

estimator,

ltz1~ltzarg max
n

P(ltDn)Pt(n), ð4Þ

where P(ltDn) is the likelihood that direction n leads to the next

skeleton point and is modeled by

P(lDn)~
D(lzn)P
n̂n[V D(lzn̂n)

: ð5Þ

Here, D(l) is the distance computed when applying the

Chamfer distance transform [51,52] to St. This transformation

computes the Euclidean distance of each pixel in St to its closest

nematode boundary pixel. An example of this distance transform

is shown in the contour plot of Fig. 5. Here, the boundary of the

nematode has a distance of zero, while values of D increase

steadily for pixels approaching the medial axis of the nematode.

Equation (4) then implies that skeleton locations are picked by (i)

weighing how likely pixels are to be at the center of the segmented

nematode, combined with (ii) the history of the chosen vector

directions. This strategy is particularly useful in cases where the

segmentation is noisy, as the history of vector directions guides

where the following pixel location should be located. In order to

remove the possibility of selecting the same pixel several times, lt is

removed from possible future locations by setting D(lt)~0.

Once ltz1 is determined, the distribution Pt(n) must be updated

for the following iteration. Using Bayes rules, Ptz1(n) is computed

for Vn [ V by

Ptz1(n)~
1

Z P(ltDn)Pt(n), ð6Þ

where Z is a normalization constant.

Figure 5. Computing the nematode skeleton. Representation of
the Chamfer distance transform field (D) applied to the segmented
nematode of Fig. 4. The value associated at each pixel of the image is
the Euclidean distance (in pix) to the closest point of the nematode
boundary; the distance on the boundary is zero and higher distances lie
towards the nematode medial axis. (Inset) Resulting skeleton is
achieved by balancing geometric features (i.e. Chamfer distance) and
global shape (i.e. nematode curvature).
doi:10.1371/journal.pone.0011631.g005
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Inferring Lt~fl1, . . . ,lMg for a given image It then consists in

the following algorithm. First, l0 is given at iteration step t~0.

Three steps are then repeated: (i) compute the next skeleton location

from Eq. (4); (ii) update the distribution of n from Eq. (6); and finally

(iii) increment the iteration step. These operations are repeated until

a point on the boundary is encountered (i.e. D(lM )~0). An example

of the resulting Lt (skeleton) is shown in the inset of Fig. 5.

Results

We aim at providing a versatile nematode segmentation

framework with performances comparable to, or better than, state-

of-the-art image analysis systems [27,30,31,33–36,40,41]. To com-

pare the MEME framework against such systems, we evaluate our

algorithm quantitatively for a series of image sequences obtained for

various C. elegans locomotive environments. The sequences include

one or more data sets for behavioral assays such as (i) crawling on

substrates (Video S2 and S3), (ii) swimming in a drop (Video S4), (iii)

swimming in shallow acrylic channels (Video S5), (iv) locomotion in a

gelatin-based solution (Video S6), and (v) locomotion in a microfluidic

substrate (Video S7). A total of 13 image sequences are investigated

(see Table S1 for complete listing and data source). In each sequence,

the target nematode is present in all images. The MEME framework

is implemented using Matlab; computing the nematode segmentation

and skeleton for a 640|480 pixel size image requires approximately

1 second on a standard PC (i.e. 2.0 Ghz).

The state-of-the-art method of choice for comparison with

MEME is an in-house developed thresholding algorithm [18,19],

similar to standard intensity-based threshold approaches

[30,31,35,36,40]. To perform a fair comparison between MEME

and the thresholding framework, both methods are initially

provided with a single image to tune their respective parameters.

As described for MEME (see Methods), the user selects from the

initial image (i) the nematode region and (ii) the nematode width

(Video S1). For the threshold-based method, all images of a

sequence are first used to compute a background image of the

environment by pixel averaging. Background subtraction is then

applied to each image. Next, several thresholds are used to prune

the remaining background pixels. These are manually selected by

optimizing segmentation results on the initial image (Table S1).

Finally, opening and closing morphological operators are used to

smooth and discard final background regions. Note that in the case

where the number of images in the sequence is small, background

subtraction is omitted and only threshold intensities are used.

In order to quantitatively evaluate any segmentation algorithm,

results must be compared to a ground truth [44]. For the present

purpose, the ground truth is set as the true, or optimal, nematode

segmentation provided by an expert. Hence, we manually segment

a small set of images (n~30–40) from each sequence (e.g. Fig. 6,

second row) and compare the performance of each algorithm to

this image sub-set. Determining such ground truth allows for a

precise definition of correct and incorrect pixel classification.

The performance of a segmentation algorithm can be evaluated

by measuring two distinct metrics [44]: (i) the surface error and (ii)

the nematode yield. The former quantity computes the proportion of

pixels which are misclassified by the algorithm over the entire

image. This metric is mathematically defined as

t~
1

jStj
X
Vp[St

jGt(p){St(p)j, ð7Þ

where p is a pixel location and Gt is the ground truth image for

It. Hence, t attributes equivalent weight to errors on the

Figure 6. Nematode segmentation for various locomotive environments. (top row) Snapshots of raw images are respectively shown for
crawling (Video S2), swimming in a drop (Video S4), swimming in a channel (Video S5), and locomotion in various microfluidic substrates (source:
Supplemental Videos in Lockery et al. [21]). Comparisons between nematode segmentations are respectively shown for (i) the ground truth, i.e. hand-
segmented nematodes (second row), (ii) a threshold-based approach [18,19] (third row), and (iii) the Multi-Environment Model Estimation (MEME)
algorithm (bottom row). See Table S1 for data on all 13 cases investigated.
doi:10.1371/journal.pone.0011631.g006
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background and the nematode regions. The nematode yield,

however, only computes the proportion of the nematode region

which is correctly segmented. Consequently, misclassified pixels

belonging to the background have no impact on the nematode

yield. This metric is defined as

gt~
1

DN D

X
Vp[N

DGt(p){St(p)D, ð8Þ

where N is the set of pixels which satisfy Gt(p)~1. Together, t

and gt provide a quantitative and reliable measure of segmentation

performance [44].

Qualitative segmentation results are shown for a selection of

motility environments in Fig. 6 as well as in the Videos S2 to S7. In

general, the MEME method is capable of segmenting nematodes

at least as well as the thresholding method. For the ‘‘Crawl’’,

‘‘Drop’’, and ‘‘Channel’’ environments (first three columns, Fig. 6),

both methods yield qualitatively similar results. Here, the

environments illustrate a relatively homogenous background.

However, in the complex ‘‘Microfluidic’’ environments (Fig. 6),

results contrast more sharply between the two approaches; MEME

provides cleaner segmentations which capture more closely the

original shape of the nematodes.

Figure 7 shows the results from the computation of the surface

error (Fig. 7a) and the nematode yield (Fig. 7b) for the

environments of Fig. 6. Data for t and gt is reported in Table

S1 for the complete 13 image sequences. In general, computations

of surface error ( t) illustrate comparable performances between

MEME and the threshold-based approach (Fig. 7a). Yet, in two

complex ‘‘Microfluidic’’ environments, MEME does significantly

better. Note that for all environments investigated here (Fig. 7a

and Table S1), t remains below 10%. In fact, for homogeneous

background environments such as ‘‘Crawl’’, ‘‘Drop’’, and

‘‘Channel’’, t%1%, emphasizing the good results obtained both

by MEME and the threshold-based approach.

We observe, in contrast, significant improvements in nematode

yield (gt) when using MEME compared to the thresholding

method (Fig. 7b). From the set of 13 assays tested here, 10 cases

show examples of MEME significantly outperforming the

threshold-based method (Table S1); in some cases, with margins

greater than 20 percentage points (e.g. ‘‘Microfluidic’’ and

‘‘Microfluidic II’’, Fig. 7b). In the remaining environments where

the thresholding method performs relatively better (e.g. ‘‘Micro-

fluidic III’’, Fig. 7b), the differences in gt remain however small, i.e.

between 1.79 and 4.71 percentage points. Overall, our MEME

algorithm outperforms the threshold-based approach for the

overwhelming majority of cases examined.

Discussion

Our experiments show that MEME provides a reliable

framework to obtain nematode segmentations of C. elegans across

various locomotive environments. In addition, MEME offers

significant improvements over alternative image analysis systems

available; these include (i) better, or similar, performances

compared to state-of-the-art thresholding approaches [18,19], (ii)

no nematode-free image sequence required for learning back-

ground appearances [38,39]; and (iii) a small amount of user input

needed, i.e. a single hand-segmentation of the nematode and a

marking of its width (Video S1). This last improvement is

particularly attractive from a user point of view as substantial

effort may be needed with thresholding techniques to obtain

similar results. Overall, these attributes make the MEME

framework both attractive and straightforward to use for a broad

range of researchers.

While computing good nematode segmentations with threshold-

based methods is possible (Fig. 7), this process can quickly become

laborious. Indeed, several iterations are required by the user to

find optimal thresholds for a given environment (Table S1). The

main complication arises from the non-uniform backgrounds and

appearance (i.e. pixel intensities) which characterize many

environments. For example, a single threshold is incapable of

distinguishing between the nematode and the background in the

presence of pillars in microfluidic substrates (e.g. Fig. 6, last

column). Similarly, single thresholds cannot adapt to specific

locations in an image. This becomes crucial for accurate

segmentation of nematodes in environments where lighting

conditions may not be uniform (e.g. Video S5).

In general, the improvement observed with MEME can be

attributed to two main reasons: (1) the nematode appearance

model is explicitly learned and used to help decide whether pixels

belong to the nematode. In practice, when using threshold-based

methods, many of the regions which are considered ‘‘not

background’’ after applying a threshold do not resemble the

nematode at all (e.g. pillars in ‘‘artificial dirt’’ assays of Lockery et al.

[21], Fig. 1f and Video S7). Using both the nematode and

background appearance models significantly reduces the need of

using intense pruning schemes to reject such regions. (2) The

background scene is partitioned into a grid of sub-regions (Fig. 4c),

where each cell is explicitly modeled. This allows for local

Figure 7. Performance evaluation of nematode segmentation
algorithms. Here, the Multi-Environment Model Estimation (MEME)
algorithm is compared to a state-of-the-art thresholding approach
[18,19] for the environments shown in Fig. 6. (a) Surface error ( t):
proportion of pixels which are misclassified by an algorithm over the
entire image (see Eq. (7)). (b) Nematode yield (gt): proportion of the
nematode region which is correctly segmented (see Eq. (8)). Complete
data on surface error and nematode yield is available in Table S1 for all
13 cases investigated.
doi:10.1371/journal.pone.0011631.g007
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variations in intensities to be grouped by region, providing a

localized statistical model for each area of the background scene.

This strategy has the advantage of appropriately modeling

backgrounds where large variations in lighting occur (e.g. Fig. 1g).

In cases where the nematode appearance differs significantly

from the background, such as in crawling and swimming assays

(e.g. Fig. 1a and b), we observe nematode yields (gt) beyond 80%
(Fig. 7 and Table S1). In contrast, more complex environments

can substantially reduce this performance (e.g. microfluidic

substrates). The main difficulty therein lies in that only pixel

intensities are modeled; this represents an important limitation

when pixel intensities of the nematode and the background are too

similar. A typical illustration of this problem occurs at the head

and tail of C. elegans, where the nematode extremities are often

transparent against the background. For example, this problem is

observed in microfluidic substrates (e.g. Fig. 1e and f) where the

ends of the nematode are lost during the segmentation process. A

direct consequence of this is the truncated length of nematode

skeletons (e.g. inset of Fig 5 and Video S7).

Our MEME framework is currently optimized for segmenting a

single target nematode within an image sequence. Nevertheless,

scenarios where multiple nematodes enter the scene in subsequent

images are still supported by our algorithm as long as only one

nematode is present in the input image. That is, an arbitrary

number of nematodes may be segmented for a given image

sequence. Note, however, that cases where the appearance of either

the nematode or the background changes significantly over the

length of an image sequence will cause improper segmentations.

Furthermore, extracting skeletons remains a challenge in some

scenarios. For example, cases where the nematode coils on itself, or

when its head and tail touch (e.g. omega bend), are currently not

supported with the implemented skeleton algorithm. In the former

case, the segmentation simply does not provide a correct shape

representation of the nematode (i.e. a closed circle as opposed to a

Figure 8. Examples of nematode locomotive features in sample environments. Here, nematode skeleton data is shown for a crawling assay
(left column), for swimming in a 5 ml drop (middle column), and for locomotion in a microfluidic substrate obtained from Lockery et al. [21] (right
column). Additional skeleton data is shown in Videos S2 to S7. (top row) Tracking data of path swept by nematode head (or tail) over multiple
beating cycles. (middle row) Color-coded temporal evolution of C. elegans skeletons over one beating period (T ). Results reveal a distinct envelope
of body postures for each environment. (bottom row) Spatio-temporal contour plot of body curvature (k) along the length of the nematode’s
skeleton. Red and blue colors represent positive and negative curvature values, respectively. The y-axis corresponds to the dimensionless position
(s=L) along the C. elegans’ body length where s~0 is the head and s~L is the tail.
doi:10.1371/journal.pone.0011631.g008
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‘snake’). The problem lies in the fact that estimating the medial axis

of the nematode with the Chamfer distance transform is ill-suited. In

principle, the latter scenario (i.e. omega bend) is not problematic. In

practice, however, initializing the skeleton algorithm is ill-posed;

there is no a priori knowledge as to where the head or tail lie.

Motility Metrics
We briefly discuss the feasibility of using nematode skeletons

obtained with MEME (Videos S2 to S7). Skeleton data often

provides the building blocks to quantify locomotive traits of C.

elegans [11,13,16,18,19]. Here, we illustrate some of these motility

metrics across sample environments. In Fig. 8 (top row),

nematode tracking data is shown over multiple body bending

cycles for crawling on a substrate (left column), swimming in a

drop (middle column), and locomotion in so-called ‘‘artificial

dirt’’ (right column), i.e. a microfluidic substrate (Supplemental

Videos in Lockery et al. [21]). Trajectories swept by the nematode

tail (or head) are labeled, illustrating striking differences in the

travel paths adopted by C. elegans as a function of the surrounding

environment. Snapshots of nematode skeletons over one beating

cycle are shown in Fig. 8 (middle row); the time evolution of

skeletons is color-coded as a function of the corresponding

beating period (T ). Plots reveal the existence of well-confined

envelopes of body postures which vary dramatically with motility

assay. Here, envelopes of postures are constructed using a

principal component analysis (PCA) to find the skeleton’s

principal axis and orientation at each instant in time. Further

metrics including the nematode wavelength as well as the

amplitude of body undulations can be obtained in a straightfor-

ward manner from the construction of such envelopes [18].

Next, we illustrate measures of body curvature (k) along the

nematode’s length (Fig. 8, bottom row); such plots have been

shown to characterize swimming and crawling gaits [13,16,18].

Curvature is defined as k(s,t)~dw=ds, where w is the angle made

by the tangent to the x-axis at each point along the nematode

skeleton; s is the arc-length coordinate spanning the nematode’s

head (s~0) to its tail (s~L). The spatio-temporal evolution of k is

shown over several beating cycles for each environment. Here,

curvature values are color-coded; red and blue represent positive

and negative values of k, respectively. Note that the vertical axis in

each contour plot corresponds to the non-dimensional body

position (s=L), where L is the nematode length. Each contour plot

shows the existence of highly periodic, well-defined diagonally

oriented lines. These diagonal lines are characteristic of bending

waves of motion which propagate in time along the nematode

body length (i.e. traveling waves).

In Fig. 8, forward motion displays curvature lines with a positive

slope (left and middle column); waves are initiated at the nematode

head [13,18]. Conversely, backward motion displays lines with a

negative slope, where bending motion is initiated at the tail (right

column). In general, a number of motility metrics may be directly

extracted from such curvature contour plots. For example, the

body bending frequency (f ) may be obtained by applying a one-

dimensional (1D) Fast Fourier Transform (FFT) to the curvature

field k at multiple body positions s=L [18]. Similarly, the wave

speed (c) may be directly extracted from the slope of the curvature

k propagating along the nematode’s body; the wavelength l~c=f
is then computed in a straightforward manner. With our MEME

platform, nematode skeleton data is made ready available for use

for motility analysis of C. elegans.

Future Directions
The proposed MEME framework provides researchers with an

attractive and reliable platform for nematode segmentation and

‘skeletonizing’ across a large spectrum of C. elegans motility assays.

The MEME software is freely available upon request (contact

person: J. Sznitman; website for download will be provided).

Improving our system to further assist researchers conduct

quantitative analysis of C. elegans is of course desired. In the near

future, one immediate goal is to provide segmentations and

skeletons simultaneously for multiple nematodes. This ‘upgrade’

would be of great interest for high-throughput drug screening

applications [24,25]. From a performance point of view,

combining larger sets of image features (e.g. edges, texture, etc.)

with MOG models may provide better appearance models for

difficult environments. This may yield better segmentation results,

in particular at the nematode extremities (i.e. head and tail).

Finally, our MEME platform is not restricted to image analysis of

C. elegans only. For instance, MOG methods may be used for

applications relating cell tracking and motility [53–55]. We

illustrate here an example of such possible application with Albino

Swiss mouse embryo fibroblast cells (Video S8).

Supporting Information

Table S1 Compiled data on segmentation results for the Multi-

Environment Model Estimation (MEME) and threshold-based

algorithms. Performances of each algorithm (i.e., surface error and

nematode yield) are evaluated for 13 different image sequences

representative of various locomotive environments (e.g., crawling

on agar plate, swimming in a channel or a drop, locomotion in

microfluidic substrates).

Found at: doi:10.1371/journal.pone.0011631.s001 (0.37 MB

PDF)

Video S1 MEME software tutorial shown for a sample image

sequence (source: berrigel2.0perc.mov, Supplementary Material in

Berri et al. [2009]).

Found at: doi:10.1371/journal.pone.0011631.s002 (9.57 MB AVI)

Video S2 Example of crawling assay. From left to right: (i) raw

image, (ii) binary segmentation from MEME, and (iii) resulting

skeleton superimposed on raw image. Here, a young adult, wild-

type (N2) C. elegans is seen crawling on an agar plate. Nematode is

approximately 1 mm long (image resolution: 1/78 mm/pix; image

acquisition rate: 28 frames per second).

Found at: doi:10.1371/journal.pone.0011631.s003 (9.57 MB AVI)

Video S3 Example of crawling on a substrate. From left to right:

(i) raw image, (ii) binary segmentation from MEME, and (iii)

resulting skeleton superimposed on raw image. The original data is

obtained from the Supplementary Information (Movie 1) in

Pierce-Shimomura et al. (2008).

Found at: doi:10.1371/journal.pone.0011631.s004 (0.87 MB AVI)

Video S4 Example of swimming assay in a liquid drop. From left

to right: (i) raw image, (ii) binary segmentation from MEME, and

(iii) resulting skeleton superimposed on raw image. Here, a young

adult, wild-type (N2) C. elegans is seen swimming in a 5 ml drop of

M9 buffer solution. Nematode is approximately 1 mm long (image

resolution: 1/78 mm/pix; image acquisition rate: 28 frames per

second).

Found at: doi:10.1371/journal.pone.0011631.s005 (9.54 MB AVI)

Video S5 Example of swimming assay in a shallow channel.

From left to right: (i) raw image, (ii) binary segmentation from

MEME, and (iii) resulting skeleton superimposed on raw image.

Here, a young adult, wild-type (N2) C. elegans is seen swimming in a

narrow acrylic channel filled with M9 buffer solution. Details are

given in Sznitman et al. (2010). Nematode is approximately 1 mm
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long (image resolution: 1/400 mm/pix; image acquisition rate:

125 frames per second).

Found at: doi:10.1371/journal.pone.0011631.s006 (8.27 MB AVI)

Video S6 Example of nematode locomotion in a gelatin-based

solution. From left to right: (i) raw image, (ii) binary segmentation

from MEME, and (iii) resulting skeleton superimposed on raw

image. The original data is obtained from the Supplementary

Information (berrigel2.0perc.mov) in Berri et al. (2009).

Found at: doi:10.1371/journal.pone.0011631.s007 (3.75 MB AVI)

Video S7 Example of nematode locomotion in ‘‘artificial dirt’’,

i.e., a microfluidic substrate. From left to right: (i) raw image, (ii)

binary segmentation from MEME, and (iii) resulting skeleton

superimposed on raw image. The original data is obtained from

the Supplementary Information (Video 2) in Lockery et al. (2008).

Found at: doi:10.1371/journal.pone.0011631.s008 (1.20 MB AVI)

Video S8 Application of the MEME software to segmentation of

Albino Swiss Mouse Embryo Fibroblast cells (3T3 Line). The

original video (Video 2) is extracted from live-cell imaging videos

available at Nikon Microscopy U (http://www.microscopyu.com/

moviegallery/livecellimaging/3t3/index.html), as obtained with

Differential Interference Contrast (DIC) microscopy.

Found at: doi:10.1371/journal.pone.0011631.s009 (5.75 MB AVI)
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