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Abstract

Background: RBR ubiquitin ligases are components of the ubiquitin-proteasome system present in all eukaryotes. They are
characterized by having the RBR (RING – IBR – RING) supradomain. In this study, the patterns of emergence of RBR genes in
plants are described.

Methodology/Principal Findings: Phylogenetic and structural data confirm that just four RBR subfamilies (Ariadne, ARA54,
Plant I/Helicase and Plant II) exist in viridiplantae. All of them originated before the split that separated green algae from the
rest of plants. Multiple genes of two of these subfamilies (Ariadne and Plant II) appeared in early plant evolution. It is
deduced that the common ancestor of all plants contained at least five RBR genes and the available data suggest that this
number has been increasing slowly along streptophyta evolution, although losses, especially of Helicase RBR genes, have
also occurred in several lineages. Some higher plants (e. g. Arabidopsis thaliana, Oryza sativa) contain a very large number of
RBR genes and many of them were recently generated by tandem duplications. Microarray data indicate that most of these
new genes have low-level and sometimes specific expression patterns. On the contrary, and as occurs in animals, a small set
of older genes are broadly expressed at higher levels.

Conclusions/Significance: The available data suggests that the dynamics of appearance and conservation of RBR genes is
quite different in plants from what has been described in animals. In animals, an abrupt emergence of many structurally
diverse RBR subfamilies in early animal history, followed by losses of multiple genes in particular lineages, occurred. These
patterns are not observed in plants. It is also shown that while both plants and animals contain a small, similar set of
essential RBR genes, the rest evolves differently. The functional implications of these results are discussed.
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Introduction

In eukaryotes, protein ubiquitination is a key biochemical

mechanism that is involved in multiple cellular processes, from the

control of protein levels to the regulation of gene expression [1–4].

Given the wide functional implications of the system, there is a

great interest in understanding in detail the groups of proteins

which are involved in the process and in the regulation of

ubiquitination. Of particular significance are ubiquitin ligases

(E3s), the proteins that attach ubiquitin to the substrates, given that

they are very numerous, structurally diverse and, most significant-

ly, they provide specificity to the ubiquitination process [4]. A

particular family of ubiquitin ligases, called RBR, has recently

received a significant degree of attention, particularly due to the

involvement of mutations in the gene that encodes one of them,

parkin, in the genesis of Parkinson’s disease (reviewed in [5,6]).

The RBR ubiquitin ligases are characterized by containing a

supradomain, known as RBR signature, which consists in three

consecutive protein domains. The most N-terminal, often called

RING1, is a typical RING finger. RING fingers are present in

many ubiquitin ligases and have an essential role in facilitating the

transfer of ubiquitin to the substrate. However, it is only in RBR

proteins that the RING finger is followed by two additional,

characteristic domains. The first, named IBR (‘‘In-between-

rings’’), consists in two consecutive zinc-binding domains [7].

The second, C-terminal, RING2 domain, is somewhat similar in

sequence but structurally different from a canonical RING finger

[8,9]. The RBR signature is rich in conserved cysteines and

histidines, with a pattern that can be summarized as C3HC4 -

C6HC - C3HC4, respectively corresponding to the RING1, IBR

and RING2 domains. This RBR signature is so characteristic that

it is very simple to establish whether a particular protein is an RBR

ubiquitin ligase. This has allowed for precise analyses of the origin

and evolution of the RBR family (see the works of my group:

[5,8,10,11]). In those studies, it was established that RBR proteins

appeared very early in eukaryotic evolution. They have been

detected so far in all eukaryote groups for which sequence data are

available. Moreover, detailed phylogenetic analyses allowed

establishing a classification of RBR proteins into 14 main

subfamilies [10,11]. All the proteins of a particular subfamily are

characterized by having very similar sequences and, often, by

containing additional, subfamily-specific, protein domains. Just

three of these subfamilies, called Ariadne, ARA54 and Helicase

(also called ‘‘Plant I’’, given that it was first found in plants), have
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been detected in both unikonts and bikonts, implying a very

ancient origin. The rest are restricted to particular lineages. For

example, the Parkinson-disease related gene parkin, mentioned

above, belongs to an animal-specific subfamily, which has been

called also parkin.

In a recent study, I analyzed in great detail the evolution of

RBR ubiquitin ligases in animals [11]. Animals contain proteins of

many RBR subfamilies which are not found in other organisms. It

turned out that most of those subfamilies emerged very early in

animal evolution. In fact, the common ancestor of cnidarians,

protostomes and deuterostomes already contained a set of RBR

proteins which was almost identical to the one found today in

humans. Genes of 10 subfamilies were present in that ancestor.

Since then, and surprisingly, many animal lineages have lost RBR

genes. For example, just six genes are present in the fruit fly

Drosophila melanogaster. Microarray data indicated that conservation

is linked to the proteins having housekeeping functions, while

more specialized genes tend to be lost [11]. The significance of

that study was to provide a conceptual framework for the reasons

that explain the long-term pattern of conservation and loss of the

genes of the RBR family. A significant difference in the process of

conservation/loss in other groups would be an evidence for a

modification in the functions of the RBR proteins respect to those

found in animals.

Plant RBRs have not been hitherto studied as a whole, but the

available data suggest that the evolutionary dynamics of this family

in plants may be very different from that described in animals.

First, it was shown that Arabidopsis thaliana contained many more

RBR genes than any animal, and about three times more than

humans [8]. Second, although part of the diversity of Arabidopsis

RBRs certainly may have emerged as a consequence of the

genome duplications that occurred in its lineage [12–15], analyses

of the members of one of the RBR subfamilies, called Ariadne,

showed that many of them actually arose by recent tandem

duplications [16]. Finally, the number of subfamilies found in

plants was limited to four, and just one of them was determined to

be plant-specific [5,8,10]. All these results together suggest that the

evolutionary mechanisms governing the patterns of diversification

of plant and animal RBR may be somewhat contradictory. Given

these preliminary data and the raising interest in the evolution and

function of the ubiquitination system in plants (e. g. refs. [17–21]

and see also [22,23]), I have decided to perform a comprehensive

analysis of plant RBRs in order to obtain a better understanding of

the evolution and function of these proteins. The study highlights

some basic similarities in the evolution of plant and animal RBRs,

but also demonstrates fundamental differences that may be linked

to qualitatively different functional roles of these proteins in the

two groups of organisms.

Results

General patterns of diversification of plant RBR ubiquitin
ligases

Previous results using small datasets suggested that all plant

RBR proteins could be classified into just four subfamilies [5,8,10].

Three of them (Ariadne, ARA54 and Plant I/Helicase) are

ancient, given that can be found in both unikonts and bikonts

[8,11]. The fourth family (called Plant II) was found only in higher

plants. Figure 1 summarizes the general results obtained using a

much larger dataset, consisting in 498 plant sequences (see

Material and Methods). Confirming those previous results, all

sequences could be classified into the four mentioned subfamilies

using phylogenetic analysis and structural data. The low bootstrap

values supporting the Plant II subfamily are due both to the

intrinsic high heterogeneity of the sequences of this group and to

the presence of a particularly divergent sequence from the green

alga Micromonas pusilla (Accession number ACCP01000105.1). If

this sequence is eliminated, bootstrap support for the Plant II

subfamily is much higher (e. g. 92% of support in neighbor-joining

analyses). Extensive structural searches using InterProScan also

confirmed previous results: all the proteins of the ARA54, Ariadne

and Helicase subfamilies tested had not only the RBR suprado-

main, but also additional, characteristic protein domains (summa-

rized in [5]; see Figure 1), which are absent in Plant II subfamily

proteins. Structural data further supports the inclusion of the

divergent M. pusilla sequence into the Plant II subfamily, given that

no additional protein domains were detected in it.

The genome projects of species that belong to three different

genera of green algae (Chlamydomonas, Ostreococcus and Micromonas)

have provided a number of RBR sequences which were not

previously available and are obviously critical to understand the

early evolution of this family in plants. All those sequences belong

to three of the four subfamilies, namely Plant II, ARA54 and

Ariadne. Significantly, in the available genomes not only of green

algae, but also of bryophytes and gymnosperms proteins of the

ancient helicase subfamily were not found. They have been

detected so far only in angiosperms. A similar loss has been

observed in multiple animal lineages, suggesting that helicase

RBRs are often dispensable [11]. However, a significant caveat is

that 91% (452/498) of the available sequences derive from

angiosperm genomes. Therefore, to find in the future helicase

RBRs in other groups would not be surprising. In any case, these

results demonstrate that the four subfamilies found so far in plants

originated before the split that separated green algae from the rest

of plants. This indicates that at least four RBR genes were present

in the common ancestor of all viridiplantae. The fact that no

additional subfamilies have appeared along the evolution of the

plant lineages contrasts with the pattern found in animals, in

which many additional subfamilies have emerged [11].

Figure 2 summarizes the phylogenetic analyses for the dataset of

472 sequences detected in angiosperms and gymnosperms. This

analysis was performed in order to explore in detail the

diversification of the RBR subfamilies in these groups. Interest-

ingly, two highly supported monophyletic groups were detected

within the Ariadne subfamily and three within the Plant II

subfamily (Figure 2). A fourth potential group of the Plant II

subfamily, which is indicated as ‘‘Plant II C’’ in Figure 2, is in fact

a bit of a ragbag, given that there is no significant bootstrap

support for it. It just includes all the sequences in the Plant II

subfamily which are excluded from the highly supported A, B and

Poaceae-specific groups. However, as it will be shown below, the

Plant II C group indeed appears as strongly supported in other

analyses, so it seems useful for operative reasons to define it at this

point of the study. Sequences of the Ariadne B, Plant II A, Plant II

B and Plant II C groups were detected in both angiosperms and

gymnosperms. On the contrary, the Plant II Poaceae-specific

group was found, as the name indicates, only in a few species of

that family of monocot plants. Also, Ariadne A sequences were not

detected in gymnosperms. This means that there were no less than

6 RBR genes before the gymnosperm/angiosperm split (at least 3

Plant II genes, single ARA54 and Helicase genes and an Ariadne

gene). In fact, it can be deduced that the number of genes in the

common ancestor of angiosperms and gymnosperms was at least 7

and probably no less than 8. This is due to two factors. First, the

heterogeneous nature of the Plant II C group, already mentioned.

Inspection of that group indicated that it contains two separated

sets of sequences in gymnosperms and several in angiosperms.

This means that the common ancestor of those two groups of

Plant RBR Ubiquitin Ligases

PLoS ONE | www.plosone.org 2 July 2010 | Volume 5 | Issue 7 | e11579



plants may have had at least 2 Plant II C genes. Second, it turns

out that a green alga, Chlamydomonas reinhardtii, contains two

Ariadne proteins that are very similar to, respectively, Ariadne A

and Ariadne B sequences (this fact, strongly supported by

bootstrap data, was observed in the analyses from which Figure 1

was obtained). This result indicates that the two Ariadne groups

emerged very early in plant evolution and were therefore already

present before angiosperms and gymnosperms diverged. The lack

of Ariadne A genes in gymnosperms, if indeed confirmed when

more sequences are available and not simply due to a lack of

information for gymnosperm genomes, must be therefore be

attributed to a subsequent loss. Interestingly, this finding of two

Ariadnes in Chlamydomonas also rises the number of genes deduced

for the common ancestor of all plants to 5, instead of the four

indicated above.

Table 1, which summarizes the number of RBR genes in

selected plant genomes, adds interesting information to under-

stand the early patterns of diversification of RBR genes in plants.

By carefully inspecting the results summarized in Figures 1 and 2,

almost all the sequences of these species were assigned without

ambiguity to one of the groups already mentioned. The only

exceptions were 7 sequences from green algae or the bryophyte

Physcomitrella patens, which were impossible to classify. Five of those

7 sequences (four from Physcomitrella and the highly divergent

sequence from the green alga Micromonas pusilla already mentioned

before) belong to the Plant II subfamily, but were not clearly

assignable to any of the Plant II groups defined in Figure 2. The

other two sequences (from green algae of the Ostreococcus genus)

were highly divergent Ariadne sequences that again could not be

assigned to either the Ariadne A or Ariadne B groups. The fact

Figure 1. Basic result for the general analyses including 498 plant RBR sequences. The main branches that correspond to the four
subfamilies are indicated. Numbers above those branches correspond to bootstrap support, in percentages. The three numbers correspond to
Neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood (ML) analyses (order: NJ/MP/ML). Numbers in brackets refer to the number
of protein sequences which are included in a branch. The typical structures of the proteins in the subfamilies are also indicated (red: RBR
supradomain; green: RWD/GI domain; purple: DEAD/DEAH helicase domain; yellow: Ariadne domain). The slashes in the Helicase-containing protein
are included to reflect that these proteins are usually much longer than shown here and two regions have been deleted. See ref. [5] for further details
of these structures.
doi:10.1371/journal.pone.0011579.g001
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that sequences belonging to the Plant II groups (A, B and C)

defined above cannot be described in either green algae or

bryophytes is compatible with the idea that these three groups

emerged just before the angiosperm/gymnosperm split.

Table 1 contains additional interesting information. First, all the

green algae sequenced so far contain 2–3 RBR genes, when the

common ancestor of all plants had at least 5, as already indicated.

Therefore, a few lineage-specific losses have occurred. Second, the

only bryophyte for which a significant amount of data is available,

Physcomitrella patens, contains a relatively large number of RBR

genes, bearing lineage-specific duplications of Plant II and Ariadne

RBRs, but, as already indicated above, lacking helicase RBRs.

Third, the gymnosperms for which the most data are available seem

to contain a limited number of genes (6–7 per species) while

angiosperms usually contain quite more (often 10–14). Although this

result is interesting, whether this difference is real or just it is due to a

lack of data for gymnosperm species is still unclear. Finally, some

angiosperm species, especially the monocots Sorghum bicolor and

Oryza sativa and the dicots of the Arabidopsis genus (A. thaliana and A.

lyrata) contain a very large amount of RBR proteins (25–40). This

last result, which implies at least two independent lineage-specific

patterns of amplification, may be studied in more detail, given the

large number of sequences available from the families Poaceae and

Brassicaceae, to which those species belong (see next section).

In Figure 3, I propose a hypothesis for the diversification of the

RBR family in plant lineages that summarizes all the currently

available data. This figure has been obtained by exploring in detail

the branching patterns found in the analyses shown in Figure 1

and 2 and looking for the most parsimonious explanations for

those patterns. Hypothesizing gene gains is more parsimonious

than assuming that gains plus subsequent losses have occurred.

Therefore, this hypothesis is based on minimizing the number of

gene losses that must be postulated to explain the genes observed,

what may lead in some cases to an underestimation of the true

number of ancestral genes. For those estimations, the minimum

number of genes for an ancestor was considered equal to the

number of monophyletic groups, strongly supported by bootstrap

analyses, present in all their descendant lineages. The maximum

number was appraised by establishing the number of genes in each

descendant lineage (excluding very recent duplicates) and

assuming that the number of ancestral genes is equal to the

number of genes present in the descendant lineage which has less

of them. This method will have a tendency to produce

overestimates of the number of genes, given that it often assumes

that genes in different lineages are orthologs even when evidence

for this orthology is absent. It is therefore mainly useful to obtain a

top estimate of the genes present in an ancestor. The summary of

Figure 3 is that, as already deduced above, 5 genes must be

Figure 2. Dendrograms for RBR sequences of angiosperms and gymnosperms. Bootstrap support and number of sequences indicated as in
Figure 1. Bootstrap values (in percentages) for highly supported branches are indicated.
doi:10.1371/journal.pone.0011579.g002
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postulated at the origin of plants. Afterwards, the most

parsimonious hypothesis involves a slow increase of the number

of genes along plant evolution. Sporadic losses have also

apparently occurred, but, contrary to what has been described

in animals [11], particular lineages that have suffered massive

losses of RBR genes have not been found in plants. Although this

hypothesis should be revised when more data are available, the

current information is quite large, so the general pattern is robust.

Microevolutionary patterns in the Poaceae and
Brassicaceae families

In this section, the contribution of gene-specific duplications to

explain the current number of RBR genes in two well-known

lineages, the family Brassicaceae (Cruciferae), today the best-

studied dicot group, and the family Poaceae (Gramineae), the

group for which almost all available monocot sequences derive, is

examined. Figures 4 and 5 summarize the dendrograms obtained

when sequences from, respectively, Brassicaceae and Poaceae were

analyzed. In general, they confirmed the findings already

described in the previous section. It is particularly significant to

point out the high support found in these analyses for the Plant II

C group defined above. In addition, these more concrete analyses

allow to establish the presence of several highly supported

branches within the groups Plant II A, Plant II C and Ariadne

B of the Brassicaceae (Figure 4) and Plant II C, ARA54, Ariadne A

and Ariadne B in the Poaceae (Figure 5). In summary, it can be

deduced that the total number of genes in the ancestor of all

Brassicaceae was about 16 and approximately 12 genes were

present in the Poaceae ancestor. It is reasonable to hypothesize

that many of these genes originated from the well-documented,

ancient genomic duplications that occurred in those lineages. In

addition, Figures 4 and 5 also include analyses for tandem

duplications in Arabidopsis thaliana and Oryza sativa. The rhombs in

those figures mark branches that include two or more tandemly

repeated genes, as can be deduced from their genomic locations. I

confirmed the presence of tandemly repeated Ariadnes (of both

groups, A and B) in Arabidopsis, as first described in [16], and also

found multiple tandem duplicates in the Plant II A group in that

same species (Figure 4). These genes are not found in the species of

the evolutionary close Brassica genus. Multiple genus-specific

duplicates were also found in Oryza (Figure 5). Their pattern was

Figure 3. The most parsimonious hypothesis to explain the progressive diversification of plant RBR genes. This figure summarizes how
this family may have diversified, according to the available data. Rectangles correspond to gene losses and arrows to gene emergences. The numbers
in the internal nodes (boxes) correspond to the genes deduced to exist at that particular time. Ambiguities are due to the difficulties in establishing
when lineage-specific duplications occurred (see text).
doi:10.1371/journal.pone.0011579.g003
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clearly distinct from the one found in Arabidopsis, with rice

duplicates belonging to the Plant II C, Ariadne A and Ariadne B

groups and to the ARA54 subfamily. These results not only

demonstrate that the tandem duplications arose recently and

independently in Arabidopsis and Oryza, but also that each species

has a preferential pattern of tandem duplications.

Patterns of expression of RBR genes in Arabidopsis and
Oryza

A significant point that arose when analyzing animal RBR

genes was the correlation found between their evolutionary

conservation and their patterns of expression. Genes with broad

patterns of expression, probably those that have housekeeping

functions, were preferentially conserved, while more specialized

genes were often lost [11]. Given this precedent, the correlation

between pattern of expression and evolutionary conservation and

emergence of duplicates in two model plant species, Arabidopsis

thaliana and Oryza sativa, was analyzed. First, the database

generated by Schmid et al. [24], which contains expression data

obtained using microarrays for 79 developmental stages of

Arabidopsis thaliana, was used. AtGenExpress, in which those data

are deposited, contained information about 31 of the Arabidopsis

RBR genes (data obtained from http://jsp.weigelworld.org/

expviz/expviz.jsp; see Material and Methods). It turned out that

these 31 genes could be classified into two different classes, based

on quantitative differences in their expression patterns. Eleven

genes had average levels of expression ranging from 42.6 units to

545.0 units, with an average of 190.3641.6 units. The rest had a

very low average level of expression (11.361.0 units; range; 5.5–

16.2). Given that these groups were established a posteriori, to test

whether this difference in expression between both classes was

relevant, Hochberg’s GT2 method for unplanned comparisons

was used (see Materials and Methods). The difference was found to

be statistically significant (p,0.01). It was also observed that the

low expressed genes had a mean level of expression in mature

pollen (mean: 52.569.5) that was in average about 5 times higher

than the mean for the rest of samples (10.761.0). This difference is

also significant (p,0.01; again using the GT2 method). Interest-

ingly, all the genes that were included in the clusters of tandem

duplicates (rhombs in Figure 4) for which expression data was

available, a total of 13, were included in the group of low-level,

specifically expressed genes.

Figure 6 graphically summarizes these results, adding some

details. In the top panel, the expression in all samples of nine of the

highly expressed genes is shown. In the middle panel, the other

two genes of this group (AT5g60250 and AT1g65430) are singled

out to show that they have a particularly high level of expression in

just one developmental sample, which is again mature pollen (8

times the average of the rest of samples for AT5g60250 and 23

times for AT1g65430). This specificity was not observed in any of

the other highly expressed genes. For example, in the nine genes

shown in the top panel, the differences between the sample with

the highest level of expression and the sample with the second

highest level was always very small (1.260.2 times; range 1.1–1.6).

However, expression in mature pollen was 2.5 times (AT5g60250)

or 4.7 times (AT1g65430) higher than the expression of the second

highest developmental sample for these two genes. Not surpris-

ingly, they both were also detected as expressed at a higher level in

pollen than in vegetative tissues in an independent dataset [25].

Finally, the bottom panel of Figure 6 shows the patterns of the

genes with low levels of expression. When all expression level

values are added together, the high level of the pollen samples

becomes easily visible.

Data from Oryza sativa japonica were obtained from the RiceAtlas

website (http://bioinformatics.med.yale.edu/riceatlas/; [26]),

which contains information about 42 different cell types. The

information available for 21 Oryza genes was obtained and it was

determined that they were also divisible into three groups, which I

will call respectively Class I, Class II and Class III, according to both

their average level of expression and breadth of expression

(summarized in Figure 7). Class I includes just two genes

(Os09g0420100 and Os12g0631200) with a very high level of

expression in all cell types (Average levels: 1106.3692.9 and

1366.2643.9 respectively; Figure 7, top panel). Class II includes 6

genes that were also expressed in many cell types (an average of 27.8

of the 42 samples, ranging from 17 to 38 for the different genes) but

at a lower level (Averages of expression level ranging from

45.4611.8 to 170.0643.9; Figure 7, middle). Finally, Class III

includes the other 13 genes, which were expressed very specifically

(just 7.3 cell types in average; range: 1–13), and generally at low

levels (Average expression level ranging from 2.862.8 to

31.7611.1; Figure 7, bottom). As happened in Arabidopsis, out of

the 14 genes found in tandem duplicate sets for which information

was available, 10 were included in the group of low-expressed genes.

It is significant that no pollen-derived sample was included in the

Oryza dataset, so no further comparisons with the Arabidopsis data are

possible. The quantitative differences in the levels of expression

between the three groups defined above were all significant (p,0.01

for Class I vs. Class II and Class I vs. Class III comparisons and

0.01,p,0.05 for the Class II vs. Class III comparison; in all cases,

probabilities were established using the GT2 test).

Some additional functional information for Arabidopsis RBR

genes exists. In particular, data at AtGenExpress, the databases at

The Arabidopsis Information Resource (TAIR; http://www.

arabidopsis.org/ [27]) and the Gene expression omnibus (GEO;

http://www.ncbi.nlm.nih.gov/geo/) were checked for potential

information about the conditions that may trigger the expression

of RBR genes. Analyses using the AtGenExpress Visualization

Tool failed to detect a consistent pattern for external conditions

that may lead to activation of the pollen-specific, low-expression

genes detected in Arabidopsis. It was just detected an induction of

expression of a few of them under certain abiotic or biotic stress

conditions (AT1g05880: Pseudomonas infection, cold stress, salt

stress, genotoxic stress caused by bleomycin and mytomycin C,

UV-induced stress, heat; AT5g63750: heat stress in cultured cells;

AT3g27710: heat stress in cultured cells). However, none of these

experiments was performed using pollen samples, so the results

can be considered inconclusive. Examination of the data deposited

at the Gene expression omnibus (GEO; http://www.ncbi.nlm.nih.

gov/geo/) also failed to show any consistent pattern (not shown).

More interesting were the results obtained from TAIR. All the

conditions indicated in the TAIR databases as to having an effect

on RBR gene expression levels were tabulated and a significant

regularity was detected. Five of the 9 highly expressed genes of

Arabidopsis (Figure 6, top panel) were found to be overexpressed

after infecting the plants with the cabbage leaf curl virus, a

geminivirus [28]. Given that only 13.3% (3004/22500) of the

probes analyzed were overexpressed in those experiments, this

enrichment is highly significant (p = 0.0012; Chi square test with

Yates correction, 1 degree of freedom).

Figure 4. Dendrogram for Brassicaceae RBRs. Rhombs indicate the branches that contain tandem duplicates in Arabidopsis thaliana. Numbers
refer again to bootstrap support, in percentage (NJ/MP/ML). For simplification, support for external branches has not been included.
doi:10.1371/journal.pone.0011579.g004
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Figure 5. Dendrogram for Poaceae RBRs. Conventions as in Figure 4. Again, rhombs indicate the branches that include tandem duplicates, this
time in Oryza sativa.
doi:10.1371/journal.pone.0011579.g005
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Discussion

The amount of sequence information for plant RBRs is quite

heterogeneous, with some lineages (e. g. angiosperms) very well

represented, while information for other groups is quite limited.

This makes difficult to establish without ambiguity the patterns of

differentiation of this family of proteins. Even with this caveat in

mind, several general conclusions can be safely deduced. First, the

available data are fully compatible with the idea that while green

algae have kept a set of RBR genes a bit smaller than the one that

existed when viridiplantae originated, a significant increase in the

number of these genes has occurred in the lineages that gave rise

to higher plants and, particularly, large increases in angiosperm

lineages are common (Figure 3 and Table 1). Appearance of new

genes of the four subfamilies has been the rule, while losses have

been, in general, rare. Exceptional are the helicase RBR genes,

which, according to the available data (summarized in Figure 3),

may have been lost independently in chlorophyta, bryophyta and

gymnosperms. As already mentioned, this loss of helicase genes, if

confirmed when more information for these groups is available,

would mirror the multiple independent losses of those same genes

in animal lineages [11]. Second, no new types of proteins have

emerged since the origin of plants. This leads to all analyzed plants

having a set of RBR ubiquitin ligases which is structurally very

similar or even identical. We can conclude that the RBR family

has followed in plants a pattern of microdifferentiation in which

most of the variation is in the number of genes, while the types of

proteins generated remain basically the same present at the origin

of the viridiplantae. Third, as mentioned above, part of the

progressive diversification of RBR genes most likely has been

associated to the multiple whole genome duplications that

occurred in higher plant lineages. However, the relatively slow

increase in the total number of genes in all lineages (Figure 3)

suggests that RBR genes are, as a whole, quite ‘‘resistant’’ to

genome duplications, that is, most genes produced after these

duplications tend to be lost [29]. Contrasting with this long-range

difficulty of accommodating additional genes, it turns out that

gene-specific duplications, which lead to tandemly repeated genes,

explain many of the genes found today in the species with the

highest number of RBR genes (such as Arabidopsis thaliana or Oryza

sativa; Figures 4 and 5).

The patterns of diversification of the RBR family in plants and

in animals seem quite different. Contrary to what happened in

plants, the RBR family diversified very early in animals, to

generate 10 subfamilies [11]. Moreover, not only the proteins of

those subfamilies have very different primary sequences, but also

they generally contain characteristic, subfamily-specific protein

domains [5,8,10]. Another important difference is that many

independent gene losses have been detected in particular animal

lineages, such as insects, nematodes or urochordates, leading to a

much reduced number of RBR genes in these species [11]. A

functional hypothesis was put forward to explain why some genes

were strictly conserved while others were often lost. Given that

only a few RBR genes have broad patterns of expression and have

strong effects on fitness, it is possible that, under the right

circumstances (e. g. modifications of the functions of cell types or

tissues, changes in the proteins to be ubiquitinated, etc), the rest

may be lost without much trouble [11]. However, why precisely

certain animal lineages and not others tend to reduce the number

of RBR genes is still a mystery.

A clue of why plant and animal RBRs may be evolving

differently is provided by the patterns of expression of Arabidopsis

and Oryza RBR genes which have been described above. Although

the data obtained are limited, the results are compatible with these

species having two functionally different sets of RBR genes. One of

them is formed by one or a few genes of each subfamily that have

moderate to high levels of expression in many/all developmental

times (Figures 6 and 7; top and middle panels). These genes may

have essential, perhaps in some cases housekeeping, functions. The

existence of this set of genes parallels perfectly what is found in

animals, in which there is also a small set of broadly expressed

genes in both humans and flies, which also belong to different

subfamilies [11]. A second set, which is peculiar of plant species,

consists in many genes that have a very low level of expression and

sometimes, especially in Oryza, also a quite specific pattern of

expression (Figures 6, 7; bottom panels). Significantly, many of

those genes emerged by tandem duplications (see above). Nothing

similar has been detected in animals. There are two possible

Figure 6. Cumulative values of expression for Arabidopsis RBR genes in 79 developmental samples. Data from Schmid et al. [24]. Top:
broadly expressed RBR genes, notice the high average levels of expression in all tissues. Center: two genes show high levels of expression but
especially in one tissue (Mature pollen: sample 69). Bottom: set of genes expressed at very low level in all tissues with the exception of mature pollen.
Samples were as follows: 1) root 7 days; 2) root 17 days; 3) root 15 days; 4) root 8 days; 5) root 8 days; 6) root 21 days; 7) root 21 days; 8) stem:
hypocotyl; 9) stem: first node; 10) stem: second internode; 11) cotyledons; 12) leaves 1+2; 13) rosette leaf #4, 1 cm long; 14) rosette leaf #4, 1 cm
long (gl1-T mutant); 15) rosette leaf #2; 16) rosette leaf #4; 17) rosette leaf #6; 18) rosette leaf #8; 19) rosette leaf #10; 20) rosette leaf #12; 21)
rosette leaf #12 (gl1-T mutant); 22) leaf 7, petiole; 23) leaf 7, petiole; 24) leaf 7, distal half; 25) leaf, 15 days; 26) leaf, senescing; 27) cauline leaves; 28)
seedling, green parts, 7 days; 29) seedling, green parts, 8 days; 30) seedling, green parts, 8 days; 31) seedling, green parts, 21 days; 32) seedling, green
parts, 21 days; 33) whole plant: developmental drift, entire rosette after transition to flowering, but before bolting, 21 days; 34) whole plant:
developmental drift, entire rosette after transition to flowering, but before bolting, 22 days; 35) whole plant: developmental drift, entire rosette after
transition to flowering, but before bolting, 23 days; 36) vegetative rosette 7 days; 37) vegetative rosette 14 days; 38) vegetative rosette 21 days; 39)
shoot apex, vegetative + young leaves; 40) shoot apex, vegetative; 41) shoot apex, transition (before bolting); 42) shoot apex, inflorescence (after
bolting); 43) shoot apex, inflorescence (after bolting) (clv3-7 mutant); 44) shoot apex, inflorescence (after bolting) (lfy-12 mutant); 45) shoot apex,
inflorescence (after bolting) (ap1-15 mutant); 46) shoot apex, inflorescence (after bolting) (ap2-6 mutant); 47) shoot apex, inflorescence (after bolting)
(ufo-1 mutant); 48) shoot apex, inflorescence (after bolting) (ap3-6 mutant); 49) shoot apex, inflorescence (after bolting) (ag-12 mutant); 50) flowers
stage 9; 51) flowers stage 10/11; 52) flowers stage 12; 53) flower stage 12; multi-carpel gynoeceum; enlarged meristem; increased organ number
(clv3-7 mutant); 54) flower stage 12; shoot characteristics; most organs leaf-like (lfy-12 mutant); 55) flower stage 12; sepals replaced by leaf-like
organs, petals mostly lacking, has secondary flowers (ap1-15 mutant); 56) flower stage 12; no sepals or petals (ap2-6 mutant); 57) flower stage 12;
filamentous organs in whorls two and three (ufo-1 mutant); 58) flower stage 12; no petals or stamens (ap3-6 mutant) 59) flower stage 12; no stamens
or carpels (ag-12 mutant); 60) flowers stage 15; 61) flowers 28 days; 62) flowers stage 15, pedicels; 63) flowers stage 12, sepals; 64) flowers stage 15,
sepals; 65) flowers stage 12, petals; 66) flowers stage 15, petals; 67) flowers stage 12, stamens; 68) flowers stage 15, stamen; 69) mature pollen 70)
flowers stage 12, carpels; 71) flowers stage 15, carpels; 72) siliques, w/ seeds stage 3; mid globular to early heart embryos; 73) siliques, w/ seeds stage
4; early to late heart embryos; 74) siliques, w/ seeds stage 5; late heart to mid torpedo embryos; 75) seeds, stage 6, w/o siliques; mid to late torpedo
embryos; 76) seeds, stage 7, w/o siliques; late torpedo to early walking-stick embryos; 77) seeds, stage 8, w/o siliques; walking-stick to early curled
cotyledons embryos; 78) seeds, stage 9, w/o siliques; curled cotyledons to early green cotyledons embryos; 79) seeds, stage 10, w/o siliques; green
cotyledons embryos. See details in [24].
doi:10.1371/journal.pone.0011579.g006
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explanations for this pattern. The first is somewhat trivial: the

genes, which have appeared recently (given that they are not

present in related species; Figures 4 and 5), may be in the process

of becoming non-functional and disappearing. A second option is

far more interesting and would fit better the fact that so many

tandemly repeated genes have been produced in two distant

relatives, Arabidopsis and Oryza, independently: the products of

these genes may have particular functions in which microdiffer-

entiation may be an advantage.

Several alternative reasons for that advantage may be hypoth-

esized. A first possibility is suggested by results obtained by Rizzon

et al. [30] and Hanada et al. [31]. They found a correlation between

the presence of tandem duplicates in Arabidopsis and Oryza and the

fact that the duplicates were involved in responses to stress or other

environmental stimuli. It is unclear however to which kind of stimuli

might those RBR genes be responding. For example, in the case of

Arabidopsis, those stimuli should be species-specific (i. e. significant in

Arabidopsis but, for example, not in Brassica, which lacks most of the

duplicates) and perhaps specific for pollen (see data above). As

indicated above, the available functional data, very scarce, does not

suggest any easy explanation for this particular pattern. In any case,

further exploration of the idea that RBR ubiquitin ligases were

amplified to respond to some kind of stress, perhaps as part of a

defensive system [32] may be rewarding. The evidence of

overexpression of multiple housekeeping RBR genes after gemini-

virus infection [28], described above, is a first hint of what may be a

promising line of research.

A second, alternative hypothesis would be that these plants

require multiple related RBR proteins to cope with an increased

diversity of substrates to be ubiquitinated in particular cells, tissues

or developmental periods. Following this line of thought, there are

three significant patterns that are emerging from the comparative

analyses of families of proteins involved in ubiquitination in plants.

First, several of them have followed patterns of rapid amplification,

often by generation of tandem duplicates, similar to those described

here [19–21,33–35]: Second, these amplifications seem to go

together with specialization of the expression patterns. This has

been shown to occur in members of cullin ubiquitin ligase

complexes, such as F-box proteins [24,34] and Skp1-related

proteins, in which moreover multiple genes seem to be expressed

specifically in pollen [36]. Third, in general transcriptome analyses,

an increased expression of multiple ubiquitination-related genes has

been found in pollen, both in Arabidopsis (ref. [37]; sperm cells) and

in soybean [38]. The parallelism of all these findings is very

suggestive. Still, what kind of substrates may have generated these

specific needs of many alternative, almost identical, ubiquitin ligases

is impossible to predict with the available data. Further research will

be necessary to establish this interesting point.

In summary, the study of plant RBR sequences have shed new

light on the potential of diversification of this family of ubiquitin

ligases and also opens interesting new views about how the

ubiquitin system as a whole may be evolving differently in plants

and animals. Future results in both plants and animals, as well as

the analyses of other organisms, most especially fungi and

protozoa, may offer additional insights about the evolution of this

significant group of genes.

Materials and Methods

I used as a starting point the database of 1174 aligned RBR

protein sequences described in [11]. For this work, the 291

sequences in that database that belonged to viridiplantae species

were selected. Additional analyses, following the same methods

described in that work, were performed in March 2010, in order to

add all the sequences made available by the sequencing projects

since the previous study. 207 additional sequences were discov-

ered. The final database therefore contained 498 RBR sequences.

Phylogenetic analyses were in general performed as in Marı́n [11].

Neighbor-joining (NJ) trees were characterized using MEGA 4 [39].

Maximum-parsimony (MP) trees were obtained using PAUP* 4.0,

beta 10 version [40]. Finally, maximum-likelihood (ML) trees were

obtained using PHYML 3.0 [41]. Details of the parameters used can

be found in [11]. Minor changes to improve the analyses respect to

that paper were as follows: 1) for MP, the maximum number of tied

trees was increased from 20 to 100 and the tree-bisection-reconnection

algorithm, which is more exhaustive and precise than the subtree

pruning-regrafting method used in [11], was chosen. For ML, the

improved Le and Gascuel matrix of amino acidic substitutions [42]

was used instead of the older Blosum62 matrix. In all the analyses,

1000 bootstrap replicates were performed to establish the reliability of

the NJ and MP trees. For ML, which is much more computer

intensive, 200 bootstrap replicates were obtained. MEGA 4 was used

to edit and draw the trees in Figures 1–5.

Structural searches were performed using the integrated tool

InterProScan [43]. Searches for tandem repeated genes in

Arabidopsis thaliana and Oryza sativa japonica were based on the

information about the location of all genes of those species in their

respective genomes, also available at the NCBI. Microarray data

for Arabidopsis thaliana developmental samples (including some from

characteristic mutants) were obtained using the AtGenExpress

Visualization Tool (http://jsp.weigelworld.org/expviz/expviz.jsp;

data obtained by [24]). Further Arabidopsis expression data were

taken from the supplementary data accompanying the paper by

Pina et al. [25] or directly from the Gene Expression Omnibus

(GEO) webpage (http://www.ncbi.nlm.nih.gov/geo/) or the

TAIR webpage (http://www.arabidopsis.org/). Expression data

from Oryza were obtained from the Yale Virtual Center for

Cellular Expression Profiling of Rice, which contains RiceAtlas

(http://bioinformatics.med.yale.edu/riceatlas/; [26]). The un-

planned comparisons among means of the levels of expression

were performed using the GT2 method, as described in [44],

which has the advantage of accomodating unequal sample sizes.
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Figure 7. Cumulative values of expression for Oryza RBR genes in 42 cell types. Data from [26]. Top: broadly expressed RBR genes with high
average levels of expression in all cell types. Center: genes also broadly expressed, but at lower levels. Bottom: set of genes expressed at very low
levels in most tissues. The cell types from which the data derive are as follows: 1) Scutellum (0 hr); 2) Scutellum (12 hr); 3) Scutellum (24 hr); 4)
Coleoptile (0 hr); 5) Coleoptile (12 hr); 6) Coleoptile (24 hr); 7) Plumule (0 hr); 8) Plumule (12 hr); 9) Plumule (24 hr); 10) Epiblast (0 hr); 11) Epiblast
(12 hr); 12) Epiblast (24 hr); 13) Radicle (0 hr); 14) Radicle (12 hr); 15) Radicle (24 hr); 16) Axillary primordium; 17) Axillary meristem 18) Apical
meristem; 19) P1; 20) P2; 21) P3; 22) Seedling blade bulliform; 23) Seedling blade stomata; 24) Seedling blade long cell; 25) Seedling blade mesophyll;
26) Seedling blade bundle sheath; 27) Seedling blade vein; 28) Lateral root cap; 29) Root tip cortex; 30) Root tip vascular bundle; 31) Root tip
metaxylem; 32) Elongation epidermis; 33) Elongation cortex; 34) Elongation endodermis; 35) Elongation vascular bundle; 36) Elongation metaxylem;
37) Maturation epidermis; 38) Maturation cortex; 39) Maturation endodermis; 40) Matur. vascular bundle; 41) Whole root; 42) Whole leaf (fresh).
Details can be found in [26].
doi:10.1371/journal.pone.0011579.g007
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25. Pina C, Pinto F, Feijó JA, Becker JD (2005) Gene family analysis of the

Arabidopsis pollen transcriptome reveals biological implications for cell growth,
division control, and gene expression regulation. Plant Physiol 138: 744–756.

26. Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, et al. (2009) A transcriptome atlas

of rice cell types uncovers cellular, functional and developmental hierarchies.
Nat Genet 41: 258–263.

27. Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, et al.
(2008) The Arabidopsis Information Resource (TAIR): gene structure and

function annotation. Nucl Acids Res 36: D1009–D1014.
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