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Abstract

Constructing an accurate predictive model for clinical decision-making on the basis of a relatively small number of tumor
samples with high-dimensional microarray data remains a very challenging problem. The validity of such models has been
seriously questioned due to their failure in clinical validation using independent samples. Besides the statistical issues such
as selection bias, some studies further implied the probable reason was improper sample selection that did not resemble
the genomic space defined by the training population. Assuming that predictions would be more reliable for interpolation
than extrapolation, we set to investigate the impact of applicability domain (AD) on model performance in microarray-
based genomic research by evaluating and comparing model performance for samples with different extrapolation degrees.
We found that the issue of applicability domain may not exist in microarray-based genomic research for clinical applications.
Therefore, it is not practicable to improve model validity based on applicability domain.
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Introduction

Emerging technologies such as gene expression microarrays

offer unprecedented opportunities for clinical cancer research

[1,2,3]. A decade of intensive research into developing predictive

models that are capable of dividing patients into clinically relevant

groups has yielded a number of demonstrable successes. Two

primary examples of this are models to divide patients into groups

with differing event-free survival [4,5,6] and to identify groups of

patients with different expected response to therapy [7,8,9].

However, challenges remain in this field [10,11,12]. The validity

of some models has been questioned due to their failure to clinical

validate using independent samples. A recent example is a model for

breast cancer prognosis built with two genes by that Reid et al. [11]

that could not be validated by other investigators [13]. From a

statistical point of view, as reviewed by Simon [14], this type of

prediction is a complicated problem and many factors, such as

gene selection rules, sample resubstitution approaches, sample size

concerns, and classification methods are involved. Fortunately,

some of these factors have been extensively investigated and are

incorporated as ‘‘best practices’’ in the research community.

Ambroise, et al. demonstrated that the test/validation set must play

no role in the gene selection process for unbiased prediction results

to be obtained [15]. Ransohoff, et al. [16] emphasized that over-

fitting should be explicitly ruled out by reproducibility assessment

early on, otherwise further research (that is, additional steps in the

validation process) would be unwarranted and wasteful.

The importance of applicability domain (AD) [17] (i.e., the scope

and limitations of a model) has long been discussed and emphasized

in other research fields such as quantitative structure activity

(property) relationship (QSAR) analysis [17,18,19,20]. AD in QSAR

emphasizes that no matter how robust, significant and validated a

model may be, it cannot be expected to reliably predict the modeled

property for the entire universe of chemicals. Therefore, before a

model is put into use for screening chemicals, its domain of

application must be defined and predictions for only those chemicals

that fall in this domain may be considered reliable [17].

However, the AD effect in genomic research has not been fully

understood. The carcinoembryonic antigen (CEA) experience

[21,22] from 40 years ago, where non-reproducible results were

obtained largely due to the variation among the test sets in terms

of the ‘spectrum’ of disease, initially implied the vital importance

of selecting appropriate validation samples in order to reliably

assess the reproducibility of statistical modeling results. Neverthe-

less, this issue has not yet been adequately addressed by the

microarray-based ‘class prediction’ research community until now.

Two sources of divergence between training and validation

samples exist: clinical differences such as diversity in cancer

subtype, drug response, or prognosis, and genomic differences, or

differences between gene expression patterns observed in the

training and validation samples. We have undertaken a compre-

hensive investigation of the role of genomic differences in

predictive model validation to determine if a genomic AD exists

for microarray based ‘class-prediction’ modeling. We hypothesize

that validation samples that more closely resemble the genomic

space defined by the training set might be more likely to have

accurate predictions than validation samples that significantly

diverge from the genomic space defined by the training set.
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A statistical measure called domain extrapolation [23] has been

introduced to assess the genomic AD issue. Domain extrapolation

is a measurement embedded in the model to place the patients in

different groups according to their extrapolation degree. The role

of genomic AD in microarray-based ‘class-prediction’ will be

tested using three large-scale cancer datasets with six clinical

endpoints [24] contributed to the MAQC Consortium and three

prognostic datasets [4,25,26]. To mimic the real world clinical

situation, each dataset was divided into two sets, i.e., a training and

validation set. We developed the domain extrapolation in the

training set and followed with the assessment of its correlation with

the model’s predictive ability in the validation set. To the best of

our knowledge this is the first attempt to systematically evaluate

the issue of genomic AD in microarray-based genomic research.

Materials and Methods

Datasets
Nine datasets, including three large-scale cancer datasets -

breast cancer (BR) [27], multiple myeloma (MM) [28] and

neuroblastoma (NB) [29] with six clinical endpoints contributed to

the MAQC Consortium [24] and three datasets used in previously

published prognostic modeling research [4,25,26], were selected

and utilized in this study. A concise summary of the datasets is

given in Table 1. More information about these datasets can be

found from the main paper of MAQC phase II [24] and the

original papers [4,25,26].

Briefly, each of the three large-scale cancer datasets has two

endpoints, including the treatment response (BR-pCR and BR-

erpos), the event-free survival (NB-EFS and MM-EFS) and the

overall survival (NB-OS, MM-OS) which are related to cancer

prognosis. The other three datasets are related to the survival of

non-hodgkin lymphoma (NHL), breast cancer (BRC) and

hepatocellular carcinoma (HCC). To simulate the real-world

clinical application of genomic studies, two independent popula-

tions of patients for each dataset created by the MAQC

Consortium or by the original researchers are retained in this

study as the training and validation sets. The sample size for the

training set varies between 33 and 340 and the ratio of positive

events to negative events is from 0.18 to 1.60 while the validation

sets range in size from 19 to 214.

Moreover, two positive (NB-PC, MM-PC) and negative (NB-

NC, MM-NC) control endpoints available from the MAQC

project were also included in this study, which are necessary to

assess the performance of the clinically relevant endpoints against

the theoretical maximum and minimum performance provided by

the controls. The NB-PC and MM-PC were derived from the NB

and MM datasets, respectively, with the endpoints denoted by the

gender while the endpoints for the NB-NC and MM-NC were

generated randomly.

Applicability domain (AD)
AD [30] of a microarray-based predictive model can be stated

as the genomic or biological space, knowledge or information

defined by the training set with which the predictive model has

been developed, and thus for which it is applicable to new patients.

Ideally, the model should only be used to make predictions within

that domain by interpolation not outside that domain by

extrapolation. In this study, we focus exclusively on genomic

AD, or quantifying the degree of extrapolation or difference

between the genomic space defined by the training set and each

validation sample. The genomic AD of a model was defined

based on the Euclidean distance [30] using the method shown as

follows.

Suppose there is a training set (X) that contains n1 samples and p

genes. We can define the mean value (mj) and standard deviation

(sj) for each gene j (j = 1, 2,...,p) across the entire dataset as

mj~
1

n1

Xn1

i

xij and sj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1{1

Xn1

i

xij{mj

� �2

s
, where xij is the

expression value of gene j for individual xi (i = 1,2,...,n1). For any

test set (Y) with n2 samples and p genes, let yij denote the expression

value of the jth gene in ith (i = 1, 2,..., n2) sample. Then, the

distance (dij ) beyond the training domain for the unknown sample

yij for component j can be calculated by

Table 1. A concise summary of the datasets.

Data Set
code Number of channels (type) Endpoint Description

Endpoint
Code Sample Size Number of events (%)

Training Validation Training Validation

BR 1 (Affymetrix U133A) Treatment Response BR-pCR 130 100 0.34 (33/97) 0.18 (15/85)

BR-erpos 130 100 1.60 (80/50) 1.56 (61/39)

MM 1 (Affymetrix U133Plus2.0) Overall Survival Milestone Outcome MM-OS 340 214 0.18 (51/289) 0.14 (27/187)

Event-free Survival Milestone Outcome MM-EFS 340 214 0.33 (84/256) 0.19 (34/180)

NB 2 (Agilent NB Customized Array) Overall Survival Milestone Outcome NB-OS 246 177 0.32 (59/187) 0.28 (39/138)

Event-free Survival Milestone Outcome NB-EFS 246 193 0.65 (97/149) 0.75 (83/110)

NHL 2 (Lymphochip) Overall Survival Milestone Outcome NHL 160 80 1.22 (88/72) 1.67 (50/30)

BRC 2 (Agilent Hu25K microarrays) 5-year metastasis-free survival BRC 78 19 0.77 (34/44) 1.71 (12/7)

HCC 1 (Affymetrix) 1-year recurrence-free survival HCC 33 27 0.57 (12/21) 0.42 (8/19)

Control 2 (Agilent NB Customized Array) Positive control NB-PC 246 231 1.44 (145/101) 1.36 (133/98)

1 (Affymetrix U133Plus2.0) Positive control MM-PC 340 214 1.33 (194/146) 1.89 (140/74)

2 (Agilent NB Customized Array) Negative control NB-NC 246 253 1.44 (145/101) 1.30 (143/110)

1 (Affymetrix U133Plus2.0) Negative control MM-NC 340 214 1.43 (200/140) 1.33 (122/92)

doi:10.1371/journal.pone.0011055.t001

Genomics-Applicability Domain
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Thus, the total percentage of extrapolation di for ith (i = 1, 2, ..., n2)

sample of the test set could be obtained as follows:

di~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

j~1

dij

4 � sj

� �2
vuut |100 ð2Þ

For each individual yi, di is greater than or equal to 0, with 0

indicating samples lying in domain. The larger di the more distantly

away a sample removed an individual is from the training domain.

For the sake of simplicity, the extrapolation degree di has been

grouped into four categories: in domain (di = 0), less than 10% out of

domain (di [ 0–10), 10–20% out of domain (di [ 10–20), and more

than 20% out of domain (di.20).

Statistical analysis
As illustrated in the workflow shown in Figure 1, the analysis

protocol starts on the left side of the graph by developing the best

classifier based on the training set and ends on the right side by

making a prediction about each individual in the validation set,

where the predicted labels and corresponding extrapolation

degrees are recorded in matrices L and D, respectively. To ensure

statistical validity, the procedure was repeated 500 times, resulting

in 500 different classifiers from the training sets and 500

predictions for each individual in the validation sets. Detailed

information about model construction procedures is provided in

Figure S1. In this study, nearest-centroid (NC) [4], k-nearest

neighbor (kNN) [31] and support vector machines (SVM) [32] were

used as classification algorithms.

Based on the 500-run results, we further divided the predictions

in matrix L into subsets according to the category of extrapolation

degrees (i.e., ‘‘in domain’’, ‘‘,10% out of domain’’, ‘‘10–20% out

of domain’’, and ‘‘.20% out of domain’’) deposited in D. The

prediction performance (as measured by Matthews correlation

coefficient (MCC)[33]) for samples in each subset provides an

illustration of model performance versus the stepwise increase of

extrapolation degree. The Matthews Correlation Coefficient

(MCC) is defined as:

MCC~
TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ
p ð3Þ

Where TP is the number of true positives, TN is the number of

true negatives, FP is the number of false positives and FN is the

number of false negatives. MCC varies between 21 and +1 with 0

corresponding to random prediction.

Results

The prediction MCC as a function of extrapolation degree

category for the nine datasets using kNN is shown in Figure 2,
using NC in Figure S2, and using SVM in Figure S3. In each of

the graphs, the red section of the pie-charts representing the data

points show the proportion of the total testing set contained in that

category of extrapolation degree. Generally, no significant impact

on AD is observed, as evidenced by the slight increase in MCC for

samples lying out of domain compared to those in domain for most

datasets except BR-erpos. In BR-erpos validation set, fewer than

2% of the samples were in each of the 10–20% extrapolation and

.20% extrapolation. We re-analyzed the results by distributing

samples into the training and validation sets so that each of these

categories has around 10% of the samples in the validation set.

This modification resulted in the disappearance of any significant

Figure 1. Detailed workflow for the statistical analysis.
doi:10.1371/journal.pone.0011055.g001

Genomics-Applicability Domain
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effect of extrapolation degree on MCC for each of the

classification algorithms (Figure 3).

In order to accurately assess the upper and lower bounds of

performance and provide a point of reference for the prognostic

datasets, two positive control datasets (i.e., NB-PC and MM-PC)

and two negative control datasets (i.e., NB-NC and MM-NC) were

also investigated. Figure 4 demonstrates the results for these

datasets for each of the three different classification methods used.

The decrease in model performance is nearly negligible for MM-

PC, while model performance drastically deteriorated for NB-PC

when samples lay more than 20% degree out of domain.

Considering that more than 95% of the samples lie in the domain

for NB-PC, the same strategy utilized above was also used to

ensure a larger percentage of samples in each interval, which

yielded significantly smoothed curves shown in Figure 3.

Additionally, negligible variation of model performance is

observed for negative control datasets, where NB-NC and MM-

NC (Figure 4) supports these conclusions.

Discussion

Although differences in genome-wide gene expression patterns has

been suggested previously as a possible reason for some failed

applications of microarray based ‘class-prediction’ models to validate

clinical models [21,22], this is the first comprehensive investigation to

identify whether genomic AD is truly a concern for microarray-based

predictive modeling. Our results strongly suggest that genomic AD

may not exist for clinical microarray-based genomic research. In

other words, the expectation of improving model validity based on

genomic AD is not practical in microarray-based genomic research.

Figure 2. Prediction MCC as a function of extrapolation degree for nine datasets using kNN classifier. The proportion of red in each pie
chart represents the proportion of total validation set samples contained in that extrapolation degree category. Here ‘0’, ‘10’, ‘20’ and ‘.20’ in the X-
axis mean ‘In domain’, ‘0–10% out of domain’, ‘10–20% out of domain’ and ‘more than 20% out of domain’, respectively.
doi:10.1371/journal.pone.0011055.g002

Genomics-Applicability Domain
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The exact reasons for the negligible impact of genomic AD on

model performance is beyond the scope of this study. However,

two aspects may provide some explanation to this phenomenon:

first, the genomic AD created by the training set may contain

much more variability than is represented by the signature genes

selected in the predictive models; second, the domain definition

method utilized in this study might not be sensitive enough to

capture the difference between samples inside and outside the

domain. In clinical applications, model AD should be defined in

not only a statistical or genomic but also a biological way,

representing the training domain defined by parameters selected in

statistical models and a priori clinical information. In other words,

the insignificant impact of a genomic AD for complex endpoints

does not negate the importance of considering clinical parameters

when predicting independent validation samples. A simple but

important example is that the information of cancer subtype must

be considered before model development and use to ensure the

reliability of any prediction, since the prognosis may differ

significantly between subtypes [34].

As an interesting side note to this study, the three well known

classification methods, i.e. kNN, NC and SVM, used in this study

(with corresponding results provided in Figure 2 and Figures S2
and S3, respectively) gave very similar prediction performance for

samples with different extrapolation degrees. This offers further

evidence for the lack of significant differences among a large

number of classification methods reported for microarray

applications in terms of the predictive performance[35], a

conclusion also proposed by the newly-finished community-wide

study, MAQC-II [24].

In conclusion, our study found that the applicability domain

may not exist for microarray based clinical genomic research, and

that predictive model performance did not depend on a

measurement of distance between a validation sample and the

training set used to create the model. Because of this, a strategy of

Figure 3. Adjusted prediction MCC versus extrapolation degree for BR-erpos and NB-PC. Three classification algorithms including NC,
kNN and SVM are used, and the percentage of samples in each interval out of domain is adjusted to more than 10%. The proportion of red in each pie
chart represents the proportion of total validation set samples contained in that extrapolation degree category. Here ‘0’, ‘10’, ‘20’ and ‘.20’ in the X-
axis mean ‘In domain’, ‘0–10% out of domain’, ‘10–20% out of domain’ and ‘more than 20% out of domain’, respectively.
doi:10.1371/journal.pone.0011055.g003

Genomics-Applicability Domain
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considering applicability domain to increase model validation

performance is unlikely to be successful. However, the negative

conclusion in this study does not deny the importance of

considering a priori clinical information associated with prognosis

such as cancer subtype and estrogen receptor status for breast

cancer patients before making an individual prediction, the

importance of which has already been proposed by other studies.

Supporting Information

Figure S1 Detailed model construction procedures. The con-

struction of the best classifier is shown as follows (see the

superscripts in this figure): 1. Stratified random sample splitting -

We use the 70/30 splitting, where the 70% samples are for

classifier construction, and the resulting classifier is then used to

predict the 30% samples to obtain the prediction performance of

the classifier. To ensure statistical validity, we repeat this

procedure 500 times, resulting in 500 different classifiers. 2.

Filtering - This step is to generate an initial pool of probesets for

further analysis. Specifically, the original pool of probesets is firstly

sorted by the absolute signal-to-noise (SN) ratio, and then the 200

top ranked probesets are retained for further analysis. 3. Feature

selection - We apply a sequential selection method, with the best

performed probeset being sequentially added into the model to

develop a classifier, which is then evaluated on the 30% samples.

The process is repeated by incrementally adding one probeset at a

time to generate more classifiers. 4. Classifier selection - For

classifier i (i corresponds to the number of probesets selected in the

classifier), if the performance MCC for following five consecutive

classifiers is smaller than or equal to that of classifier i, the process

is stopped and classifier i is selected as the best classifier.

Otherwise, Steps 3 and 4 are repeated. 5. Prediction - Base on

the best classifier, the predicted labels and corresponding

extrapolation degrees for samples in the validation set are

calculated and recorded. Steps 1 to 5 is repeated 500 times,

generating two matrices L(5006p) and D(5006p), which deposit

the predicted labels and corresponding extrapolation degrees,

respectively. Here, p indicates the number of samples in the

validation set.

Found at: doi:10.1371/journal.pone.0011055.s001 (0.29 MB TIF)

Figure S2 Prediction MCC as a function of extrapolation degree

for nine datasets using NC classifier. The proportion of red in each

pie chart represents the proportion of total validation set samples

contained in that extrapolation degree category. Here ‘0’, ‘10’, ‘20’

and ‘.20’ in the X-axis mean ‘In domain’, ‘0–10% out of

domain’, ‘10–20% out of domain’ and ‘more than 20% out of

domain’, respectively.

Figure 4. Prediction MCC versus extrapolation degree for positive and negative control datasets. Three classification algorithms
including NC, kNN and SVM are used. The proportion of red in each pie chart represents the proportion of total validation set samples contained in
that extrapolation degree category. Here ‘0’, ‘10’, ‘20’ and ‘.20’ in the X-axis mean ‘In domain’, ‘0–10% out of domain’, ‘10–20% out of domain’ and
‘more than 20% out of domain’, respectively.
doi:10.1371/journal.pone.0011055.g004

Genomics-Applicability Domain
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Found at: doi:10.1371/journal.pone.0011055.s002 (0.52 MB TIF)

Figure S3 Prediction MCC as a function of extrapolation degree

for nine datasets using SVM classifier. The proportion of red in

each pie chart represents the proportion of total validation set

samples contained in that extrapolation degree category. Here ‘0’,

‘10’, ‘20’ and ‘.20’ in the X-axis mean ‘In domain’, ‘0–10% out

of domain’, ‘10–20% out of domain’ and ‘more than 20%% out of

domain’, respectively.

Found at: doi:10.1371/journal.pone.0011055.s003 (0.50 MB TIF)
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