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Abstract

We have recently described a novel type of glial cell that is scattered across the inner layers of the avian retina [1]. These
cells are stimulated by insulin-like growth factor 1 (IGF1) to proliferate, migrate distally into the retina, and up-regulate the
nestin-related intermediate filament transitin. These changes in glial activity correspond with increased susceptibility of
neurons to excitotoxic damage. This novel cell-type has been termed the Non-astrocytic Inner Retinal Glia-like (NIRG) cells.
The purpose of the study was to investigate whether the retinas of non-avian species contain cells that resemble NIRG cells.
We assayed for NIRG cells by probing for the expression of Sox2, Sox9, Nkx2.2, vimentin and nestin. NIRG cells were
distinguished from astrocytes by a lack of expression for Glial Fibrilliary Acidic Protein (GFAP). We examined the retinas of
adult mice, guinea pigs, dogs and monkeys (Macaca fasicularis). In the mouse retina and optic nerve head, we identified
numerous astrocytes that expressed GFAP, S100b, Sox2 and Sox9; however, we found no evidence for NIRG-like cells that
were positive for Nkx2.2, nestin, and negative for GFAP. In the guinea pig retina, we did not find astrocytes or NIRG cells in
the retina, whereas we identified astrocytes in the optic nerve. In the eyes of dogs and monkeys, we found astrocytes and
NIRG-like cells scattered across inner layers of the retina and within the optic nerve. We conclude that NIRG-like cells are
present in the retinas of canines and non-human primates, whereas the retinas of mice and guinea pigs do not contain NIRG
cells.
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Introduction

The retinas of vertebrates contain many different types of glial

cells. The primary activities of these glia include retinal

homeostasis and support of neuronal function. Across all

vertebrate species, retinal glia include Müller glia, derived from

retinal stem cells, and microglia, derived from hematopoietic stem

cells. With some variations between species, retinal glia can

include astrocytes and oligodendrocytes. For example, the

avascular retinas of chickens, guinea pigs and rabbits contain

oligodendrocytes that myelinate the axons of ganglion cells in the

nerve fiber layer (NFL) [2,3,4]. Although vascular retinas contain

significant numbers of astrocytes that are closely associated with

the blood vessels [5,6,7], avascular retinas contain few, if any,

astrocytes [1,8].

In the chicken eye, we have recently identified a novel type of

glial cell that is scattered across inner retinal layer [1]. These cells

were termed Non-astrocytic Inner Retinal Glial (NIRG) cells. The

NIRG cells express vimentin, Sox2 and Sox9, similar to Müller

glia and retinal progenitors, but these cells do not express other

glial markers such as TopAP, glutamine synthetase or high levels of

glial fibrilliary acidic protein (GFAP). We found that IGF1

stimulated the NIRG cells to proliferate, migrate distally into the

retina, and up-regulate transitin, an intermediate filament

orthologous to mammalian nestin. Further, IGF1 stimulated

microglia to acquire a reactive morphology and up-regulate

CD45 and lysosomal membrane glycoprotein. The IGF1 receptor

was expressed only by presumptive NIRG cells and microglia that

were scattered across inner retinal layers. With glial cells

stimulated by IGF1, there were elevated levels of cell death and

widespread focal retinal detachments in response to an excitotoxic

insult. The increased cell death was prominent within areas of

retinal detachment which were coincident with a stark loss of

Müller glia and an accumulation of NIRG cells. Taken together,

these findings indicate that NIRG cells are a novel type of retinal

cell that is sensitive to IGF1 and whose activity impacts the

survival of retinal neurons and Müller glia. At the time of

hatching, NIRG cells are scattered across all regions of the retina,

with greater abundance in central regions, and this distribution

remains unchanged during the first 4 weeks of postnatal

development [1].

There have been no studies that examine whether NIRG cells

are present in the retinas of non-avian vertebrates. Accordingly, in

this study we test the hypothesis that NIRG-like cells are present in

the retinas of mice, guinea pigs, dogs and non-human primates. In

addition, we probe for NIRG-like cells in the optic nerve and

nerve head of chickens, mice, guinea pigs, dogs and macaque

monkeys.

Results

For all results described herein, observations were made on

tissues obtained from mature animals with normal, healthy retinas.

Therefore, descriptions of the different types of glial cells represent
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the phenotypes of stable, mature, non-reactive cells. In the retinas

of species examined in these studies, astrocytes were identified

based on expression of GFAP and other markers known to be

expressed by mature retinal glia including Sox2, Sox9 and S100b
[1,9,10,11,12,13,14]. We probed for NIRG cells immunolabeling

for Sox2, Sox9, Nkx2.2, vimentin and transitin/nestin, and an

absence of GFAP [1]. Although the homeodomain transcription

factors Sox2 and Sox9, and the intermediate filament transitin/

nestin are best-known to be expressed by neural and glial

progenitors, many recent studies have indicated that the

expression of these genes persists in mature, post-mitotic,

functional glial cells in the retina of birds and mammals

[1,9,10,11,12,13,14]. Nkx2.2, a homeodomain transcription

factor, that is best-known to be expressed by oligodendrocyte

precursors in the developing spinal cord [15,16,17], and by

oligodendrocyte precursors in the developing chick visual system

[18].

Glial cells in the optic nerve of chickens
Our previous work has demonstrated that NIRG cells are

scattered across central and peripheral regions of the retina; these

cells are predominantly found in the distal third of the IPL and in

the GCL [1]. We have observed that NIRG cells migrate into the

retina from the optic nerve (Zelinka, Scott and Fischer,

unpublished), similar to the astrocytes and oligodendrocytes that

are found in the avian retina [18,19]. However, the distribution of

NIRG cells in the optic nerve of post-hatch chickens has not been

reported. Accordingly, we assayed for NIRG cells and oligoden-

drocytes in the optic nerve and optic nerve head (ONH) of the

post-hatch chicken.

We found numerous NIRG cells within the chick optic nerve

and nerve head (Fig. 1). The NIRG cells were identified by co-

expression of Nkx2.2 and Sox2, and an absence of GFAP and

absence of transferrin binding protein (TFBP). Oligodendrocytes

in the avian central nervous system can be identified by

immunolabeling for TFBP [20,21,22]. Although a few of the

TFBP+ oligodendrocytes within the GCL were Nkx2.2-positive

(Figs. 1a-d), none (n = 312) of the TFBP+ oligodendrocytes in the

optic nerve were immunoreactive for Nkx2.2 (Figs. 1a-g).

Consistent with the pattern of expression in the retina, a small

minority (8.261.9%) of the TFBP+ cells in the optic nerve were

immunoreactive for Sox2; the majority of the Sox2+ cells in the

optic nerve were negative for (or expressed very low levels of)

TFBP (Figs. 1e-g). Immunoreactivity for GFAP was elevated in

Müller glia that were located within 200 mm of the ONH (Figs. 1e-

g). Within the optic nerve and nerve head numerous cells were

intensely immunoreactive for GFAP, and most of these cells

expressed Sox2 (Figs. 1h-j) and Pax2 (not shown). However, there

were numerous Sox2+ cells in the optic nerve that were negative

for Nkx2.2 (Figs. 1h-j). The Sox2+/GFAP+/Nkx2.22 cells were

likely to be optic nerve astrocytes. In addition, we identified

numerous cells in the optic nerve and nerve head that were

positive for Sox2/Nkx2.2 and negative for GFAP (Figs. 1h-j); these

cells were likely to be NIRG cells. See table 1 for a summary of

markers expressed by glial cells in the chick eye, and table 2 for a

summary of the types of glial cells in the retina, optic nerve and

nerve head.

Glial cell in the mouse eye
The NIRG cells in the chick retina express the transcription

factors Sox2, Sox9 and Nkx2.2. Thus, we began by assaying for

Sox2, Sox9 and Nkx2.2 in the adult mouse retina to test whether

NIRG cells are present in this tissue. Although we failed to detect

Nkx2.2 in the mouse retina, we found widespread expression of

Sox2 and Sox9; these factors were present in the nuclei of Müller

glia (Figs. 2a and 2e), consistent with previous reports [12,13]. In

addition, Sox2 and Sox9 were present in the nuclei of S100b/

GFAP-positive astrocytes in inner retinal layers (Figs. 2a-g). All

(n = 187) of the Sox9-positive nuclei within the ganglion cell layer

and NFL were co-labeled for GFAP. Similarly, all (n = 127) of the

Sox2-positive nuclei within the GCL and NFL were labeled for

S100b. In addition, we observed Sox2-immunoreactivity in the

nuclei of cholinergic amacrine cells in the vitread INL and

displaced to the GCL; these cells were co-labeled for Islet1 (data

not shown). Co-labeling for Islet1 and Sox2 was used to distinguish

displaced cholinergic amacrine cells in the GCL; Islet1 is expressed

by cholinergic retinal amacrine cells in all birds and mammals

[23,24,25]. Within the optic nerve and nerve head of the mouse

eye, numerous astrocytes were labeled for Sox9 and GFAP or

Sox2 and S100b (Figs. 2h and 2i). We did not detect Nkx2.2-

positive cells in the ONH or optic nerve, within 1 mm of the

retina. Thus, NIRG-like cells may not be present in the eyes of

mice. See table 1 for a summary of markers expressed by glial cells

in the mouse eye, and table 2 for a summary of the types of glial

cells in the retina, optic nerve and nerve head.

Glial cells in the guinea pig eye
To assay for NIRG cells in the guinea pig retina we labeled

tissues with antibodies to Sox2, Sox9 and Islet1; presumptive

NIRG cells in the IPL or GCL should be positive for Sox2 and

Sox9, but not Islet1. Immunoreactivity for Islet1 was detected in

the nuclei of presumptive bipolar cells, ganglion cells and sparsely

distributed cholinergic amacrine cells (Figs. 3a and 3b). Immuno-

reactivity for Sox9 was found only in the nuclei of Sox2+ Müller

glia (Figs. 3c-e). In addition to the Mülller glia, antibodies to Sox2

labeled the nuclei of orthotopic and displaced cholinergic

amacrine cells that were positive for Islet1 (Figs. 3a-e). To further

probe for glial cells we labeled retinal sections for S100b. We

found that all of the fusiform Sox2-positive nuclei in the middle of

the INL were those of S100b-expressing Müller glia (Figs. 3g-h).

There were no cells that were labeled for Sox2 and Sox9 in the

IPL, GCL or NFL, suggesting that NIRG cells are not present in

the guinea pig retina. GFAP-immunofluorescence was not

detected in the guinea pig retina (data not shown), suggesting

the absence of astrocytes within the neural retina. The absence of

GFAP-expressing cells in the guinea pig retina is consistent with

previous reports [14,26,27].

We next probed for glial cells in the optic nerve and nerve head

of the guinea pig eye. We found numerous cells that expressed

Sox2 and Sox9 within the ONH; these cells did not express GFAP

or Nkx2.2 (Figs. 4a-d). Interestingly, cells that expressed GFAP

and/or Nkx2.2 were observed within the optic nerve; these cells

were located approximately 300 mm posterior to the vitread

surface of the ONH (Figs. 4a-d). In the optic nerve, all (n = 164) of

the Nkx2.2-positive cells were immunoreactive for Sox9. The

identity of the GFAP/Sox9/Nkx2.2-expressing cells in the optic

nerve of the guinea pig remains uncertain, but these cells are not

orthologous to the avian NIRG cells given the expression of

GFAP. Within the nerve head and the optic nerve, all of the Sox9-

positive cells were immunoreactive for S100b, consistent with the

hypothesis that these were glial cells. See table 1 for a summary of

markers expressed by glial cells in the guinea pig eye, and table 2

for a summary of the types of glial cells in the retina, optic nerve

and nerve head.

Glial cells in the dog eye
The expression patterns of Islet1, Sox2 and Sox9 in dog retina and

optic nerve were similar to patterns seen in chick, mouse and guinea

Glial Cells in the Retina
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pig eyes. For example, immunoreactivity for Islet1 was observed in

the nuclei of bipolar cells in the distal INL and in presumptive

cholinergic amacrine cells in the proximal INL and GCL that were

positive for Sox2 (Figs. 5a-d). We observed immunoreactivity for

Sox2 and Sox9 in the nuclei of Müller glia and in the nuclei of cells

that were scattered across the GCL and NFL (Figs. 5a-d).

Approximately half of the Sox9+ cells in the GCL and NFL were

immunoreactive for GFAP (Figs. 5e-h), indicating that these cells

were astrocytes. Levels of GFAP-immunoreactivity were not

detectable in the Müller glia in normal, healthy dog retinas. More

than half (52.567.7%; n = 225 cells) of the Sox9-positive cells in the

GCL were negative for GFAP. The identity of the Sox9+/GFAP2

cells in the GCL and NFL of the dog retina remains uncertain.

There was no labeling for Nkx2.2 in the dog retina (not shown). The

Sox2+/Sox9+ cells in the dog retina were negative for PCNA (data

not shown), indicating that these cells were post-mitotic.

Figure 1. Glial cells in the chick optic nerve are immunoreactive for Nkx2.2, Sox2, Sox9, GFAP and TFBP. Longitudinal sections through
the optic nerve and nerve head were labeled with antibodies to Nkx2.2 (magenta in a, d, f and g; blue in e; green in h and j), Sox2 (red), TFBP (green
in c–e and g) and GFAP (grayscale; i and j). Images were obtained by using wide-field epifluoresence microscopy (a–g) or confocal microscopy (h–j).
The region indicated by the yellow box in panel d is enlarged 4-fold in panels e–g, and the region in panel j is enlarged 2-fold in the inset. Arrow-
heads indicate the nuclei of GFAP/Sox2-positive Müller glia. Small double-arrows indicate TFBP-positive oligodendrocytes in the retina. Arrows
indicate Sox2/Nkx2.2-positive nuclei of NIRG cells in the optic nerve and retina. Carets indicate Sox2-positive nuclei of peripapillary glia. Hollow arrow-
heads indicate Sox2/Nkx2.2-negative, TFBP-positive oligodendrocytes in the optic nerve. Small double-arrows indicate TFBP-positive
oligodendrocytes in the retina. The scale bar (50 mm) in panel d applies to a–d, and the bar in j applies to h–j. Abbreviations: ONL – outer
nuclear layer, INL – inner nuclear layer, IPL – inner plexiform layer.
doi:10.1371/journal.pone.0010774.g001

Glial Cells in the Retina
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In the optic nerve and nerve head of dog eyes, we found

numerous cells that were immunoreactive for Sox2 and Sox9.

Nearly all (95.264.1%) of the Sox9-positive cells were immuno-

reactive for Sox2, and all of the Sox2-positive cells were

immunoreactive for Sox9 (Fig. 6). Nearly half (44.368.5%) of

the Sox9-positive cells were immunoreactive for Nkx2.2 (Figs. 6a-

f). Many of Sox2/Nkx2.2-positive cells in the optic nerve and

nerve head were negative for GFAP (not shown), suggesting that

these cells may have been NIRG cells. The peripapillary glia were

positive for Sox2 and Sox9, but negative for Nkx2.2 (Figs. 6c-f).

See table 1 for a summary of markers expressed by glial cells in the

dog eye, and table 2 for a summary of the types of glial cells in the

retina, optic nerve and nerve head.

Glial cells in the monkey eye
Patterns of expression for Islet1, Sox2 and Sox9 in monkey

retina were similar to those observed in the eyes of other species

that we examined. Islet1 was detected in the nuclei of bipolar cells,

ganglion cells and cholinergic amacrine cells (Figs. 7a and 7d).

Immunolabeling for Islet1, Sox2 and Sox9 revealed many cells

scattered across the GCL and NFL that were immunoreactive for

both Sox2 and Sox9, but negative for Islet1 (Figs. 7a-d). All

(n = 271) of the Sox9-positive cells in the GCL or NFL were

immunoreactive for Sox2 (Figs. 7a-d). The Sox2+/Sox92 cells in

the GCL were Islet1+, suggesting that these cells were displaced

cholinergic amacrine cells (Figs. 7a-d). We tested whether any of

the Sox9-positive cells in the GCL were some type of ganglion cell

by combining labeling for Sox9 and Brn3a. Brn3a is known to be

expressed by ,98% of ganglion cells [28]. There was no overlap

of labeling for Sox9 and Brn3a (Fig. 7a), suggesting that none of

the Sox9-positive cells in the GCL were ganglion cells.

More than half (58.369.4%; n = 164 cells) of the Sox9-positive

cells in the GCL were positive for GFAP (Fig. 7f-l), indicating that

Sox9 is expressed by mature astrocytes. However, this finding also

suggests that the Sox9+/GFAP- cells in the GCL and NFL are

some type of non-astrocytic glial cell. To assess this possibility we

probed for additional glial markers. Since the astrocytes in the

mouse retina (Fig. 2) and dog retina (not shown) express S100b, we

examined whether the Sox2+/Sox9+ cells in the GCL and NFL of

the monkey retina were positive for S100b. Surprisingly, we found

that the patterns of S100b expression in the monkey retina were

Table 1. Summary of the glial cell types in the eyes of
different vertebrate species.

Cell type Chicken Mouse
Guinea
Pig Dog Monkey

Müller glia numerous numerous numerous numerous numerous

Retinal astrocytes rare many none many many

Retinal
oligodendrocytes

some none some none none

Retinal NIRG cells many none none many many

NIRG-like cells in
the ON

numerous none none many many

GFAP+ glia in the
ONH

numerous numerous none numerous numerous

ONH – Optic Nerve Head, ON – optic nerve.
doi:10.1371/journal.pone.0010774.t001

Table 2. Summary of immunolabeling of glial cells in the retina and optic nerve of different vertebrate species.

RETINA Chicken Mouse Guinea Pig Dog Monkey

GFAP Astrocytes Astrocytes No labeling Astrocytes Astrocytes

S100b No labeling Astrocytes Müller glia No labeling Müller glia ,half

vimentin Müller glia & NIRG cells Müller glia end-feet &
astrocytes

Müller glia end-feet Müller glia end-feet Müller glia end-feet
astrocytes

Nestin/transitin NIRG cells No labeling Not done Not done NIRG cells

Nkx2.2 NIRG cells & Oligodendrocytes No labeling No labeling No labeling No labeling

Sox2 Müller glia Cholinergic
amacrine cells & NIRG cells

Müller glia, Cholinergic
amacrine cells & astrocytes

Müller glia Cholinergic
amacrine cells

Müller glia, Astrocytes,
Cholinergic amacrine
cells & NIRG cells

Müller glia, Astrocytes,
Cholinergic amacrine
cells & NIRG cells

Sox9 Müller glia NIRG cells
Oligodendrocytes

Müller glia & Astrocytes Müller glia Müller glia, Astrocytes
& NIRG cells

Müller glia, Astrocytes
& NIRG cells

OPTIC NERVE Chicken Mouse Guinea Pig Dog Monkey

GFAP Astrocytes Peripapillary glia &
Astrocytes

Astrocytes Astrocytes Astrocytes

S100b No labeling Peripapillary glia &
Astrocytes

Peripapillary glia & optic
nerve glia

No labeling Peripapillary glia & optic
nerve glia

vimentin Astrocytes & Peripapillary glia, Not done Not done Astrocytes Astrocytes

Nestin/transitin NIRG cells No labeling Not done Not done Glia in the ONH

Nkx2.2 Glia in the ONH & optic
nerve

No labeling Optic nerve glia Optic nerve glia &
ONH glia

Optic nerve glia

Sox2 Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Sox9 Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

Peripapillary glia & optic
nerve glia

ONH – Optic Nerve Head.
doi:10.1371/journal.pone.0010774.t002
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not similar to those seen in the retinas of mice and dogs, but were

similar to those seen in the retinas of guinea pigs. Nearly half

(46.168.1%; n = 201 cells) of the Sox2-positive Müller glia were

co-labeled for S100b (Figs. 8a-g). Interestingly, not all of the

Müller glia were labeled for S100b, and S100b was not detected

other types of glial cells in the primate retina.

Since the NIRG cells in the chick retina normally express

transitin, the avian ortholog of mammalian nestin, we examined

whether nestin was expressed in primate retina. Scattered across

the NFL in central and peripheral regions of the retina, we

detected many cells that were immunoreactive for Sox9 and nestin

(Figs. 8g-i). The processes of nestin-positive cells tended to project

parallel to the vitread surface of the retina (Figs. 8g and 8h). In

addition, we observed numerous cells within the ONH that were

immunoreactive for both nestin and Sox9 (Fig. 8f). A recent report

has demonstrated that Pax2 is expressed by glial cells in the adult

primate retina; nearly half of the Pax2-positive cells in the GCL or

NFL are GFAP-expressing astrocytes [14]. We found that more

than one-third (39.168.6%) of the Pax2+/Sox2+ cells in the GCL

or NFL expressed nestin (Figs. 8l-s). The Sox2+/Pax22 cells in the

GCL were putative displaced cholinergic amacrine cells (Figs. 8l-s).

The Sox2+/Sox9+ cells in the primate retina were negative for

PCNA (data not shown), indicating that these cells were post-

mitotic.

Since the NIRG cells in the chick retina express Nkx2.2, we

probed for Nkx2.2 in the glial cells of the monkey retina. We failed

to detect Nkx2.2+ cells within the monkey retina (not shown).

However, similar to the guinea pig eye, we detected numerous

Figure 2. Glial cells in the mouse retina and optic nerve are immunoreactive for Sox2, Sox9, GFAP, and S100b. Sections through the
retina and optic nerve head were labeled with antibodies to Sox9 (magenta; a–d and h), GFAP (green; a–d and h), Sox2 (magenta; e–g and i), and
S100b (green; e–g and i). Hollow arrow-heads indicate the nuclei of Müller glia. Arrows indicate the nuclei of astrocytes. Small double-arrow-heads
indicate the nuclei of cholinergic amacrine cells that are labeled for Sox2. Asterisks indicate blood vessels. The scale bar (50 mm) in panel a applies to
a alone, the bar in d applies to b–d, the bar in g applies to e–g, and the bar in i applies to i and h. Abbreviations: ONL – outer nuclear layer, INL –
inner nuclear layer, IPL – inner plexiform layer, GCL – ganglion cell layer.
doi:10.1371/journal.pone.0010774.g002

Glial Cells in the Retina
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Nkx2.2+ cells in the optic nerve immediately posterior to the ONH

(Figs. 9a-d). The Nkx2.2+ cells appeared approximately 250 mm

posterior to the vitread surface of the ONH (Fig. 9a). Most of the

Nkx2.2+ cells in the optic nerve were weakly immunoreactive for

Sox9 (Figs. 9a-d). Most, if not all, of the Sox9+ cells in the optic

nerve were immunoreactive for S100b (Figs. 9e-h), indicating that

these cells are glial. Within the ONH, there was a complete

overlap of Sox2 and Sox9 in the nuclei of cells (Fig. 9l). By

comparison, within the optic nerve most of the Sox9+ cells were

negative for Sox2, with only about one-third (39.966.8%) of these

cells expressing Sox2 (Figs. 9m-p). This finding suggested that

Sox9 is expressed by at least 2 distinct types of cells in the optic

nerve. About two-third of the Sox9+ cells in the optic nerve were

immunoreactive for APC, a marker that is known to be expressed

by mature oligodendrocytes in the mammalian CNS [29]. The

levels of Sox9-expression were relatively low in the APC+

oligodendrocytes (Figs. 9m-o). The APC+ oligodendrocytes did

not express Sox2, were not seen within the ONH, but were found

within the optic nerve immediately posterior to the ONH (Figs. 9l-

p), similar to the distribution of Nkx2.2+ cells (Fig. 9a).

Accordingly, we used sequential immunolabeling to determine

whether APC+ oligodendrocytes in the optic nerve express Nkx2.2.

We found that all of the APC+ oligodendrocytes were immuno-

reactive for Nkx2.2 (Figs. 9q and r). However, about one-eighth

(13.366.1%) of the Nkx2.2+ cells in the optic nerve were not

immunoreactive for APC, leaving the identity of Nkx2.2+/APC2

cells uncertain. See table 1 for a summary of markers expressed by

glial cells in the monkey eye, and table 2 for a summary of the

types of glial cells in the retina, optic nerve and nerve head.

Discussion

We report here that glial cells in the retina and optic nerve of

various vertebrate species have notable phenotypic differences,

among distinct similarities. In all mammalian retinas, both

astrocytes and Müller glia express Sox2 and Sox9. In addition,

we have recently reported that astrocytes in the retinas and optic

nerves of mice, guinea pigs, dogs and monkeys express the

Figure 3. The guinea pig retina does not contain astrocytes or NIRG cells. Vertical sections of the retina were labeled with antibodies to
Islet1 (green; a, b and e), Sox9 (magenta; a, c and e), Sox2 (red; a, d–f and h) and S100b (green; g and h). Arrow-heads indicate the nuclei of Müller
glia, small double-arrows indicate the nuclei of bipolar cells that are labeled for Islet1 alone, and the small double-arrow-heads indicate the nuclei of
cholinergic amacrine cells that are labeled for Islet1 and Sox2. The scale bar (50 mm) in panel a applies to a alone, the bar in b applies to b–e, and the
bar in h applies to g–h. Abbreviations: RPE – retinal pigmented epithelium, PRL – photoreceptor layer, ONL – outer nuclear layer, INL – inner nuclear
layer, IPL – inner plexiform layer, GCL – ganglion cell layer.
doi:10.1371/journal.pone.0010774.g003

Glial Cells in the Retina
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transcription factor Pax2 [14]. Without deviation, all mature,

normal astrocytes express high levels of GFAP (reviewed by [30]),

however the distribution and phenotype of astrocytes within the

retina and optic nerve is variable between species. The retinas of

chicks and guinea pigs contain few, if any, astrocytes [1,8,14]. By

contrast, the retinas of mice, dogs and monkeys contain numerous

astrocytes that are scattered across the NFL and GCL.

Origins of NIRG cells
It is likely that the NIRG cells, similar to retinal astrocytes,

migrate into the retina through the optic nerve. During develop-

ment, retinal astrocytes migrate into the retina from the optic nerve

[31,32]. Interestingly, GFAP+ astrocytes in the guinea pig and

Nkx2.2+ glial cells in guinea pigs and monkeys do not migrate

beyond the optic nerve into the nerve head or neural retina. The

Figure 4. Glial cells in the guinea pig optic nerve and nerve head are immunoreactive for Sox2, GFAP, Nkx2.2, Sox9 and S100b.
Longitudinal sections through the optic nerve and nerve head were labeled with antibodies to Sox2 (red in a), GFAP (green in a), Nkx2.2 (green in b
and d), Sox9 (red in c,d,f and g) and S100b (green in e and g). Images were obtained by using wide-field epifluoresence microscopy (a) or confocal
microscopy (b–g). Arrow-heads indicate the nuclei of Müller glia. The arrows in panels b–d indicate glial cells in the optic nerve that are
immunoreactive for Nkx2.2 and Sox9. The arrows in panels e–g indicate glial cells in the optic nerve head that are immunoreactive for S100b and
Sox9 The asterisks in panel a indicate a blood vessel. The regions indicated by yellow boxes in panels in b–d are enlarged 2-fold in the in-sets. The
transparent blue lines indicate the boundaries between the optic nerve head and neural retina. The scale bar (50 mm) in panel a applies to a alone,
the panel in d applies to b–d, and the bar in g applies to e–g. Abbreviations: ONL – outer nuclear layer, INL – inner nuclear layer, IPL – inner plexiform
layer, GCL – ganglion cell layer.
doi:10.1371/journal.pone.0010774.g004
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migration of glial cells into the nerve head and retina is likely

inhibited by mechanisms similar to those that halt the migration of

oligodendrocytes from the optic nerve into the rodent and primate

retina (see Fig. 9; reviewed by [33]). The glia within the optic nerve

differentiate and migrate under the influence of the secreted factors

such as Shh and Bone Morphogenetic Proteins (BMPs). Shh is

provided by the growing axons of retinal ganglion cells to initiate the

formation glia in the optic chiasm [34,35,36]. BMPs may be

provided by the neural retina to suppress the migration of

oligodendrocytes into the mammalian retina and/or ONH [37].

We identified NIRG cells in the optic nerve of the chicken,

consistent with the hypothesis that these cells migrate into the

retina from the optic nerve. A recent study from Rompani and

Cepko [38] describes the developmental origins of the different

types of glial cells in the chick eye. The authors describe an optic

nerve-derived glial progenitor that gives rise to oligodendrocytes,

Figure 5. In the dog retina, astrocytes are immunoreactive Sox2, Sox9 and GFAP, whereas NIRG-like cells are immunoreactive Sox2
and Sox9 alone. Vertical sections of the retina were label with antibodies to Sox9 (green in a,d,e,g and h), Islet1 (magenta in b and d), Sox2 (red in
c and d) and GFAP (red in f–h). Panel h includes orthogonal projections to demonstrate that some of the Sox9-positive nuclei in the NFL are not
rimmed by GFAP-positive cytoplasm. Arrow-heads indicate the nuclei of Müller glia. Hollow arrow-heads indicate Islet1-positive nuclei of bipolar cells.
Small hollow, double arrow-heads indicate the nucleus of cholinergic amacrine cells that is positive for Islet1 and Sox2. Small double-arrows indicate
the nuclei of presumptive NIRG-like cells that are positive for Sox9 and Sox2, but negative for GFAP. Arrows indicate GFAP-positive astrocytes that are
labeled for Sox9 and Sox2. The scale bar (50 mm) in panel d applies to d and a–d, the bar in g applies to e–g, and the bar in h applies to h alone.
Abbreviations: INL – inner nuclear layer, IPL – inner plexiform layer, GCL – ganglion cell layer, NFL – nerve fiber layer.
doi:10.1371/journal.pone.0010774.g005
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astrocytes and a novel cell type that they termed ‘‘diacytes’’. The

authors describe presumptive astrocytes in the IPL and diacytes in

the GCL based on developmental origins and morphology; the

morphology of the diacytes and presumptive astrocytes are

reminiscent of astro-glial cells. The diacytes and presumptive

astrocytes express Olig2 (similar to oligodendrocytes), whereas

these cells do not express other well-known glial markers including

GFAP, myelin proteolipid protein, myelin/oligodendrocyte-spe-

cific protein or myelin-associated glycoprotein [38]. We propose

that the astrocytes and diacytes described by Rompani and Cepko

are the NIRG cells that we have described [1]. We determined

that the NIRG cells/ astrocytes/diacytes were negative for well-

established glial markers including GFAP, glutamine synthetase,

2M6 (TopAP), and transferrin-binding protein, whereas the NIRG

cells were positive for Sox2, Sox9, Nkx2.2, vimentin and transitin.

We propose that the astrocytes/diacytes/NIRG cells in the

chicken retina are not a type of astrocyte because these cells are

negative for both GFAP and Pax2, and these cells do not

significantly up-regulate GFAP in response to retinal damage

[1,14,38]. In all species examined, retinal astrocytes express GFAP

and Pax2, and GFAP expression is dramatically increased in

damaged tissues [14,39]. Furthermore, we find conventional

astrocytes in the chick optic nerve (but not retina) that express

GFAP and Pax2, but not Nkx2.2 (current study and [14]), unlike

the NIRG cells within the retina which are negative for GFAP and

Pax2, and positive for Nkx2.2 [1]. These findings suggest that

conventional optic nerve astrocytes fail to migrate beyond the

optic nerve head into the chick retina. Taken together, we believe

that the diacytes/astrocytes described by Rompani and Cepko are,

are not conventional astrocytes. It is possible the NIRG cells in the

Figure 6. In the dog eye, glial cells in the optic nerve and nerve head express the transcription factors Nkx2.2, Sox2 and Sox9.
Longitudinal sections through the optic nerve and nerve head were labeled with antibodies to Nkx2.2 (green), Sox2 (red) and Sox9 (magenta). The
area indicated by the yellow box in panel b is enlarged 2.5-fold in panels c–f. White arrows indicate the nuclei of cells labeled for Nkx2.2, Sox 2 and
Sox9. Yellow arrows indicate cells labeled for Nkx2.2 and Sox9, but not Sox2. Small double-arrows indicate cells labeled for Sox2 and Sox9, but not
Nkx2.2. Solid arrow-heads indicate the nuclei of Müller glia labeled for Sox2 and Sox9. Hollow arrow-heads indicate peripapillary glia labeled for Sox2
and Sox9. The scale bar (50 mm) in panel b applies to a and b, and the bar in f applies to c–f. Abbreviations: ONL – outer nuclear layer, INL – inner
nuclear layer, GCL – ganglion cell layer.
doi:10.1371/journal.pone.0010774.g006
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chick retina represent two separate types of glial cell based on

differences in morphology and laminar distribution within the

retina, as described by Rompani and Cepko. A thorough

functional analysis of these unusual glial cells in the chick retina

is required to better define the phenotype of these cells.

NIRG cells in the chick versus NIRG-like cells in the dog
and monkey

The identity of the GFAP2/Sox2+/Sox9+ cells in the GCL and

NFL in the retinas of primates and dogs remains somewhat

uncertain, but is consistent with the hypothesis that these are

Figure 7. In the monkey eye, Sox2/Sox9-positive glial cells scattered across the GCL and NFL are GFAP+ astrocytes or GFAP2 NIRG-
like cells. Vertical sections of the retina were labeled for Islet1 (green in a and d), Sox9 (magenta in b and d; red in e; green in f–l), Sox2 (red in c and
d), Brn3a (green in e), GFAP (red in g–l). DRAQ5 (magenta) was used to stain nuclei (h and i). The area indicated by the yellow box in panel i is
enlarged 2.5-fold in panels j–l. Small-double arrows indicate the nuclei of Müller glia. Arrows indicate the nuclei of glial cells in the GCL or NFL. Small
double arrow-heads indicate Sox9-positive nuclei in the RPE (a–d). Small hollow, double arrow-heads indicate Islet1-positive nuclei of bipolar cells (a–
d). Blue arrows indicate Islet1-positive nuclei of ganglion cells (a–d). In panels f–l., arrows indicate GFAP/Sox9-positive astrocytes and hollow arrow-
heads indicate GFAP-negative/Sox9-positive NIRG-like cells. Asterisks indicate blood vessels. The scale bar (50 mm) in panel d applies to panels a–d,
the bar in e applies to e alone, and the bar in i applies to f–i. Abbreviations: RPE- retinal pigmented epithelium, PRL – photoreceptor layer, ONL –
outer nuclear layer, INL – inner nuclear layer, IPL – inner plexiform layer, GCL – ganglion cell layer, NFL – nerve fiber layer.
doi:10.1371/journal.pone.0010774.g007
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NIRG-like cells. It is remotely possible that the GFAP2/Sox9+/

Sox2+/nestin+/Pax2+ cells are displaced Müller glia or perhaps

quiescent glial progenitors. Many studies have demonstrated that

mature Müller glia express Sox2 and Sox9, similar to proliferating

retinal progenitors [1,9,10,12,13]. Müller glia are known to

express nestin in response to neuronal damage [40,41,42].

However, the nestin+ cells in the normal monkey retina likely

were not reactive Müller glia given that observations were made in

normal, healthy retinas, and the NIRG-like cells were Pax2-

positive whereas the Müller glia were Pax2-negative. It is unlikely

that the GFAP2/Sox2+/Sox9+/Pax2+/nestin+ cells are quiescent

progenitors since there have been no compelling reports of on-

going gliogenesis or neurogenesis in the dog or primate retina.

Consistent with this notion, we did not detect PCNA expression in

the glial cells in the retinas of mature dogs and monkeys.

Nevertheless, we cannot exclude the possibility that some of these

Figure 8. In the monkey eye, S100b is expressed by many Müller glia in the retina and glial cells in the optic nerve. Sections of the
retina and optic nerve head were labeled with antibodies to Islet1 (a and d), Sox2 (green in b,d,e and g; red in h–k), S100b (red in c,d,f and g) and
nestin (green in h–k). Arrow-heads indicate the nuclei of Müller glia labeled for Sox2 and/or S100b. Blue arrows indicate Sox2/Islet1-positive nuclei of
cholinergic amacrine cells (a–d). Small double-arrow-heads indicate the nuclei of Sox2-positive glial cells that are nestin-negative (h–o). Arrows
indicate presumptive NIRG-like cells that are labeled for Sox2, nestin and Pax2. Small hollow-double-arrows indicate nuclei labeled for Pax2 and Sox2,
but not nestin (l–o). Asterisks indicate blood vessels. The scale bar (50 mm) in panel d applies to a–d, the bar in h applies to e–g and h, and the bar in
i applies to f, g and i. Abbreviations: ONL – outer nuclear layer, INL – inner nuclear layer, IPL – inner plexiform layer, GCL – ganglion cell layer, NFL –
nerve fiber layer, ONH – optic nerve head.
doi:10.1371/journal.pone.0010774.g008
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GFAP2/Sox2+/Sox9+/Pax2+/nestin+ cells are glial progenitors

that are quiescent in normal, healthy retinas and become gliogenic

in response to neuronal damage. However, it is worth noting that

the expression of many ‘‘progenitor cell’’ transcription factors,

such as Pax6, Chx10, Six3 and Rx, is maintained in different sets

of mature retinal neurons (reviewed by [43,44]). Thus, it is not

Figure 9. In the monkey eye, glial cells in the optic nerve and nerve head express Sox9, Nkx2.2, Sox2, S100b and APC. Longitudinal
and transverse sections through the optic nerve and nerve head were labeled with antibodies to Sox9 (red in a–d; green in e–k and l–p), Nkx2.2
(green in a–d; red q and r), S100b (red in g and h), Sox2 (red in i, k and l–p) and APC (magenta l–p; green q and r). DRAQ5 (magenta) was used to
stain nuclei (e and h). Images were obtained using confocal microscopy (a–h and l–r) or wide-field epifluoresence (i–k). The images in panels p and r
were generated as 3D shadow-reconstructions of Z-stacks using Zeiss Zen software. The area indicated by the yellow box in panel a is enlarged 4-fold
in panels b–d. Arrows indicate glial cells in the optic nerve that are labeled for Nkx2.2 and Sox9 (a–d), Sox9 and S100b (e–h), Sox9 and Sox2 (i–k),
Sox2, Sox9 but not APC (l–p), or Nkx2.2 and APC (q and r). Hollow arrow-heads indicate the nuclei of glial cells labeled for Sox9 alone (b–d and i–k),
or DRAQ5 alone (e–h). Arrowheads indicate oligodendrocytes labeled for Sox2, Sox9 and APC (l–p) or Nkx2.2 and APC (q and r). Asterisks indicate
blood vessels. The scale bar (50 mm) in panel a applies to a alone, the bar in h applies to e–h, the bar in k applies to i–k, the bar l applies to l alone,
the bar p applies to m–p alone, the bar in q applies to o alone, the bar in r applies to r alone.
doi:10.1371/journal.pone.0010774.g009
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surprising that ‘‘progenitor cell’’ transcription factors such as Sox2

and Sox9 are expressed by mature glial cells, such as astrocytes,

NIRG-like cells and Müller glia.

Our findings indicate that the phenotype of NIRG cells in the

chick is subtly different from that of NIRG-like cells in the dog and

primate. Unlike the NIRG cells in the chicken retina, we find

NIRG-like cells in the primate retina expressed Pax2, but not

Nkx2.2. We have also reported that GFAP2/Sox2+/Pax2+ cells

are scattered across inner layers of the dog retina [14]. In

considering the above-listed findings, we propose that the primate

retina contains NIRG-like cells that express Sox2, Sox9, Pax2 and

nestin, but are negative for Nkx2.2, GFAP and S100b. Although

many of the Sox2+/Sox9+ cells in the inner layers of the monkey

retinas express nestin, labeling for nestin in the dog retina was not

possible because of a paucity of antibodies with demonstrated

specificity in dog tissues. Furthermore, in the chick retina the

NIRG cells are scattered across the IPL, GCL and NFL [1,14]. In

the primate retina the NIRG-like cells are scattered across the

GCL and NFL, but are never seen in the IPL (current study). In

the chick retina, most of the NIRG cells are found in the sclerad

half of the IPL, although many of these cells are also found

scattered across the GCL, NFL and vitread half of the IPL, with

transitin+ processes that tend to project horizontally within the

retina [1]. By comparison, primate NIRG-like cells were found

only in the GCL and NFL and extended nestin+ processes

horizontally.

Based on our findings in the macaque retina, we propose that

the human retina likely contains NIRG cells, given that the

macaque retina is considered to be nearly identical to the human

retina (reviewed by [45,46,47]). In the chick retina, the NIRG cells

are thought to provide support to neurons and synapses in the IPL

[1]. In the chick, when the NIRG cells are stimulated by insulin or

IGF1 retinal neurons and the Müller glia are rendered more

susceptible to excitotoxic damage [1]. Taken together, these

findings suggest that NIRG cells in the human retina may

contribute to the pathogenesis of diabetic retinopathy.

Heterogeneity of glial cells and phenotypes between
species

Our findings indicate that there is significant heterogeneity in

the glial types and phenotypes of these glia in the retinas of

different mammals. The variability of glial phenotypes is, in part,

demonstrated by the patterns of expression of S100b in different

glial cell types in the retinas of different mammals. For example,

the retinal astrocytes in dogs and mice express S100b, whereas

these cells do not express S100b in the monkey retina. Although

the astrocytes in the monkey retina are negative for S100b, about

half of the Müller glia are positive for S100b. By comparison,

S100b is expressed by all of the Müller glia in the guinea pig

retina, whereas S100b was not detected in the Müller glia of dogs

or mice. S100b is a calcium-binding protein that is known to be

expressed by astrocytes in rodents (reviewed by [48]). S100b has

been shown to regulate intracellular calcium levels and promote

the proliferation of astrocytes [49,50]. Taken together, these

findings suggest that the sub-set of Müller glia in the monkey retina

expressing S100b may be predisposed to proliferate or may have

an elevated requirement for calcium homeostasis.

There was a variable distribution of Nkx2.2-expressing cells in

the eyes of different vertebrates. Unlike the NIRG cells in the chick

retina, the NIRG-like cells in dog and primate retinas did not

express Nkx2.2. In the monkey eye, similar to the guinea pig,

Nkx2.2+ cells were detected in the optic nerve immediately

posterior to the ONH. By comparison, the Nkx2.2+ cells in the dog

eye were found in both the optic nerve and ONH, whereas

Nkx2.2+ cells were not detected in the mouse eye. In the optic

nerves of chicks, guinea pigs, dogs and monkeys, the Nkx2.2+ cells

co-expressed Sox9. In the primate eyes, most of the Nkx2.2+ cells

in the optic nerve were APC+ oligodendrocytes. In addition to

APC+ oligodendrocytes, Nkx2.2 was also expressed by a

population of APC-negative cells. The identity of the Nkx2.2+/

APC2 cells remains uncertain. By comparison, the TFBP+

oligodendrocytes in the chick optic nerve were negative for

Nkx2.2.

Conclusions
We conclude that there is significant heterogeneity between the

types of glial cells that are present in the retinas and optic nerves of

warm-blooded vertebrates. Further, we find that the phenotypes

of different, distinct types of glia vary with respect to the expression

of Nkx2.2 and S100b. We further propose that NIRG-like cells are

absent from the eyes of mice and guinea pigs, but may be present

in significant numbers in the retinas of dogs and monkeys. In the

primate retina, we identified significant numbers of prospective

NIRG cells that expressed Sox2, Sox9, Pax2 and nestin, but were

distinguished from astrocytes because of a stark absence of GFAP

expression.

Materials and Methods

Animals
The use of animals in these experiments was in accordance with

the guidelines established by the National Institutes of Health and

the Weatherall report, ‘‘The use of non-human primates in

research’’. This study was approved by the Ohio State University

IACUC (protocol 2009A0139). Newly hatched leghorn chickens

(Gallus gallus domesticus) were obtained from the Department of

Animal Sciences at the Ohio State University and kept on a cycle

of 12 hours light, 12 hours dark (lights on at 7:00 am). Chicks were

housed in a stainless steel brooder at about 25uC and received

water and Purinatm chick starter ad libitum.

In the current study, we used the eyes of six mice (Mus musculata;

4 months of age or older), four guinea pigs (Cavia porcellus; 4

months of age or older) and four dogs (Canis familiaris; between 2

and 6 years of age). The eyes were obtained post-mortem and were

kindly provided by colleagues; mice from Dr. Karl Obrietan

(Department of Neuroscience, The Ohio State University), guinea

pigs from Dr. Jackie Wood (Department of Physiology and Cell

Biology, Ohio State University), dogs from Dr. Simon Petersen-

Jones (Veterinary Sciences, Michigan State University) and

monkeys from Dr. John Buford (Department of Physiology and

Cell Biology, The Ohio State University).

Fixation, sectioning and immunocytochemistry
Tissues were fixed, sectioned and immunolabeled as described

previously [40,51,52]. Sequential immunolabeling for primary

antibodies raised in the same species was performed as described

elsewhere [40,53]. In short, double-labeling using two mouse

monoclonal antibodies was performed over consecutive days, with

the second primary antibody applied after the first secondary

antibody. The first secondary antibody was expected to recognize

only the first primary antibody, and the second secondary was

expected to recognize both primary antibodies. None of the

observed labeling appeared to be due to secondary antibody or

fluorophore because sections labeled with secondary antibodies

alone were devoid of fluorescence.

Working dilutions and sources of antibodies used in this study

included the following: (1) mouse anti-Nkx2.2 was used at 1:10 to

1:50 (74.5A5; Developmental Studies Hybridoma Bank – DSHB;
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University of Iowa). The antiserum was raised to recombinant,

full-length chick Nkx2.2 fused to GST [54]. The specificity of the

Nkx2.2 antibody has been confirmed by an absence of labeling in

Nkx2.2-/- mice [1,55]. (2) goat anti-Sox2 was used at 1:1000 (Y-

17; Santa Cruz Biotechnology). The antibody was raised to the

recombinant C-terminus of human Sox2 and recognizes a single

34 kDa band in Western blot analysis of lysate from mouse

embryonic stem cells (manufacturer). The Sox2 antibody is known

to recognize amino acids 277–293 of human Sox2, as determined

by preabsorption controls and mass spectrometry analysis of

blocking peptide [13]. (3) rabbit anti-TFBP (transferrin binding

protein) was used at 1:2000 (aOV-TfBP; Dr. J.J. Lucas, SUNY

Upstate Medical University). The antibody was raised to chick

oviduct TFBP and the specificity was confirmed by affinity

chromatography and Western blot analysis which revealed a single

band at 91 kDa [56]. (4) rabbit anti-Sox9 was used at 1:2000

(AB5535; Millipore-Chemicon). The Sox9-antibody was raised to

a synthetic peptide (VPSIPQTHSPQHWEQPVYTQLTRP) from

human Sox9. The antibody detects a single band at ,65 kDa by

Western blot analysis (Manufacturer’s technical information), and

conditional knock-out of Sox9 in the retina abrogates immunola-

beling [13]. (5) mouse anti-glial fibrillary acidic protein (GFAP)

was used at 1:1000 (G-3893; Sigma-Aldrich). The antibody was

raised to purified GFAP from porcine spinal cord and recognizes a

single 52-kDa band in Western blot analysis (manufacturer). (6)
rabbit S100b was used at 1:100 (37A; Swant Immunochemicals).

The antibody was raised to S100b that was purified from bovine

brain. The specificity of the S100b antibodies has been confirmed

by Western blots, ELISA, radioimmunoassay, and immunohisto-

chemistry [57]. (7) mouse anti-Islet1 was used at 1:50 (40.2D6;

DSHB; University of Iowa). The Islet1 was raised to the C-

terminus (amino acids 247–349) of rat Islet1. The antibody to

Islet1 is known to recognize both Islet1 and Islet2 [58]. (8) mouse

anti-nestin was used at 1:100 (MAB5326, clone 10C2; Millipore-

Chemicon). The antibody was raised to human nestin amino acids

1464–1614 fused to glutathione S-transferase [59]. The specificity

of this antibody has been confirmed by Western blot analysis and

revealed a single band at ,220 kDa from protein extracts of

human embryonic neural tissue [59,60]. (9) mouse anti-vimentin

was used at 1:50 (40E-C; DSHB). This antibody was raised to

homogenized adult canary brain and the specificity has been

confirmed, with the detection of a single band at ,50 kDa, by

using Western blot analysis [61]. (10) rabbit anti-Pax2 was used at

1:250 (PRB-276; Covance). The antibody was raised to amino

acids (188–385) of human Pax2 and recognizes both Pax2a and

Pax2b isoforms (manufacturer). The specificity of the Pax2

antibody was assessed by Western blot analysis, detecting 2 bands

at 51 and 44 kDa, and by comparison of patterns of immunoflu-

orescence to those seen with in situ hybridization [14]. (11) mouse

anti-APC (Adenomatous polyposis coli) was used at 1:500 (ab16794;

Abcam). The monoclonal antibody was raised to recombinant

human APC, amino acids 1–226. The specificity of the APC

antibody has been assessed by Western blot analysis which

demonstrated a single band at 300 kDa from rat brains [62]. (12)
mouse anti-PCNA was used at 1:1000 (clone PC10; Dako).

Secondary antibodies included donkey-anti-goat-Alexa-

488/568, goat-anti-rabbit-Alexa488/568/647, goat-anti-mouse-

Alexa488/568/647, goat anti-rat-Alexa488 and goat-anti-mouse-

IgM-Alexa568 (Invitrogen) diluted to 1:1000 in PBS plus 0.2%

Triton X-100.

Photography, measurements, cell counts, and statistical
analyses

Wide-field photomicrographs were obtained by using a Leica

DM5000B microscope and Leica DC500 digital camera. Confocal

images were obtained by using a Zeiss LSM510 at the Hunt-Curtis

Imaging Facility in the Department of Neuroscience. Images were

optimized for color, brightness and contrast, multiple-channel

images overlaid, and figures constructed by using Adobe

PhotoshopTM6.0. Cell counts were made from at least 5 different

animals, and means and standard deviations calculated on data

sets. To avoid the possibility of region-specific differences within

the retina, cell counts were consistently made from the same

region of retina for each data set.
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