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Abstract

Background: The time of infection is rarely known in human cases; thus, the effects of delaying the initiation of antiretroviral
therapy (ART) on the peripheral viral load and the establishment of viral reservoirs are poorly understood.

Methodology/Principal Findings: Six groups of macaques, infected intravenously with SIVmac251, were given placebo or
antiretroviral therapy to explore reservoir establishment; macaques were treated for 2 weeks, with treatment starting 4
hours, 7 or 14 days after infection. Viral replication and dissemination were measured in the gut (rectum), in the lung and in
blood and lymphoid tissues (peripheral lymph nodes), by quantifying viral RNA, DNA and 2LTR circles. We used
immunohistochemistry (CD4 and CD68) to assess the impact of these treatments on the relative amount of virus target cells
in tissue. Treatment that was started 4 hours post-infection (pi) decreased viral replication and dissemination in blood and
tissue samples, which were assessed on day 14 (RNA/DNA/2LTR circles). The virus remained detectable and lymphoid tissues
were activated in LN and the gut in both placebo- and ART-treated animals. Viral RNA in plasma continued to be lower in
macaques treated seven days after infection; however, this was not the case for viral DNA in peripheral blood mononuclear
cells. There was a small but significant difference in RNA and DNA levels in tissues between placebo- and ART-treated
animals on day 21. When started 14 days after infection, treatment resulted in a limited decrease in the plasma viral load.

Conclusions: Treatment that was started 4 hours after infection significantly reduced viral replication and dissemination.
When started 7 days after infection, it was of slight virological benefit in peripheral blood and in tissues, and treatment was
even less effective if started 14 days pi. These data favor starting ART no longer than one week after intravenous SIVmac251

exposure.
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Introduction

Antiretroviral therapy (ART) inhibits viral replication, but does

not eradicate cellular reservoirs of the virus. Recommendations

from the U.S. Department of Health and Human Services on

post-exposure prophylaxis (PEP) favor the use of ART, through

two nucleosidic reverse transcriptase inhibitors (NRTIs) and a

protease inhibitor (PI) or efavirenz for 2-4 weeks, within three days

of exposure to HIV [1]. French guidelines recommend starting

prophylaxis treatment (using two NRTIs plus a PI) within four

hours of exposure (Yeni P. et al., www.sante.gouv.fr [2]). These

recommendations are based on experiments in macaques

challenged with simian immunodeficiency virus (SIV), mimicking

the acute human infection; they suggest a greater benefit for PEP if

initiated within 36 hours, compared with 72 hours after exposure

[3,4]. Nevertheless, being given HIV PEP within the optimal

prescription window is a rare event, as most potentially exposed

patients present 12 hours or even 24 hours after viral exposure

[5]. It is unclear at what point PEP is no longer beneficial, and

there is an absence of data on whether there is a clear benefit to

PEP being initiated more than 48 hours after exposure. The

precise virological and immunological consequences of these

delays are poorly understood and it remains unclear whether

delayed PEP actually leads to better progression of the infection.

Therefore, defining the ideal periods for HIV PEP treatment,

through the study of deep tissues in the macaque model, is a major

concern.

Our main objective was to investigate the impact of ART

treatment start time on viral spread during primary infections. The

combination of AZT-3TC (zidovudine, lamivudine, 4.5 mg/kg,
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2.5 mg/kg respectively; administered subcutaneously), and IDV

(indinavir 60 mg/kg administered per os), administered twice-a-day

for 28 days and started as early as 4 h after IV inoculation with 50

AID50 of SIVmac251, does not prevent infection; however, virus

loads in plasma remained undetectable in most of the animals

during the treatment period [6]. Here, we investigated to which

extent the ART start time affects viral replication and dissemina-

tion during the primary infection.

We therefore evaluated the efficacy of the AZT/3TC/IDV

combination, initiated 4 hours post-infection (pi) or delayed to

before or after the viraemia peak (7 days pi, 14 days pi), on

immunological and virological variables, both in peripheral and

deep compartments. Treatment initiation times were chosen

according to French PEP guidelines (4 hours), periods before

acute CD4+ cell loss [7] and associated with complete protection

in another macaque model [8] (7 days pi), or periods following

CD4+ T cell loss (14 days pi). Previous macaque models infected

intravenously with SIV [4] showed that courses of ART that are

shorter than 28 days confer incomplete protection. We therefore

investigated the effects of administering 2 NRTI plus an unboosted

and weak PI over a 14-day period; the PI selected was a frequently

recommended protease inhibitor at the time of the study in 2004.

This thus allowed an extensive study of viral replication and

dissemination in tissues.

We monitored plasma viral RNA, total viral DNA and 2LTR

circle levels in peripheral blood mononuclear cells (PBMCs),

lymph nodes, rectum and lung, to study viral replication and

dissemination in detail. We studied the effects of infection on viral

target cells (CD4+ T cells or CD68+ macrophages) in tissue

through immuno-histochemistry (IHC), to precisely define the

most effective and the ultimate treatment start time able to reduce

viral dissemination in this model.

Results

Twenty-eight cynomolgus macaques were infected with 50

AID50 of SIVmac251, and were then treated with a placebo, or the

same combination of antiviral drugs described above (AZT, 3TC

and IDV), initiated at 4 hours pi (10 animals, 5 ART-treated, 5

placebo-treated, group H4-D14), on day 7 pi (10 animals, 5 ART-

treated, 5 placebo-treated, group D7-D21) or on day 14 pi (8

animals, 5 ART-treated, 3 placebo-treated, group D14-D28).

Animals were killed 14 days after starting treatment.

Delayed treatment during primary infection remained
beneficial, due to a reduction in the plasma viral load and
the prevention of a significant decrease in circulating
CD4+ T cells

As expected, infection in placebo-treated groups induced a peak

in the plasma viral load and in viral DNA in the PBMCs between

day 13 and 14 (Figure 1A, 1B). CD4 levels in peripheral blood in

these placebo-treated animals were significantly depleted, with the

nadir occurring on day 13 (Median 30% of the baseline,

p = 0.0117). This was followed by a rebound to 60–70% of

original levels (Figure 1C) and, in some animals, CD4 levels

returned to base line values on day 28 (not shown). Note that

during the initial acute phase, viral infection induced a significant

decrease in CD8+ T cell counts (down to 5% of baseline values,

p = 0.0117); however, in contrast to CD4 T cells, this was followed

by a large early rebound in CD8 T cell counts on day 15 or 17.

Thus, CD8 T cell counts increased to 150% of baseline values

between day 21 and 28 (Figure 1D). This rebound is commonly

associated with immune system activation and the detection of

anti-HIV specific CD8+ cytotoxic T cells [6,9].

The plasma viral load (Figure 1A right, blue line median) and

total SIV DNA in PBMCs were significantly lower (p,0.01) in

animals in which treatment was started 4 hours after infection

than in placebo-treated animals, as previously reported [6,10]

(Figure 1B right, blue line median). Despite significant variability,

circulating CD4+ (908620 cells/mm3 at day 0 versus

7086537 cells/mm3 at day 14) and CD8+ T lymphocyte counts

remained relatively stable (mean = 7726374 cells/mm3 at day 0

versus 8576828 cells/mm3 at day 14; Figure 1C, 1D).

Circulating CD4+ and CD8+ T lymphocyte counts were

significantly higher in PEP-treated animals (4 hr, day 7 and day

14 pi) than in placebo-treated animals (p = 0.007 and 0.02,

respectively).

If delayed to 7 days pi, before the viral peak, the treatment,

compared with placebo, exerted a significant impact on SIV RNA

in plasma (p = 0.016), but not on SIV DNA in PBMCs

(Figure 1A, 1B, green line). The circulating CD4+ T lymphocyte

level on day 21 pi was not significantly different from that on day 7

(7986393 cells/mm3 and 7506300 cells/mm3 respectively). The

CD8+ T lymphocyte count in treated animals (green) was not

significantly greater (10006652 cells/mm3) on day 21 pi

(Figure 1D). The differences in circulating CD4+ (or CD8+) T

lymphocyte counts between animals treated from day 7 to day 21

(green line) and placebo-treated animals (black line) did not reach

significance.

Treatment of the last group (D14-D28) was started after plasma

viral loads peaked on day 14 pi. Treatment significantly affected

plasma viral load on day 28 (p = 0.025), but not SIV DNA in

PBMCs, if compared with placebo (Figure 1A, 1B, red line).

Before treatment, T cell counts of these animals were almost

identical to those in control groups. From day 14, CD4+ cell

counts increased to slightly above the baseline in four of five

animals (Figure 1C, red line). CD8+ T lymphocyte counts did not

significantly differ between day 14 and day 28 (mean 11556658,

and 12926465 cells/mm3 respectively; p = 0.63; Figure 1D, red

line). The differences in circulating CD4+ (or CD8+) T

lymphocyte counts between animals treated 14 days pi and

placebo-treated animals did not reach significance, but a strong

trend was observed in relation to the CD4+ T cell count

(p = 0.095).

Impact of antiviral therapy start time on viral replication
and dissemination in deep tissues

We extended our analysis to peripheral lymph nodes (LN) and

mucosal tissues, to determine the spread of the virus more

precisely, based on whether antiviral therapy was administered

early or late. We used a combination of three viral markers – viral

DNA (indicating dissemination), viral RNA (an indicator of viral

replication and production), and 2LTR circles (indicating new

infection) – to study, in detail, viral dissemination and the

dynamics of viral replication in tissues [11]. We showed that early

treatment (4 hours pi) significantly decreased both viral replication

and dissemination for up to 5 level of magnitude compare to

placebo in peripheral LN and mucosal tissues (rectum and lung,

Figure 2). Treatments that were started seven days after infection

continued to impact, although to a lesser extent, both viral

replication and dissemination in peripheral LN and mucosal

tissues (with geometric mean decreases in viral load for all

combined tissues: for SIV RNA, 0.86 log10, p,0.05, for SIV

DNA, 0.76 log10, p,0.05, respectively) (Figure 2). Viral

dissemination was lower in mucosal tissues than in LN (p,0.02).

Finally, in the LN, ART that was started on day 14 pi had no

effect on viral replication/dissemination, with SIV RNA/DNA/2-

LTR circles in LN remaining roughly unchanged. In the rectum

ART during SIV Acute Infection
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Figure 1. Peripheral viral loads and changes in CD4, and CD8 T cells in placebo- and ART-treated animals. Placebo animals are shown
on the left side (median in dark line), and treated animals, on the right side of the figure. Values for animals are given as a filled symbol and a star
(group H4-D14); open symbol and x (group D7-21); grey symbols and + (group D14-28). Median curves are shown according to the date of treatment
initiation, with the black or dotted line for placebo and blue, green, and red lines for the H4-D14, D7-21 and D14-28 groups, respectively. A) Plasma
viral load; vRNA copies/ml of plasma. B) Total viral DNA in PBMCs; vDNA copies/106 PBMC. C) CD4 changes in absolute number (mean6SD) D) CD8
changes in absolute number (mean6SD).
doi:10.1371/journal.pone.0010570.g001
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and the lung, ART resulted in a slight, but not significant, decrease

in SIV DNA (p = 0.06), whereas RNA was only detected in one

macaque on day 28 (Figure 2). As in our previous study

(Mannioui et al. [11]), there was a good correlation between the

three markers in the various tissues, similar to that seen in PBMCs.

Impact of antiviral therapy start time on target cells in
deep tissues

The correlation between the level of viral replication in tissues

and the ‘‘in situ’’ depletion of target cells is not well understood

and is often not documented. Thus, we performed IHC in the

peripheral lymph nodes (LN) (Figure 3), rectum (Figure 4) and

lung (Figure 5).

In Lymph nodes (LN) from placebo-treated animals, IHC

performed on day 14 pi showed hypertrophic B follicles

surrounded by large T CD4+ areas localized in the cortex.

Antiviral therapy that was started 4 hr pi did not result in CD4+ T

cell depletion in lymph nodes (Figure 3). Despite a low viral load

in tissues (Figure 2), we found hypertrophic B lymphoid follicles

surrounded by enlarged CD3+ (not shown) and CD4+ T

lymphocyte areas (arrows) in LN (Figure 3). In placebo-treated

animals, a depletion of T CD4+ occurred on day 21, followed by a

partial repopulation on day 28. We observed a progressive

redistribution of CD68+ cells, from the medulla to the germinal

center of follicles localized in cortex, in LN from placebo-treated

animals; this redistribution occurred from day 14 to day 28. If

started before peak viremia (day 7 pi), the treatment did not stop

the depletion of CD4+ T lymphocytes on day 21 (Figure 3), and

did not modify the distribution of CD68+ cells compared to

placebo. Treatment that was started after peak viremia (day 14 pi)

did not modify the level of depletion on day 21, but the slight

preservation of CD4+ T cells in lymph nodes may be explained by

a redistribution of these cells from peripheral blood (Figure 3).

IHC showed an increase in CD3+ (not shown) and CD4+ T

lymphocyte levels in peripheral LN, without reconstitution of the

previous architectural structure (B follicles surrounded by

hypertrophied CD4+ T lymphocyte areas). T zones in LN

occurred in deep areas and were slightly disorganized. In the

same PEP- treated animals, no differences were observed for the

distribution of CD68+ cells.

Depletion in rectal samples in placebo-treated animals (day

14) seemed to occur earlier (Figure 4), with only few CD4+ T

cells found in Peyer’s patches. This early mucosal CD4+ T cell

depletion has been previously described during acute HIV

infection [12]. The initiation of antiviral therapy 4 hours after

infection prevented CD4+ T cell depletion in rectal mucosae

(Figure 4). However, despite a low viral load in tissues of PEP-

treated animals (Figure 2) on day 14, we found hypertrophic B

Figure 2. Change in viral loads in tissues in animals given placebo or treatment over the course of 14 days. Viral loads were expressed
using RNA Log (DCT), DNA and 2LTR Log(Copies/106 cells) at the top, middle and at the bottom of the figure, in peripheral LN, rectum, and lung (left
side, middle, and right side), respectively. LN: lymph nodes; placebo animals (Gray bars), treated animals (white bars). Vertical bars represented the
95% confidence interval (95% CI). 2LTR values in the lung were below the threshold and were listed as BT. $ viral RNA was detected in only 1 animal in
ART-treated animals on day 14 and day 28. * Significant differences between placebo and treated animals.
doi:10.1371/journal.pone.0010570.g002
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lymphoid follicles surrounded by enlarged CD3+ (not shown) and

CD4+ T lymphocyte areas (arrows) in Peyer’s patches in the

rectum (Figure 4). CD4+ T cell depletion was clearly observed on

day 21 in rectal mucosae from placebo-treated animals. Never-

theless, the delayed treatment, which was initiated before the

viremia peak (day 7 pi), did not prevent CD4+ T lymphocyte

depletion on day 21 (Figure 4). Surprisingly, CD4+ T cell

depletion from placebo-treated animals was less pronounced in

day 28 samples; this slight increase may be explained by

redistribution from peripheral blood (Figure 4). CD68+ cells

were found both in Peyer’s patches and intestinal mucosae,

regardless of the time of killing. Depletion of CD4+ T cells in day

14-day 28-treated animals on day 28 seemed greater than that in

placebo-treated animals, whereas the number of CD68+ cells did

not appear to be modified by treatment (see below Figure 6).

In lung samples from placebo-treated animals, the numbers

of T CD4+ cells progressively decreased from day 14 to day 28

(Figure 5). CD68+ cells were identified on day 14, 21, and day

28, with no organized structure. The initiation of antiviral therapy

4 hours after infection prevented CD4+ T cell depletion in lung

tissues (Figure 5). However, despite a low viral load on day 14 in

tissues of treated animals (Figure 2), the number of CD4+ T

lymphocytes was sparse (arrow heads); there were several cells

expressing CD68+ (dotted area) (Figure 5). As expected, CD68+
mononuclear cells remained the predominant leukocyte popula-

tion in the lung, if compared with CD3+ lymphocytes (staining not

shown).

To obtain a more objective view of the changes according to

time of the number of CD4+ and CD68+ cells in the LN and

rectum, we quantified the percentage of the stained area using

large fields (Figure 6). This showed a very distinct pattern of

infection between peripheral LN and mucosal tissues. In placebo
animals (black bars), the percentage of the area that was stained

for CD4+ cells in peripheral LN was very high on day 14 but

decreased on day 21 and day 28. A similar change according to

time was observed for CD68+ cells. CD4+ levels in the rectum

were very low on day 14, but there was a marked increase in the

CD4+ stained area by day 28, whereas the area stained for CD68+
did not change over the course of our study. Analysis of treated
animals (white bars) showed that the effects of treatment in

peripheral LN and the rectum were complex and distinct, and

changed according to tissues and timing. In peripheral LN, the

area stained for CD4+ had not changed by day 14, but CD4+
depletion appeared to be greater on day 21 and 28 despite

Figure 3. Low magnification of IHC stains of peripheral LN samples in placebo- and ART-treated animals. For clarity, we identified the
germinal center (GC), cortex and capsule from a lymph node in one of the panels. The limit of the white pulp region is shown by a dotted line, and
germinal centers are shown using stars. CD4+ staining surrounded lymphoid follicles (black arrows), whereas CD68+ staining was mainly localized in
the white pulp (black arrows) and to a lesser extent in the GC (white arrows). Target cells were shown at the top (CD4+) and the bottom (CD68+) of
the figure. For each pair of presented animals, placebo-treated animals were located above, and PEP-treated animals below. Animals killed on day 14,
day 21, and day 28 were shown from the left to right of the figure. The horizontal bar on each panel corresponds to 100 mm. Each picture was
representative of explored tissues and was cropped from a large image. Lymph node and GALT architecture organization is shown; specific staining is
colored brown.
doi:10.1371/journal.pone.0010570.g003
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treatment. By contrast, the area stained for CD68 was greater in

all PEP-treated animals than those treated for placebo at the same

time. Treatment 4 hr after infection appeared to be effective

against early CD4+ T cells depletion in the rectum; this efficiency

was lost when treatment was started later (D7-D21, and

particularly D14-D28). There was no difference in areas stained

for CD68+ between placebo and PEP-treated animals, at

whichever point macaques were studied.

Discussion

We aimed to investigate the impact of either early, or delayed

ART during primary intravenous infection of macaques with

pathogenic SIVmac251. Interestingly, during this period, there is a

clear relationship between peripheral and tissue viral loads both in

placebo and PEP-treated animals for a given date. Our findings

favor the initiation of ART before the viremia peak, even one

week after infection. ART initiated after the peak of viral

replication showed no impact on viral spread, due to early

dissemination.

Very low levels of viral replication (SIV RNA) and dissemina-

tion (DNA) were found in mucosal tissues, if ART was started four

hours after infection (below the threshold in four animals out of 5;

Fig. 2). The immunological benefit of preventing CD4+ T cell

depletion in LN and mucosal tissues is obvious, as for acute

infections: the mucosa is the dominant site of infection, and the

gastrointestinal tract/other mucosal tissues contain at least half of

the body’s T cells [13]. In macaques infected with SIV, intestinal

CD4+ T cells are almost entirely depleted within three weeks of

infection [14–16]. Despite a few studies on the most acute stages of

HIV-1 infection in humans, it is likely that there is a similar large

and rapid loss of intestinal CD4+ T cells during the early periods

of infection [17–19].

ART started seven days after infection continued to have an

impact on both viral replication (RNA) and dissemination (DNA)

in the gastrointestinal tract. Moreover, viral dissemination was

lower in mucosal tissues than in LN. Nevertheless, delayed

treatment did not stop the depletion of CD4+ T lymphocytes in

the rectum, as shown by results on day 21. Verhoeven D et al.,

treating SIV-infected rhesus macaques with PMPA+FTC with the

same schedule (from 7 days pi), reported similar acute CD4+ T cell

loss two weeks after infection in the jejunum [7].

ART that was started 14 days pi did not result in a

significant decrease of SIV DNA and RNA in the rectum.

Macaques treated with PMPA eight weeks after infection have

slightly lower intestinal (samples from jejunum and colon) SIV

RNA levels [20]. Despite a clear activation of the immune

system and modification of lymph-node architecture, which is

typical of this infection [21], CD4+T lymphocyte localization

seemed to be more conserved and the number of CD4+ T

lymphocytes remained higher in treated animals in LN and in

gut associated lymphoid tissues (GALT) than in placebo-

treated animals.

Figure 4. Low magnification of IHC stains of rectal samples in placebo- and ART-treated animals. The lymphoid-rich area (Payer’s patch)
was sectioned by a dotted line and stars indicated lymphoid follicles; rare CD4+ lymphocyte staining is highlighted by arrows. CD68+ staining is seen
in both lymphoid follicles and interstitial zones (arrows). Presentation as in Figure 3.
doi:10.1371/journal.pone.0010570.g004

ART during SIV Acute Infection

PLoS ONE | www.plosone.org 6 May 2010 | Volume 5 | Issue 5 | e10570



Observational studies in humans, along with limited and

contradictory studies using animal models, suggest that there may

be a window of opportunity for initiating ART to preserve

mucosal CD4 T cells or to allow a complete repopulation.

Mehandru et al. found that therapy failed to significantly

repopulate mucosal CD4+ T cells in eight HIV-infected subjects

who started ART early during primary infection [22]. Tincati et

al. evaluated the kinetics of CD4+ T-cell decrease and ART-

mediated immune reconstitution in the gastrointestinal tract of

nine patients during the acute phase of HIV infection, by

performing rectosigmoid colonic biopsies before and after six

months of ART [23]. Time from symptoms to therapy ranged

from 13 to 49 days (mean 26 days) and the regimen most often

used was identical to the one used in this study (AZT+3TC+IDV).

HIV DNA was only marginally reduced in the gastrointestinal

tract; this was associated with persistent immunological impair-

ment in GALT. By contrast, Guadalupe et al. demonstrated that

one patient who started ART within six weeks of infection showed

significant mucosal repopulation [24]. Verhoeven D et al., using

rhesus macaques infected with SIV and treated with FTC

(emtricitabine)/PMPA at 1 weeks of infection over a period of

30 weeks, showed, despite major suppression of viral RNA levels

in GALT, that ART led to a restoration of CD4+T cell levels in

this tissue, in comparison with placebo-treated animals [25,7].

Thus, ART may have been initiated too late, as a severe (and

partially not reversible) depletion of CD4+ T cells in GALT had

already occurred; this contrasts with the rapid and complete

restoration of CD4+ T-cell levels in GALT, which is observed

when the same regimen is initiated one week pi [7]. This

suggestion is supported by a report by George M.D. et al.; they

studied mucosal CD4+T-cell restoration in a model of rhesus

macaques intravenously infected with SIVmac251 and given PMPA

or placebo six weeks after infection, with PMPA given over the

course of 20 weeks [26]. They demonstrated a marked

suppression of mucosal viral loads and rapid reconstitution of

CD4+T cells, in GALT of animals receiving ART. Treatment

initiated one week after infection, using our combination of drugs

(AZT/3TC/IDV) and over a period too short to be fully effective,

reduced viral dissemination, but had no effect on LN hyperplasia.

Despite the impact on viral replication and dissemination in

lymph nodes and mucosal tissues, we were unable to show a clear

benefit toward target cell depletion in these tissues. It may be

related to a lack of potency in the treatment, and/or to the short

duration of the experiment. Previous analysis of B cell

functionality and distribution in these animals on day 14 (early

ART) showed that ART has only a minimal effect on early Ig

production and B cell distribution; however, ART stops the

increase in germinal center growth and other changes observed on

day 28 (D14-28 ART) in mesenteric LN and spleen [27]. Taken

together, these data support a limited but real immunological

benefit associated with ART treatment, even if our understanding

of the underlying mechanisms requires further study.

Figure 5. Low magnification of IHC stains of lung samples in placebo- and ART-treated animals. CD4+ staining was occasionally found in
the lung (arrow). CD68+ (alveolar monocyte/macrophages) staining was greater in the placebo (dotted line) than in ART-treated animals (arrow). A
random portion of the lung was taken from a large image. Presentation as in Figure 3.
doi:10.1371/journal.pone.0010570.g005
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Limitations in our study included difficulty in accurately defining

the significance of the number of target cells in animals, as we did

not know the status (resting/activated) of these target cells, and

difficulty in accurately determining the level of viral production,

despite our PCR evaluation. As all the animals were killed, another

limit of our study was the inability to study the natural long-term

outcome of the animals, such as cellular repopulation by target cells

in the various tissues (peripheral lymph nodes, rectum and lung).

The individual virological (reduction of total SIV DNA in

lymphoid organs, despite lack of protection) and public health

(decreasing the infectiousness of HIV in patients with acute HIV-1

infection) benefits of delayed therapy, initiated before the peak of

viremia, even one week after infection, should be taken into account

for persons seeking care 72 hours after HIV exposure. Further

studies should include time points between 48 and 72 hours, a drug

regimen resembling current HIV PEP, and long-term experiments

with or without the cessation of treatment, to study the potential for

long-term change in viral replication patterns and clinical outcome

by stopping or limiting the primary infection [28].

Materials and Methods

Animals and Ethics Statement
Twenty-eight adult Mauritian cynomolgus macaques (Macaca

fascicularis), weighing 4 to 6 kg, were housed in single cages within

level 3 biosafety facilities. They tested negative for SIV, simian T-

lymphotropic virus, herpes B virus, filovirus, simian retrovirus 1,

simian retrovirus 2, measles, hepatitis B virus HBsAg, and hepatitis

B virus HBcAb. Animals were housed and cared for in accordance

with the European guidelines for animal care (‘‘Journal Officiel des

Communautés Européennes,’’ L358, 18 December 1986). All protocols

used in this study were reviewed and approved by a regional

animal care and use committee: ‘‘Comité Regional d’Ethique sur

l’expérimentation animale Ile de France Sud’’, with the goal of

improving animal welfare and limit suffering. The animals were

sedated with ketamine chlorhydrate (Rhone-Merieux, Lyon,

France), before virus injection, blood sample collection, and

before receiving treatment or placebo, as previously described [6].

Virus inoculation
Macaques were inoculated, via the saphenous vein, using 50% of

the animal intravenous infectious dose (50 AID50) of a cell-free virus

stock of pathogenic SIVmac251 (provided by A. M Aubertin,

Université Louis Pasteur, Strasbourg, France) in 1 ml of phos-

phate-buffered saline (PBS) [29]. We assessed the in vitro

susceptibility of the virus stock to AZT, 3TC, and indinavir: each

compound, given alone at a concentration of 100 nM, inhibited 56,

76 and 94%, respectively, of SIVmac251 replication in a human

PBMC culture assay, whereas, in combination at 10 and 100 nM,

inhibition reached 93% (10 nM) and was close to 100% (100 nM) in

a similar assay [30].

Treatment of animals
Twenty-eight animals were divided into groups of 3 to 5

macaques each, and were given placebo (Fig. 1A) or the

Figure 6. Percentage of the area stained for CD4+ and CD68+ cells (IHC) in peripheral LN and rectum, according to treatment
groups and dates of initiation. Dark dot blots symbolized placebo-treated animals, and white dot blots, PEP-treated animals. The percentage of
the stained area was determined by a quantification performed using two animals per group (see Material and methods).
doi:10.1371/journal.pone.0010570.g006
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combination of AZT (4.5 mg/kg of body weight), 3TC (2.5 mg/kg)

subcutaneously, and indinavir (60 mg/kg) orally, using a nasogastric

catheter, twice-a-day [6]. AZT and 3TC were mixed with 9%

sodium saline, to obtain respective concentrations of 4.5 and

2.5 mg/ml; indinavir was mixed with 0.5% methylcellulose, to

obtain a final concentration of 60 mg/ml. The animals received

1 ml/kg of each solution. Treatment was initiated at 4 hours, on

day 7 or on day 14 after infection, and was maintained for 14 days.

The animals being given placebo or ART were then killed on day

14, 21 or day 28.

T-lymphocyte subset determination
PBMCs were analyzed by flow cytometry with a FACScan

cytometer, using CellQuest software (Becton Dickinson), as

described previously [6]. Briefly, we incubated 30 ml of whole blood

for 30 min with anti-CD3 monoclonal antibody (MAb) (FN-18)

(Biosource International, Camarillo, Calif.), anti-CD4 (L200R,

Phycoerythrin (PE)), and anti-CD8 (B9.11; PE-Cyanine 5) mono-

clonal antibodies (BD Biosciences, San Jose, CA, USA). Fluorescein

isothiocyanate (FITC) and PE-conjugated immunoglobulins G1

(Immunotech, Marseille, France) were used as controls.

Plasma viral load determination
Viral RNA was quantified, as previously described [31].

Amplifications were performed in duplicate within an iCycler

thermocycler (Biorad, Marnes-la-Coquette, France). The standard

RNA template dilution, over 7 orders of magnitude, showed a

correlation coefficient of up to 97%, with a sensitivity correspond-

ing to at least 60 copies/ml.

Tissue collection
Peripheral lymph nodes from three locations (axillary, inguinal,

and iliac), lung, (as part of mucosa-associated lymphoid tissue), and

rectum, (as part of the GALT), were collected at necropsy on days

14, 21 and 28 pi. Cell-associated virus loads were then quantified

in these organs, in all animals in the study.

Tissue RNA and DNA extraction
Tissue lysates were obtained after mechanical disruption of

tissue samples in RA1 buffer (Macherey Nagel, Hoerdt, France)

with a Precellys system, using 18 CK tubes with ceramic beads

(Bertin technologies, Montigny-le-Bretonneux, France). The tissue

lysate was then diluted to 30 mg/ml in RA1, aliquoted and stored

at -80uC until extraction. Total RNA was extracted in duplicate

from lysate aliquots using the Nucleospin 96 RNA kit (Macherey

Nagel). Contaminating DNA was removed from RNA samples by

DNA elution and DNase treatment. Total DNA was recovered

from tissue lysates using the Nucleospin 96 tissue kit (Macherey

Nagel), according to manufacturer’s instructions. PBMCs from

non-infected macaques and PBMCs from infected macaques were

used as negative and positive controls, respectively. Quantification

was performed using an external standard, diluted on a log10 scale,

to obtain a standard curve as described [32].

2-LTR circle analysis using real-time PCR
The 2-LTR junction (<274 bp) was amplified in duplicate from

250ng of total DNA in a 25 ml reaction mixture comprising 16
AbsoluteTM QPCR SYBH Green Mixes (ABgene, Surrey, UK),

and 400 nM of each primer, REVN1 59-CTCCTGTGCCT-

CATCTGATACA-39 (22 bp) [33] and FMAN 59-TGTGT-

GTTCCCATCTCTCCT-39 (20 bp), which recognizes sequences

in the U5 (nt 158–179) and U3 (nt 10162-10181) regions of

SIVMM239, respectively. PCR cycles included a denaturation

step of 10 min at 95uC followed by 50 cycles of 95uC for 10 s,

61uC for 10 s, and 72uC for 20 s. The copy number of 2-LTR

circles was determined in reference to a standard curve generated

by PCR amplification of a serial dilution of the plasmid

PCR4TOPO2-LTR (containing the SIVmac251 2-LTR junction).

DNA sequence analysis of random samples confirmed that the

PCR products spanned the 2-LTR junction (Figure S1). In our

system (iCycler v3.1, Biorad), we performed linear regression over

the 7-log10-unit range of the 2-LTR circle standard, which

detected up to 20 copies of 2-LTR within 250 ng of cell DNA

(Figure S1) [11].

Viral RNA quantification in tissue
RNA extracted from tissue was analyzed in duplicate by RT-qPCR

using the Super Script III platinum one-step quantitative RT-PCR

system (Invitrogen, Cergy-Pontoise, France) with SIV gag primers and

probe as previously described [34]. Reactions and data acquisition

were carried out with the I-Cycler real-time PCR system (Biorad). To

normalize the RNA input, GAPDH RNA was simultaneously

quantified using a previously published primer set and probe

[35,36]. To determine the amplification efficiency, we included

negative controls and serial 10-fold dilutions of SIV and GAPDH

RNA for each experiment. As the efficiency of each GAPDH and SIV

reaction was similar, we conducted a 22DCt analysis. Results were

expressed as SIV RNA copies/GAPDH RNA copies.

Immunohistochemistry (IHC) on paraffin-embedded
tissues

IHC was performed on deparaffinized LN, rectum and lung

sections, after high-temperature antigen retrieval in the presence of

10 mM sodium citrate buffer, pH = 6, or 1 mM EDTA pH = 9,

with primary mAbs recognizing CD3, CD4 and CD68. Clones,

isotypes, sources, and conditions were 1F6, IgG1, (Novocastra,

Newcastle, UK), pH 9 for CD4; and KP1, IgG1, (Dako, Glostrup,

Denmark), pH 9 for CD68, respectively. Ab binding was visualized

with the StreptABComplex/HRP duet kit and DAB (3,3 Diamino-

benzidine) (Dako). After washing, slides were counterstained with

Mayer’s Hemalun for 45 sec, and were then dehydrated and

mounted. Whole brightfield microscope images (magnification 106
or 46, area 5 to 100 mm2) per sample were captured with a DS-

Ri1 CCD camera mounted on an upright microscope 90i (Nikon

Instrument Europe BV, Amstelveen, The Netherlands).

Quantification of the areas that underwent
immunohistochemical staining

To quantify the percentage of the areas stained for CD4 and CD68,

images were processed and quantified with ImageJ, a public domain

Java image processing program (U.S. NIH). Briefly, brown-colored

images specific for H-DAB stain (red = 0.7110272, green =

0.42318153, blue = 0.5615672) were extracted by color deconvolution

[37], and measured for specific staining using threshold ImageJ

internal commands. The number of pixels corresponding to CD4 or

CD68 staining and total tissue was obtained, generating the

percentage of the area stained. This percentage, determined using

two fields per animal, was then used for the analysis.

Statistical analysis
Statistical analysis was carried out using nonparametric

Wilcoxon and Mann-Whitney rank tests, which are adapted to

small sample sizes, using StatView software (SAS Institute Inc.,

Cary, N.C). Viral production over the course of a selected period

of time was measured by computing the area under the curve

(AUC) using the trapezoid calculation.
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Supporting Information

Figure S1 Scheme of 2 LTR quantification using Q-RT-PCR

and sequences of 2-LTR junction in PCR products cloned into the

plasmid used to provide references curves.

Found at: doi:10.1371/journal.pone.0010570.s001 (2.53 MB TIF)
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