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Abstract

Stroke and peripheral limb ischemia are serious clinical problems with poor prognosis and limited treatment. The
cytokines erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF) have been used to induce endogenous
cell repair and angiogenesis. Here, we demonstrated that the combination therapy of EPO and G-CSF exerted synergistic
effects on cell survival and functional recovery from cerebral and peripheral limbs ischemia. We observed that even under
normoxic conditions, G-CSF activates hypoxia-inducible factor-1a (HIF-1a), which then binds to the EPO promoter and
enhances EPO expression. Serum EPO level was significantly increased by G-CSF injection, with the exception of Tg-HIF-
1a+f/+f mice. The neuroplastic mechanisms exerted by EPO combined with G-CSF included enhanced expression of the
antiapoptotic protein of Bcl-2, augmented neurotrophic factors synthesis, and promoted neovascularization. Further, the
combination therapy significantly increased homing and differentiation of bone marrow stem cells (BMSCs) and intrinsic
neural progenitor cells (INPCs) into the ischemic area. In summary, EPO in combination with G-CSF synergistically
enhanced angiogenesis and tissue plasticity in ischemic animal models, leading to greater functional recovery than either
agent alone.
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Introduction

Erythropoietin (EPO), a 30.4 kDa glycoprotein, acts mainly on

late erythroid precursor cells to induce maturation. Exogenous

administration of EPO and endogenous upregulation of EPO

receptors have been demonstrated to promote neuronal survival

in the injured brain [1]. EPO has also been identified as an

effective neuroprotective agent in neuronal cell cultures [2].

Furthermore, granulocyte-colony stimulating factor (G-CSF) is a

19.6 kDa glycoprotein that has long been used to treat

neutropenia [3]. Similar to EPO, G-CSF has also shown

neuroprotective potential in animal models of stroke [4,5] and

in neuronal cultures [6]. Hypoxia-inducible factor-1a (HIF-1a) is

a heterodimeric transcription factor composed of two basic helix-

loop-helix (bHLH) proteins of the PAS family, HIF-1a and HIF-

1b [7]. Although HIF-1a activation is important in the response

to environmental hypoxia by genes encoding vascular endothelial

growth factor (VEGF), stromal cell derived factor 1 (SDF-1) and

EPO, there is increasing evidence that HIF-1a activation [8]

induced by interleukin (IL)-1b and TNF [9], angiotensin II [10],

thrombin [11], and insulin [12] also occurs under normoxic

conditions. However, to date there have been no reports of G-

CSF activating HIF-1a to upregulate EPO expression under

normoxic conditions.

Previous reports have described the beneficial effects from

exogenous administration of multiple cytokines, such as EPO,

G-CSF, stem cell factor (SCF) and IL-11 [13,14,15]. The

simultaneous administration of two or three cytokines may

result in non-additive, synergistic or inhibitory interactions.

EPO combined with G-CSF not only rescued patients suffering

from life-threatening neutropenia but also improved blood cell

regeneration in patients receiving high-dose chemotherapy

[16,17]. However, the neuroplastic and angiogenic effects of

combined EPO and G-CSF treatment have not been

investigated.

In this study, we intended to demonstrate that G-CSF

upregulates EPO expression via the induction of HIF-1a activity,

and that the co-treatment of G-CSF and EPO synergistically

enhances neural survival and angiogenesis in both primary cortical

cultures and animal models of ischemia.
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Results

G-CSF Stimulated HIF-1a and EPO Expression
To evaluate whether subcutaneous injection of G-CSF for 5

consecutive days could enhance EPO production in humans,

serum EPO levels of human donors (n = 24) were measured by

ELISA at 1, 3, 7, and 14 days. We noted an increase in serum

EPO level, which the peak level was seen in the 3th days after first

G-CSF injection (Fig. 1A).

Next, to examine increased EPO protein expression from HIF-

1a activation, human umbilical vein endothelial cells (HUVECs,

Cambrex) were treated with G-CSF for different durations (0.5, 1,

4, 10 and 24 hours), and at different concentrations (0.01, 0.1, 1

and 10 mg/mL). HIF-1a and of EPO protein expression increased

following G-CSF treatment (Fig. 1B–C). In addition, G-CSF

increased HIF-1a activity in whole cell lysate (Fig. 1D). The

protein levels of HIF-1a and EPO stimulated by G-CSF were

blocked by pretreatment with 2-methoxyestradiol (2-ME2, 5 mM;

Fig. 1D).

The subcellular location of HIF-1a in HUVECs with or without

G-CSF treatment was determined by immunohistochemistry.

Without G-CSF treatment, HIF-1a was primarily localized in

the cytosol (Fig. 1E). G-CSF treatment induced the translocation

of HIF-1a into the nucleus or to perinuclear areas (Fig. 1E).

Pretreatment with 2-ME2 in HUVECs for 16 hours blocked the

HIF-1a nuclear translocation (Fig. 1E).

According to results from an electrophoretic mobility shift assay

(EMSA) using an 18-bp oligonucleotide probe containing the

HRE with the HIF-1a-binding site of the EPO gene promoter

(Fig. 2A), G-CSF at a concentration of 0.1 mg/mL was sufficient to

induce DNA binding complex formation. Binding was reduced by

competition with an unlabeled oligonucleotide, and the complexes

were supershifted by a specific HIF-1a antibody in a similar

manner in reaction to hypoxia, indicating the presence of this

protein in these complexes (Fig. 2B). In addition, oxygen glucose

deprivation (OGD), G-CSF (0.1 mg/mL) and chemical hypoxic

(deferoxamine, DFO) conditions induced higher luciferase report-

er gene activity in a construct (pEpoE-luc) containing HRE from

the erythropoietin gene coupled to a SV40 promoter than in a

mutant (pEpoEm1-luc) construct or control cells (Fig. 2C).

EPO+G-CSF Exerted Survival and Plastic Effects
To examine whether EPO combined with G-CSF exerts a

neuroprotective effect through an antiapoptotic pathway, Bcl-2

protein expression, caspase-3 activity and synthesis of neurotroph-

ic factors under OGD were measured in primary cultures of rat

cortical cultures (PCCs) with or without co-treatment of EPO and

G-CSF. In OGD, PCCs pretreated with EPO+G-CSF for

12 hours showed significantly less caspase-3 activity by fluorimet-

ric methods than EPO alone, G-CSF alone or control groups

(Fig. 3A). Levels of anti-apoptotic Bcl-2 also increased significantly

in the EPO+G-CSF group compared with EPO alone, G-CSF

alone, and control group (Fig. 3B). PCCs treated with EPO+G-

CSF for 3–5 days had higher titers of brain derived neurotrophic

factor (BDNF) and stromal cell derived factor 1 (SDF-1) than EPO

alone, G-CSF alone, or control groups (Fig. 3C).

According to previous publications, we designed into 11

experimental groups (each group n = 8) with different therapeutic

recipes (Fig. 4A) [1,6,16,18,19,20,21]. At 7 d post-cerebral

ischemia, infarct volumes were significantly smaller in three

groups: EPO (10,000 U/kg) + G-CSF (100 mg/kg) in Group F;

EPO (5000 U/kg) + G-CSF (50 mg/kg) in Group G; and EPO

(2500 U/kg) + G-CSF (50 mg/kg) in Group I (Fig. 4A). We

selected a lower dosage combination group from one of these three

groups to investigate the combination therapeutic effect in

comparison with those for single agent and saline control. In all,

we selected 4 of the 11 groups (each treatment started at one day

after cerebral ischemia) for this study: 1) a low-dose combination of

EPO (2500 U/kg) + G-CSF (50 mg/kg) (Group I), 2) G-CSF alone

(50 mg/kg) (Group C), 3) EPO alone (5000 U/kg) (Group D), and

4) a saline control (Fig. 4B).

Seven days after cerebral ischemia, infarct volume was

significantly reduced from an average of 159632 mm3 in saline-

treated controls to 77626 mm3 in EPO, 71626 mm3 in G-CSF,

and 42623 mm3 in EPO+G-CSF group (Fig. 4C). The infarcted

area of the largest infarcted slice decreased significantly from

17.165.3 mm2 in controls, to 10.164.1 mm2 in EPO,

9.065.2 mm2 in G-CSF, and 6.163.9 mm2 in EPO+G-CSF

group (Fig. 4C). The number of infarcted slices also decreased

significantly from 7.161.8 slices/rat in control animals to 4.861.9

slices/rat in EPO-, 4.361.4 slices/rat in G-CSF-, and 2.761.3

slices/rat in EPO+G-CSF-treated animals (Fig. 4C).

Body asymmetry, locomotor activity tests and grip strength

measurement were used to assess the neurological functional

recovery in EPO+G-CSF-treated, EPO-treated, G-CSF-treated

and control rats (each group n = 10). EPO+G-CSF-treated rats

showed much higher percentage of recovery in body swing tests

than rats treated with EPO only, G-CSF only, or control rats

(Fig. 4D). Locomotor activities after cerebral ischemia in EPO+G-

CSF group were significantly better than those in the other groups

(Fig. 4E, F and G). In addition, the EPO + G-CSF-treated group

had a much higher strength than the other groups in terms of

forelimb grip strength 28 d post-treatment relative to pre-

treatment (Fig. 4H).

To verify whether subcutaneous EPO+G-CSF administration

could enhance metabolic activity, we examined cortical glucose

metabolism by [18F]fluoro-2-deoxyglucose positron emission

tomography (FDG-PET) one week post-treatment (each group

n = 8). The results indicate that FDG uptake in the right cortexes

of the EPO + G-CSF group was significantly better than that in

the EPO, G-CSF or control groups (Fig. 4I).

Next, we examined the anti-apoptotic effects and neurotrophic

factor synthesis of EPO + G-CSF in post-cerebral ischemic rats by

Western blot analysis and ELISA (each group n = 8). The anti-

apoptotic protein Bcl-2 was significantly upregulated in EPO+G-

CSF, EPO, and G-CSF groups, compared with control group

(Fig. 4J), and the EPO+G-CSF combination induced significantly

greater expression of Bcl-2 than EPO or G-CSF alone 24 hr after

ischemia (Fig. 4J). One week after ischemia, rat brains treated with

EPO+G-CSF had higher BDNF and SDF-1 titers than those

treated with EPO alone, G-CSF alone, or control (Fig. 4K).

As measured by ELISA 3 days after G-CSF (250 mg/kg) or EPO

(5000 U/kg)+G-CSF (250 mg/kg) injection, serum EPO levels in

wild-type mice (C57BL/6 mice) increased significantly compared

to control mice (each group n = 6) (Fig. 4K). In contrast, G-CSF or

EPO+G-CSF injection did not stimulate the additive upregulation

of serum EPO in the Tg-HIF-1a+f/+f mice (Fig. 4K).

Cellular apoptosis in ischemic rat brain slices was studied by

TUNEL staining. Rats without MCA ligation had almost no

TUNEL positive staining in their brain sections (each group n = 8).

The penumbral region surrounding the ischemic cores of EPO+G-

CSF-treated rats contained significantly fewer TUNEL positive

cells than the same regions in EPO alone, G-CSF alone, or

ischemic control (Fig. 4L).

EPO+G-CSF Enhanced Stem Cell Biological Activity
Bromodeoxyuridine (BrdU) labeling was used to trace the

homing and engraftment of stem cells (including intrinsic neural
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progenitor cells [INPCs] and bone marrow derived stem cells

[BMSCs]) to brain tissue at 7 days after cerebral ischemia.

According to cumulative BrdU labeling immunohistochemistry,

many BrdU+ cells were found in the ipsilateral cortex near the

infarct boundary (Fig. 5A, B and C) and the subventricular region

of the ischemic hemisphere (Fig. 5D, E and F). BrdU+ cells were

also identified around the lumen of blood vessels of varying

calibers in the perivascular portion of the ischemic hemisphere

(Fig. 5G, H and I). Results from BrdU pulse labeling experiments

showed significantly greater numbers of BrdU+ cells in EPO+G-

CSF-treated rats than those in EPO-, G-CSF-, or saline-treated

rats (each group n = 8) (Fig. 5J).

To assess specifically whether INPCs or BMSCs proliferated

and differentiated into neural cells at ischemic sites, brain slices of

GFP-chimeric and nestin-EGFP mice receiving each treatment

type were examined by double-staining immunohistochemistry at

28 days after cerebral ischemia. In transgenic GFP-chimeric mice,

more GFP+c-Kit+ BMSCs were dispersed over the right striatum,

hippocampus and the penumbral area in EPO+G-CSF-treated

mice compared to EPO-, G-CSF-, or saline-treated mice (each

group n = 8) (Fig. 5K). Fractions of GFP+c-Kit+ cells colocalizing

with specific markers MAP-2, GFAP, Neu-N, and Musashi-1 in

the EPO+G-CSF-treated mice (<4%, <8%, <6%, and <5%,

respectively), were significantly higher than those in the EPO-

treated (<2%, <5%, <4%, and <2%), G-CSF-treated (<2%,

<6%, <3%, and <3%) and control (<1%, <0.5%, <1%, and

<0.5%) groups (Fig. 5L). In nestin-EGFP mice, greater numbers

of nestin-EGFP+ cells were also Ki67+ over the striatum and

penumbral region in EPO+G-CSF-treated mice than in other

treatment and control groups (each group n = 8) (Fig. 5M).

Quantitatively, fractions of nestin-EGFP+ cells colocalizing with

Ki67 and the specific markers MAP-2, GFAP, and Neu-N were

<2%, <3.5%, and <5% in the EPO+G-CSF-treated mice,

respectively, significantly higher than in the EPO-treated (<1.3%,

<2%, and <3%), G-CSF-treated (<1%, <1.8%, and <2.5%)

and control (<0.5%, <0.3%, and <0.5%) groups (Fig. 5N).

EPO+G-CSF Promoted Angiogenesis in Ischemic Model
To determine whether subcutaneous EPO+G-CSF administra-

tion could induce angiogenesis through encouraging the homing of

BMSCs and their differentiation into vascular-endothelial cells at

ischemic sites, double-staining immunohistochemistry, FITC-

dextran perfusion studies and blood vessel density assays were

performed on each brain slice from each experimental mouse at

28 days after cerebral ischemia. Several GFP+ cells from

transgenic GFP-chimeric mice showed vascular phenotypes

(vWF+ cells) around the perivascular and endothelial regions

(Fig. 6A) of the ischemic hemispheres of EPO+G-CSF-treated rats.

According to a visual inspection of the FITC-dextran perfusion,

much greater cerebral microvascular perfusion occurred in mice

treated with EPO + G-CSF than mice in the EPO, G-CSF or

control groups (each group n = 8) (Fig. 6B). In addition, results

from blood vessel density quantification by CD31 immunoreac-

tivity (Fig. 6C) show better neovascularization in the penumbral

areas of ischemic rats treated with EPO + G-CSF compared to the

other three groups (each group n = 8) (Fig. 6C).

Whether the increased blood vessel density enhanced functional

CBF in the ischemic brain was examined by laser Doppler

flowmetry (LDF) under anesthesia after cerebral ischemia. At one

week after cerebral ischemia, CBF was significantly greater in the

ischemic cortex of the EPO+G-CSF-treated rats than that in EPO,

G-CSF or control (each group n = 8) (Fig. 6D).

To determine whether subcutaneous EPO+G-CSF administra-

tion could enhance neovascularization and restore blood perfusion

in peripheral limb ischemia, double staining immunohistochem-

istry, blood vessel density assays and laser Doppler perfusion

imaging (LDPI) analysis were performed on both limbs from each

experimental mouse. Several GFP+ cells from transgenic GFP-

chimeric mice co-expressed vascular phenotypes (vWF+ cells)

around the perivascular and endothelial regions of the ischemic

limb muscles of EPO+G-CSF-treated mice (Fig. 6E). According to

quantitative measurements of blood vessel density by CD31

immunoreactivity (Fig. 6E), ischemic limbs from mice treated with

EPO+G-CSF had more muscle neovasculature than those with

EPO or G-CSF alone or controls (each group n = 8). In evaluation

of the blood perfusion of ischemic limbs by LDPI, EPO+G-CSF

treatment led to significantly greater recovery of blood perfusion of

ischemic limbs than G-CSF, EPO alone or control (each group

n = 8) (Fig. 6F).

Discussion

Although many reports have noted the synergy between EPO

and G-CSF in the treatment of anemia in myelodysplastic

syndromes (MDS) [16,18], investigators did not propose any

mechanism to explain the results of clinical trial. In previous

reports, both EPO and G-CSF have been shown to possess anti-

apoptotic, angiogenic and neuroprotective properties [2,5,6] and

have also been regarded as therapeutic agents in acute stroke

models [1,19] and peripheral limb ischemic models [22]. In this

study, we demonstrated that EPO in combination with G-CSF

enhanced more plastic effects and revascularization in cerebral

and limb ischemic models than either alone.

HIF-1a is activated by G-CSF in HUVECs under normoxia

condition, as evidenced by our observation that G-CSF stimula-

tion leads to enhanced HIF-1a activity and increased DNA-

binding activity driven by the HRE. G-CSF is known to enhance

the expression of two HIF-1a target genes, VEGF and SDF-1, in

human neural stem cell cultures and platelets [22,23]. In our

study, G-CSF also enhanced expression of the HIF-1a target genes

EPO in HUVECs with a similar mechanism.

Cells express many proteins in response to hypoxia and

ischemia, which supports cellular adaptation in response to altered

metabolic demands and the removal of toxic substances [24]. As a

master regulatory gene, HIF-1a controls critical pro-angiogenic

genes such as VEGF and EPO [25,26]. Since VEGF and EPO

genes contain the HRE in their promoter regions, some normoxic

factors could also upregulate the expression of VEGF or EPO via

HIF-1a activation [11,27]. According to two previous studies, G-

CSF may promote VEGF secretion through HIF-1a activation

[28,29]. Administration of G-CSF is known to augment

angiogenesis by upregulation of VEGF in neurotrophils [28],

and has been reported to raise serum VEGF level of patients [30].

Figure 1. G-CSF increased serum EPO in human and stimulated the expression of EPO by activating HIF-1a in HUVECs. (A) G-CSF-
treatment for 5 consecutive days in human showed significant increases serum EPO level compared to control [C]. (B–C) G-CSF induced the protein
expression of both HIF-1a and EPO. (D) G-CSF also enhanced the activity of HIF-1a in cell lysate. The upregulation of HIF-1a activity, and protein
expression of HIF-1a and EPO stimulated by adding G-CSF returned to normal levels after addition of 2-methoxyestradiol (2-ME2). (E) G-CSF treatment
induced the translocation of HIF-1a into nuclei (PI: propidium iodide, nuclear stain) or to perinuclear areas. In contrast, pretreatment with 2-ME2
inhibited the nuclear translocation of HIF-1a. Mean 6 SEM, *P,0.05 and **P,0.01 vs. control. Bar = 50 mm.
doi:10.1371/journal.pone.0010093.g001
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Here we have demonstrated for the first time that G-CSF

enhances the synthesis of EPO via upregulation of HIF-1a in

primary cortical culture. The activated HIF-1a bound to the HRE

of the EPO promoter and turned on the expression of EPO. The

mechanism associated with EPO expression regulation and G-

CSF in the present study may be similar to a previously described

molecular mechanism involved in VEGF expression regulation

and macrophage colony-stimulating factor (M-CSF) in cell

monocytes and macrophages [29].

Recombinant EPO and G-CSF have been used clinically for

over 20 years [31]. Many researchers have investigated the

synergistic effects of administering EPO and G-CSF in hemato-

poiesis, including granulopoiesis and erythropoiesis [13,14,15].

Although either EPO or G-CSF has been shown to express

neuroprotective and angiogenic effects in stroke animal models

[1,6,19] and limb ischemia [22], no report has yet focused on the

enhanced ability of these two cytokines in combination to induce

neuroplasticity and angiogenesis. Other cytokines (stem cell

factors, hepatocyte growth factors and stromal cell-derived factor

1a) in combination with G-CSF have also been reported as

beneficial in animal stroke models [32,33] and limb ischemia [34].

We showed here that G-CSF and EPO synergized to produce

better functional recovery from stroke and limb ischemia than

either factor alone, which might be due to much enhanced

angiogenesis and significant relevant neuroprotection. Since many

cytokines and growth factors may be involved in ischemic repair

and recovery mechanism, additional study is required to clarify

which combination therapy might have the greatest plastic effect

on ischemic tissue.

In the present study, the bone marrow stem cells (BMSCs)

homing and differentiation were significantly enhanced by EPO

in combination with G-CSF treatment. Previous investigators

have also demonstrated the individual capability of EPO or G-

CSF to stimulate proliferation and differentiation of neural stem/

progenitor cells inside the animal brain [6,33,35,36,37,38,39].

Some studies discovered that EPO enhanced the expression of a

signaling protein (SOCS2) and a transcriptional factor (neuro-

genin 1) to regulate the neural stem/progenitor cell proliferation

and differentiation [35,37]. In other words, it is clear that both

EPO and G-CSF are capable of stimulating neurogenesis to

repair injured neural tissue. Other research teams have reported

that a combination of G-CSF and stem cell factor (SCF) may be

capable of inducing neural progenitor cell growth, thereby

producing an enhanced plastic effect during brain repair

[33,39]. Here we found that a combination of G-CSF and

EPO could synergistically promote proliferation of the neural

progenitor cells residing in the hippocampus and subventricular

region of brain. In addition to BrdU labeling methods, we further

applied the Nestin-EGFP transgenic mice model to certify the

proliferation, differentiation and mobilization of endogenous

neural progenitor cells in the ischemic brain after a combination

of G-CSF and EPO treatment. In summary, EPO in combination

with G-CSF might be a feasible therapeutic strategy to treat

different neurodegenerative diseases.

Materials and Methods

Measurement of Serum EPO Levels in G-CSF-Treated
Human Donors

We obtained serum samples from age-matched (Age = 35–

40 y), healthy donors (male:female = 12:12, no athlete) at

sequential time points (1, 3, 7 and 14 days) after subcutaneous

G-CSF administration (10 to 15 mg/kg, Kirin) for 5 consecutive

days according to the manufacture’s instruction. All protocols and

informed consents procedures were fully reviewed and approved

by the Institutional Review Board of China Medical University

Hospital. Informed consent was obtained from all participants. As

a positive control, known level of EPO protein in serial dilution

were measured using a human EPO ELISA kit (R&D Systems),

with the results used to plot a standard curve. Each serum sample

for EPO concentration measurement was run in triplicate and

compared with the standard curve.

Cell Culture
Human umbilical vein endothelial cells (HUVECs; Cambrex)

were cultured in EGM-2 medium containing human epidermal

growth factor, hydrocortisone, human fibroblast growth factor,

vascular endothelial growth factor, ascorbic acid, gentamicin,

amphotericin-B, human insulin-like growth factor, heparin and

2% FBS at 37uC in a 5% CO2 humidified air incubator as

previously described [40]. Confluent cells at passage 4 were used

for all experiments.

ELISA Measurement of Activated HIF-1a in HUVECs
In order to evaluate the non-hypoxic activator effect of G-CSF,

the levels of activated HIF-1a protein after G-CSF treatment were

measured by ELISA. HUVECs were treated with different doses

(0.01, 0.1, 1, and 10 mg/mL) of G-CSF (Kirin) for 6 hours.

Nuclear extracts from these cells were incubated (50 mg/well) with

biotinylated double-stranded oligonucleotide containing a consen-

sus HIF-1a binding site from an active HIF-1a DuoSet IC ELISA

kit (R&D Systems) according to the manufacturer’s instructions.

The level of activated HIF-1a was measured by absorbance and

was expressed as optical density (OD) at 450 nm–540 nm as

previously described [41]. To confirm the role of HIF-1a in the

upregulation of EPO by G-CSF on HUVECs, cells were

pretreated with the HIF-1a inhibitor 2-ME2 (5 mM; Sigma) for

16 h as previously described [41]. Unless otherwise mentioned,

experiments were performed in triplicate.

Western Blot and Immunocytochemical Analysis
HIF-1a and EPO expressions in HUVECs were measured by

Western blot and immunohistochemical analyses. HUVECs were

treated with 1 mg/mL G-CSF for different times (0.5, 1, 4, 12 and

24 hours), or treated with different concentrations of G-CSF

ranging from 0.01 to 10 mg/mL for 6 hours. Western blot analyses

of HIF-1a, and EPO expression from HUVECs were performed

after each G-CSF treatment as previously described [42] using

appropriately antibodies to HIF-1a (1:200; Novus Biologicals),

Figure 2. G-CSF promoted HIF-1a transcriptional activity and binding to the HRE of EPO promoter. (A) An oligonucleotide containing
the HRE of the HIF-1a-binding sequence (underlined) from the EPO gene (EPO-HRE) was used in EMSA (B), comprising positive control (black star,
Lane 1), negative control (Lane 2), and DNA (DIG-labeled oligonucleotide) binding complex (Lane 5; large arrow). Binding was reduced by
competition with non-labeled probe (Lane 3, 100X excess; and Lane 4, 300X excess). Nonspecific bands (arrow head) were also shown (including Land
3 and 4). For supershift assay (small arrows), polyclonal anti-HIF-1a (Lane 6) and monoclonal anti-HIF-1a (Lane 7) were used. (C) In a luciferase reporter
assay, luciferase activity was higher in the G-CSF-treated cells transfected with pEpoE-luc than that with mutant pEpoEm1-luc, or the control cells. The
G-CSF-stimulated luciferase activities were similar to those in oxygen glucose deprivation (OGD) and chemical hypoxia (DFO) conditions. Mean 6
SEM, *P,0.05 and **P,0.01 vs. control.
doi:10.1371/journal.pone.0010093.g002
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EPO (1:200; R&D Systems) and b-actin (1:2000; Santa Cruz

Biotechnology).

For HIF-1a and EPO immunostaining, HUVECs were washed

with PBS and fixed for 30 minutes at room temperature in 4%

paraformaldehyde as previously described [42] using specific

antibody against HIF-1a (1:200; Novus Biologicals) and EPO

(1:200; R&D Systems) conjugated with FITC for 1 hour, and then

rinsed 3 times in PBS. Finally, the slides were lightly counter-

stained with DAPI, washed with water, and then mounted.

To prepare cellular extracts for analysis, HUVECs were

harvested and washed twice with cold phosphate-buffered saline

(PBS). Nuclear and cytoplasm extracts were prepared using a

commercial kit (Pierce). For oxygen glucose deprivation (OGD)

treatment, cells were placed in a hypoxic chamber (Bug Box,

Ruskinn Technology) for 4 hours, continuously flushed with 95%

N2 and 5% CO2 at 37uC to maintain pO2 of ,1 mmHg (OM-14

oxygen monitor; SensorMedics Corporation) [42]. To induce

chemical hypoxia, cells were treated in a medium containing 60–

600 mM of deferoxamine (DFO, Sigma) for 16 hours that mimics

hypoxic conditions [43].

Electrophoretic Mobility Shift Assay (EMSA)
Detailed protocols to assess HIF-1a DNA binding activity using

EMSA have been described previously [44]. In this study we used

a pair of oligonucleotide probes (59-agcttGCCCTAC

GTGCTGTCTCAg-39 and 59-aattcTGAGACAGCACG-

TAGGG Ca-39) corresponding to the hypoxia-response element

(HRE) in the EPO gene promoter [11]. Both oligonucleotides

were non-radioisotope labeled using DIG Oligonucleotide 39-End

Labeling Kit (Roche). For supershift assays, 1 mg of anti-HIF-1a
antibody (Novus Biologicals) was added to the samples 1 hour

prior to the addition of labeled probes.

Transfection and Luciferase Reporter Assay
Luciferase assays and transient transfection of pEpoEm1-luc

and pEpoE-luc reporter plasmids [a kind gift from Dr. LE Huang

[44]] into HUVECs were performed as described previously [45].

In Vitro Primary Cortical Cultures (PCCs) Preparation and
Oxygen Glucose Deprivation (OGD) Treatment

PCCs were prepared from the cerebral cortex of gestation day

17 embryos from Sprague-Dawley rats’ embryos (Animal Center,

China Medical University, Taiwan) as described previously with

modification [42]. In brief, PCCs were maintained under serum-

free conditions in neurobasal medium (Invitrogen), supplemented

with B-27 supplement (2%; Invitrogen), glutamine (0.5 mM;

Sigma), glutamate (25 mM; Sigma), penicillin (100 U/ml) and

streptomycin (100 mg/ml; Invitrogen Corp.). As suggested by the

manufacturer, on day 4 half of the medium was removed and

replaced with fresh medium without glutamate. The cultures were

maintained in a humidified incubator at 37uC with 5% CO2.

PCCs were used for experimentation on day 7. Regarding OGD

treatment, cells cultured with glucose-free Earle’s balanced salt

solution were placed in a hypoxic chamber for 4 hours (Bug Box,

Ruskinn Technology) and continuously flushed with 95% N2 and

5% CO2 at 37uC to maintain a gas phase pO2 of ,1 mmHg

(OM-14 oxygen monitor; SensorMedics), and then reoxygenated

for 24 hours.

Under OGD conditions, antiapoptotic proteins (Bcl-2, Bcl-xL)

and proapoptotic proteins (Bax and Bad) from PCCs were

analyzed after 12 hours of each cytokine pretreatment [G-CSF

(2 mg/mL)+EPO (10 U/mL), G-CSF (2 mg/mL), EPO (20 U/mL)

(Amgen) or vehicle-control] by Western blot as described

previously [42]. On days 3-5 following each treatment, total

amounts of BDNF, GDNF, SDF-1 and VEGF in the culture

medium of PCCs were measured using a DuoSet IC ELISA kit

(R&D Systems) according to the manufacturer’s instructions.

In Vivo Brain Ischemia/Reperfusion
Adult male Sprague-Dawley rats (weight 250–300 g, age 6–7th

week) were used for this study. The rats were anesthetized with

chloral hydrate (0.4 g/kg, ip) and subjected to right middle

cerebral artery (MCA) ligation and bilateral common carotid

artery clamping for 90 mins as previously described [19,42]. Post-

stroke infarct volumes were identical and reproducible in each

experimental rat [19,42]. All animal researches and surgical

procedures were approved to perform using sterile/aseptic

techniques in accordance with China Medical University Institu-

tional Guidelines.

Measurement of Infarct Size Using Magnetic Resonance
Image (MRI)

MRI (3.0 T, General Electric) was performed on rats in order to

measure the infarct size after treatment of each group as described

previously [42].

Neurological Behavioral Measurements
Behavioral assessments were performed 3 days before and 3, 7,

14 and 28 days after cerebral ischemia. The tests measured: (a)

body asymmetry (b) locomotor activity, and (c) grip strength as

previously described [42].

[18F]Fluoro-2-Deoxyglucose Positron Emission
Tomography (FDG-PET)

Experimental rats were examined using microPET scanning of

[18F]fluoro-2-deoxyglucose (FDG) to measure relative metabolic

activity by a protocol previously described [42].

Antiapoptotic Protein Analysis and ELISA for Growth
Factors In Vivo

For Western blot analysis of apoptosis-related protein expression,

experimental rats were anesthetized with chloral hydrate (0.4 g/kg,

ip) at 24 hours after initiation of each treatment. Expression of

apoptosis-related proteins (Bcl-2, Bcl-xL, Bax and Bad) in the right

cortex and striatum region was also examined in each cytokine-

treated and control rat [42]. In addition, ischemic cortical and

striatal areas were evacuated on ice and immediately homogenized

by a plastic homogenizer, and BDNF, GDNF, SDF-1 and VEGF

protein levels were measured by ELISA as previously described with

minor modification [46] according to the manufacturer’s instruc-

tions (DuoSet IC ELISA kit, R&D Systems). Optical density was

measured using a spectrophotometer (Molecular Device Co).

Figure 3. EPO+G-CSF exerted an anti-apoptotic effect and enhanced neurotrophic factor synthesis in primary cortical cultures
(PCCs). (A) Under OGD, PCCs pretreated with EPO+G-CSF (E+G) resulted in less caspase-3 activity than with EPO (E) or G-CSF (G) alone, or controls (C).
(B) In a Western blot analysis, EPO+G-CSF-treated PCCs expressed more Bcl-2 than EPO, G-CSF or control groups. (C) Measurement of neurotrophic
factors by ELISA revealed higher levels of BDNF and SDF-1 in the EPO+G-CSF-treated PCCs than in EPO- or G-CSF-treated cells or the control. Mean 6
SEM, *P,0.05 and **P,0.01 vs. control.
doi:10.1371/journal.pone.0010093.g003
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ELISA assays (Quantikine, R&D Systems) were used to measure

EPO levels in blood samples 1, 3, 7, and 14 d following treatment

with G-CSF or G-CSF plus EPO in wild type (C57BL/6) and

TgCAGGCreERTM-HIF-1a+f/+f mice (Tg-HIF-1a+f/+f mice

carrying a loxP-flanked allele of HIF-1a, a kind gift from Dr.

Johnson [47]). The results were expressed as the net levels in the

serum.

Terminal Deoxynucleotidyl Transferase-Mediated
Digoxigenin-dUTP Nick-End Labeling (TUNEL)
Histochemistry

Cellular apoptosis was assayed by histochemistry using a

commercial TUNEL staining kit (DeadEnd Fluorimetric TUNEL

system; Promega) as previously described [48].

Bromodeoxyuridine (BrdU) Labeling and
Immunohistochemistry

BrdU (Sigma), a thymidine analog that is incorporated into

the DNA of dividing cells during S-phase, was used to label

cells undergoing mitotic division. Labeling protocol and BrdU

immunostaining procedure have been described previously

[42].

Construction of Transgenic Mice
In order to verify the enhancement of bone marrow stem cell

(BMSC) and intrinsic neural progenitor cell (INPC) mobiliza-

tion and homing into the infarcted brain following one of four

treatments (EPO+G-CSF, EPO, G-CSF and vehicle), trans-

genic GFP-chimeric mice and nestin-GFP mice were built as

Figure 4. Administration of EPO+G-CSF to cerebral ischemic rats reduced infarct size and improved neurological function. (A)
Experimental protocols for determining the best combinations of EPO and G-CSF to reduce infarct size. The dosage, combination and injection
duration in each group are indicated in the white rectangles. The blue rectangles in each group represent non-treatment day-point after cytokine
injections before euthanasia. In group E, EPO 5000 U/kg treatment started 30 minutes before stroke initiation. Group C (G-CSF alone), group D (EPO
alone), group I (EPO+G-CSF) and saline-control group were selected for further study. (B) Representative MRI of ischemic rat brain: the white areas
(white arrows) indicate the infarct zone in the right cerebral cortex on the 1st, 7th and 28th day after cerebral infarction. (C) Three formats of cerebral
infarction assessment including total infarct volume, area of largest infarct section and number of infarct sections at the 7th day after cerebral
ischemia were measured in rats treated with EPO+G-CSF (E+G) than in EPO (E) or G-CSF (G)-treated rats or the control (C) group. (D-G) Body
asymmetry and locomotor activities after MCA ligation were measured in rats receiving EPO+G-CSF, EPO, G-CSF, and control saline from 7 to 28 days
recovery. (H) Forelimb grip strength before and after ischemia were measured in rats receiving EPO+G-CSF, EPO, G-CSF, and control saline. (I)
Representative deficit (black arrow, coronal view) and semi-quantitative measurements of [18F]fluoro-2-deoxyglucose positron emission tomography
(FDG-PET) images of the right cortex of EPO+G-CSF, EPO, G-CSF and control group. (J) Bcl-2, Bcl-xL, Bax, and Bad proteins expression in rats’ brain
were analyzed 24 hr post-cerebral ischemia following treatment with EPO+G-CSF, EPO, G-CSF or saline. (K) Neurotrophic factors BDNF and SDF-1 level
in rats’ brain were measured by ELISA following treatment with EPO+G-CSF EPO, G-CSF or saline. Serum EPO levels were measured by ELISA in wild-
type mice (C57BL/6 mice) and Tg-HIF-1a+f/+f mice treated with G-CSF and EPO+G-CSF injection. (L) Representative TUNEL (green) and Hoechst 33342
(blue) co-staining images of cells death in right hemisphere of ischemic rat brains from EPO+G-CSF, EPO, G-CSF or control groups. Mean 6 SEM,
*P,0.05 and **P,0.01 vs. control. Bar = 50 mm.
doi:10.1371/journal.pone.0010093.g004
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previously reported [49,50]. Starting one day after cerebral

ischemia, experimental mice were injected subcutaneously

with EPO (5000 U/kg) + G-CSF (250 mg/kg), G-CSF (250 mg/

kg), EPO (10000 U/kg) or saline vehicle for 5 consecutive

days.

Laser-Scanning Confocal Microscopy for Double
Immunofluorescence Analysis

The expression of cell type-specific markers in GFP+ cells was

examined by double immunofluorescence using laser scanning

confocal microscopy as previously described [42] with specific

Figure 5. Subcutaneous administration of EPO+G-CSF enhanced the proliferation, differentiation and migration of stem cells in rats
and mice. At one week after cerebral ischemia, BrdU immunoreactive cells were detected in the ipsilateral cortex near the infarct boundary (A-C,
arrows), the subventricular area (D-F, arrows), and around blood vessels (G-I, arrows). (J) Numbers of BrdU immunoreactive cells were measured in the
ipsilateral hemisphere of rats’ brains treated with EPO+G-CSF (E+G), EPO (E), G-CSF (G) or controls (C). (K) GFP+c-Kit+ bone marrow stem cells (BMSCs)
in the peri-infarct and striatal areas (white arrows) were analyzed in transgenic GFP-chimeric mice treated with EPO+G-CSF (E+G), EPO (E), G-CSF (G) or
controls. (L) In double immunofluorescent analysis (3D image), many GFP+ cells colocalized with specific markers GFAP, Neu-N, Musashi-1 and MAP-2.
(M) Nestin-EGFP+ INPCs (white arrows) were stained for Ki67 in the penumbral region of nestin-EGFP mice treated with EPO+G-CSF (E+G), EPO (E), G-
CSF (G) or controls. (N) Nestin-EGFP+-Ki67+ cells also co-localized with specific markers MAP-2, GFAP, and Neu-N. Mean 6 SEM, *P,0.05 and **P,0.01
vs. control. Bar = 50 mm.
doi:10.1371/journal.pone.0010093.g005
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antibodies against c-Kit (1:200; BD Pharmingen), GFAP (1:400;

Sigma), MAP-2 (1:200; BM), nestin (1:400; Sigma), Neu-N (1:200;

Chemicon), vWF (1:400; Sigma), Musashi-1 (1:300; Chemicon)

and Ki67 (1:400; Novocastra Laboratories) conjugated with FITC

(1:500; Jackson Immunoresearch) or Cy3 (1:500, Jackson Im-

munoresearch). The tissue sections were analyzed with a LSM510

laser-scanning confocal microscope (Carl Zeiss).

Evaluation of Cerebral Angiogenesis
Cerebral microcirculation was analyzed by intravenous admin-

istration of the fluorescent plasma marker FITC-dextran (Sigma),

and CD31 immunohistochemical analysis as previously described

[42].

Measurement of Cerebral Blood Flow (CBF)
Rats anesthetized with chloral hydrate were positioned in a

stereotaxic frame. Baseline local cortical blood flow (bCBF) was

monitored with a laser doppler flowmeter (LDF monitor, Moore

Instruments) as previously described [51]. In brief, CBF values

were calculated as a percentage increase of bCBF.

Mouse Hindlimb Ischemia and Laser Doppler Imaging
Analysis

Transgenic GFP-chimeric mice were anesthetized with chloral

hydrate (0.4 g/kg, ip). The femoral artery ligation, limb blood flow

measured by laser Doppler perfusion imaging (LDPI, Moore

Instruments) and immunohistochemical studies were performed as

previously described [52]. One day after arterial ligation, mice

were randomly assigned to one of the four treatment groups: EPO

(5000 U/kg)+G-CSF (250 mg/kg), G-CSF (250 m/kg), EPO

(10000 U/kg), and saline control.

Statistical Analysis
Observers were blind to the experimental conditions of each

measurement. Results are expressed as mean 6 SEM. The

behavioral scores were evaluated for normality. We used one-way

or two-way ANOVA with appropriate post hoc Newman-Keuls

testing to evaluate mean differences between different groups with

different treatments. A value of P,0.05 was considered as

significant.
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