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Abstract

Intracellular membrane trafficking depends on the ordered formation and consumption of transport intermediates and
requires that membranes fuse with each other in a tightly regulated and highly specific manner. Membrane anchored
SNAREs assemble into SNARE complexes that bring membranes together to promote fusion. SNAP29 is a ubiquitous
synaptosomal-associated SNARE protein. It interacts with several syntaxins and with the EH domain containing protein
EHD1. Loss of functional SNAP29 results in CEDNIK syndrome (Cerebral Dysgenesis, Neuropathy, Ichthyosis and
Keratoderma). Using fibroblast cell lines derived from CEDNIK patients, we show that SNAP29 mediates endocytic recycling
of transferrin and b1-integrin. Impaired b1-integrin recycling affected cell motility, as reflected by changes in cell spreading
and wound healing. No major changes were detected in exocytosis of VSVG protein from the Golgi apparatus, although the
Golgi system acquired a dispersed morphology in SNAP29 deficient cells. Our results emphasize the importance of SNAP29
mediated membrane fusion in endocytic recycling and consequently, in cell motility.
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Introduction

In eukaryotic cells, intracellular protein trafficking is based on

vesicular transport in which cargo molecules are transferred from

‘‘donor’’ compartments to targeted specific ‘‘acceptor’’ compart-

ments. This complex transport requires vesicle budding and

fusion [1]. The fusion process involves SNAREs (Soluble NSF

Attachment Protein Receptors or ‘‘SNAP receptors’’), which

comprise two main families of conserved membrane-associated

proteins: the v-SNAREs (vesicular) VAMP/synaptobrevins and

the t-SNAREs (target) syntaxins and SNAPs [2]. Transport

vesicles carry a specific v-SNARE that binds to cognate t-

SNAREs to form a trans-SNARE complex (SNAREpin), which

becomes a cis-SNARE complex in the fused membrane [3]. The

stable cis-SNARE core complex is subsequently dissociated by

the action of a-SNAP and the ATPase N-ethylmaleimide-

sensitive factor (NSF) [4]. SNAREs perform two major functions:

they promote vesicle fusion and ensure the specificity of the

process.

The SNAP family of t-SNAREs contains four members:

SNAP23, SNAP25, SNAP29 and SNAP47. SNAP25 participates

in the synaptic SNARE complex, mediating synaptic vesicle

fusion and exocytosis [5]. SNAP23, the non-neuronal homolog of

SNAP25, is enriched in platelets and is required for exocytosis

[6]. SNAP47 is also a neuronal SNAP showing a widespread

distribution on intracellular membranes of neurons and it is

enriched in synaptic vesicle fractions. In vitro, SNAP47 substituted

for SNAP25 in SNARE complex formation with the neuronal

SNARE syntaxin 1A and synaptobrevin 2 [7]. SNAP29 is

localized predominantly to intracellular membrane structures,

which partially overlap with endosomal, lysosomal and Golgi

markers [8]. The human SNAP29 is 83% identical to its rat

ortholog, GS32 [9]. It is expressed in non-neuronal cells and

interacts with most members of the syntaxin family. SNAP29 has

been proposed to be a ubiquitous SNARE protein, involved in

general membrane trafficking [2]. SNAP29 is also present at

synapses, interacts with syntaxin 1A, competes with a-SNAP for

binding to the SNARE complex and consequently modulates

synaptic transmission, by inhibiting disassembly of the SNARE

complex [10]. Overexpression of SNAP29 in presynaptic neurons

inhibited synaptic transmission, causing a defect in synaptic

vesicle turnover by inhibiting disassembly of the SNARE

complex. Accordingly, knockdown of SNAP29 expression in

neurons by RNAi increased the efficiency of synaptic transmis-

sion, suggesting that SNAP29 acts as a negative modulator for

neurotransmitter release, probably by slowing recycling of the

SNARE based fusion machinery and synaptic vesicle turnover

[11].

SNAP29 forms complexes with clathrin, a-adaptin of adaptor

protein 2 (AP2) and EHD1, a member of the EH (Esp15

homology) domain containing protein family, indicating its

involvement in the endocytic machinery [12] and has recently

been shown to interact with the GTPase Rab3A in myelinating

glia [13].

We have recently characterized a novel neurocutaneous

syndrome that we termed CEDNIK syndrome for CErebral
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Dysgenesis, Neuropathy, Ichthyosis and Keratoderma. CEDNIK

syndrome was found to be caused by a 1-bp deletion in the

SNAP29 gene, resulting in the absence of the protein. All

CEDNIK patients examined so far exhibit severe psychomotor

retardation as well as generalized ichthyosis (scaling). Additional

signs include microcephaly and facial dysmorphism, hypoplastic

optic disk, sensorineural deafness and severe cachexia. Of interest,

brain MRI showed various degrees of corpus callosum dysgenesis

as well as cortical dysplasia, with pachygyria and polimicrogyria

indicative of defective neuronal migration. Markedly abnormal

epidermal cell differentiation was found to underlie the skin

phenotype in CEDNIK syndrome. SNAP29 deficiency was found

to prevent both the maturation and the secretion of lamellar

granules, which are Golgi-derived vesicular structures responsible

for the transport and transfer of lipids and proteases to the upper

layers of the epidermis [14].

In order to gain insight into the biological role of SNAP29, we

explored its involvement in endocytic and exocytic processes.

While exocytosis of VSVG protein was not affected, endocytic

recycling of transferrin and b1-integrin was impaired in CEDNIK

cells, affecting cell motility and migration.

Results

Structure of SNAP29
SNAP family contains four known members in mammals:

SNAP23, SNAP25, SNAP29 and SNAP47 (Figure 1A and B).

They mediate membrane fusion during intracellular trafficking by

forming a four helices bundle, in which one helix is contributed by

the v-SNARE (VAMP/synaptobrevin) and three by the t-

SNARES (SNAP and syntaxin). Of the three t-SNARE helices,

one originates from syntaxin and two originate from the SNAP

member [1]. Indeed, SNAP23, SNAP25 and SNAP47 contain two

SNARE motifs, which assemble into coiled-coil structures, while

SNAP29 has one SNARE motif and a coiled-coil domain, which

most probably comprises the second helix (Figure 1A) [15]. In

order to induce membrane fusion, SNAP proteins must interact or

embed in the membrane, despite the absence of a transmembrane

domain. SNAP23 and SNAP25 anchor to the target membrane

through post-translational palmitoylation in one or more cysteins

found in the central part of these proteins (Figure 1A). SNAP29, as

well as its closest homolog SNAP47 [7], lacks a conserved stretch

of cysteine residues and any membrane anchor motif (Figure 1A

Figure 1. The SNAP family. (A) Domain organization of the SNAP family members: SNAP23, SNAP25, SNAP47 and SNAP29 (modified from: [7]). The
arrow and the asterisk indicate a 1-bp deletion at nucleotide 222 of the cDNA, starting from the ATG (c.222delG amino acid 75) in CEDNIK patients.
Shown in SNAP23 and SNAP25 is the cysteine (C) rich motif at the central part of the protein, which serves as a palmitoylation signal. Red box
represents the SNARE motif, dashed blue box represents a coiled-coil domain and black box represents the NPF motif. Upper numbers in SNAP29
protein represent amino acids. Truncated SNAP29 protein is represented by premature termination 27 amino acids downstream the mutation. (B)
Multiple alignment of human SNAP family proteins (SNAP25A and B isoforms, SNAP23, SNAP29 and SNAP47). Accession numbers are as follows:
hSNAP25A (P60880); hSNAP25B (Q53EM2) [54]; hSNAP23 (O00161); hSNAP29 (O95721) and hSNAP47 (Q5SQN1). Sequences were aligned using
ClustalW (http://www.ebi.ac.uk/clustalw) and BoxShade softwares (http://www.ch.embnet.org/software/BOX_form.html). Blue boxes indicate the
percentage homology. (C) The SNAP29 gene, the normal and the truncated (CEDNIK) proteins. In the gene: white boxes represent the exons (1–5)
with their respective nucleotide size under the boxes. ATG and TGA are defined by their genomic nucleotide numbers (in parenthesis). The site of the
G deletion in CEDNIK is indicated. In the protein: motifs are defined by their amino acid numbers, a.a.- amino acids; NPF- aspargine-proline-
phenylalanine; nt- nucleotides.
doi:10.1371/journal.pone.0009759.g001
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and B). In contrast to other members of the family, SNAP29 has

an amino acid stretch with a coiled-coil structure and a N-terminal

asparigine-proline-phenylalanine (NPF) protein binding motif

(Figure 1A and C), shown to interact with the EH domain of

EHD1 [9]. The SNAP29 gene comprises 5 exons. In CEDNIK

patients, a one bp deletion in exon 1 (G at cDNA position 222,

starting from the ATG) [14] leads to a complete absence of the

protein due to premature termination, 27 amino acids down-

stream the mutation (Figure 1C).

Normal expression and localization of EHD proteins in
the absence of SNAP29

SNAP29 interacts with EHD1 [12], a membrane associated

protein, which mediates endocytic recycling [16,17,18]. To

determine whether absence of SNAP29 affects EHD1, we tested

its expression level and intracellular localization in cells lacking

SNAP29. The results (Figure 2) showed that neither the RNA level

of EHD1, tested by quantitative real-time PCR (Figure 2A), nor its

protein level (Figure 2B), were changed in CEDNIK cells. Its

punctate distribution in endosomal vesicles in CEDNIK fibroblasts

resembled that in control cells (Figure 2C) [19,20]. Since previous

yeast two hybrid results indicated possible interaction of SNAP29

with other members of the EHD family [12], we also tested the

expression level and intracellular localization of other EHDs in the

absence of SNAP29. The results indicated that neither RNA levels

(Figure 2D), tested by RT-PCR, nor the intracellular localization

of any transfected EHD (Figure 2E) were altered in CEDNIK cells

in comparison to control cells. EHD2 presented a typical

membranal staining [21,22,23], EHD3 appeared in tubular-

vesicular structures [24,25] and EHD4 showed membranal and

endocytic staining (Figure 2E) [26].

VSVG secretory pathway is normal in SNAP29 deficient
cells despite altered Golgi morphology

The most striking ultrastructural abnormality in the epidermis of

CEDNIK patients was the presence of empty lamellar granules in

the spinous and granular epidermal layers, which were not found in

control epidermis. Lamellar granules of various sizes and contents

were also abnormally present in the lower layers of the significantly

thickened stratum corneum in patients’ skin but not in normal skin

[14]. Since lamellar granules derive from the Golgi apparatus, this

morphological abnormality prompted us to test whether the

morphology and function of the Golgi apparatus are affected by

the loss of SNAP29. A significant fraction of CEDNIK fibroblasts,

stained with antibodies against the cis-Golgi protein GM130,

presented a dispersed and fragmented cisternae (Figure 3A). The

phenomenon was similar in CEDNIK cells transfected with b-(1,3)

galactosyltransferase (GalT, a Golgi enzyme marker) expressing

plasmid (Figure 3A). Quantitation indicated that while 22% of

CEDNIK cells had a fragmented/dispersed Golgi, only 7% of

control fibroblasts showed altered morphology (Figure 3B).

We next examined the functional efficacy of the secretory

pathway in CEDNIK cells. For this purpose, we followed the

transport of a Vesicular Stomatitis Virus (VSV) protein from the

Golgi complex to the plasma membrane. The tested protein was a

temperature sensitive variant of the VSVG protein (VSVG-ts045).

This mutant protein misfolds and is retained in the endoplasmic

reticulum (ER) at 40uC, but upon temperature shift to a lower

temperature it moves to the pre-Golgi/Golgi complex before

being transported to the plasma membrane. Albeit the dispersed

morphology of the Golgi apparatus in CEDNIK fibroblasts, the

delivery of VSVG from the ER to the plasma membrane was

similar to that in control cells (Figure 3C).

Since delivery from the Golgi to the plasma membrane was

intact, we analyzed the trafficking from the plasma membrane to the

Golgi, using the B subunit of cholera toxin (CTxB). Cholera toxin,

which binds GM1 on the plasma membrane, internalizes via

clathrin-dependent and -independent mechanisms [27]. It does not

recycle, but reaches the Golgi apparatus, from where it traffics to the

cytoplasm through the ER. The results showed that trafficking of

the B subunit of cholera toxin from the plasma membrane to the

Golgi apparatus was intact in CEDNIK cells (Figure 3D).

Intracellular localization of endocytic markers is altered in
SNAP29 depleted cells

Aiming at understanding the cellular abnormalities in CEDNIK

cells, we followed the morphology of organelles associated with

intracellular trafficking and endocytic processes that require

SNARE-mediated membrane fusion (Figure 4). In CEDNIK cells,

AP2, a marker of coated pits and coated vesicles, showed a typical

membrane and punctate cytosolic distribution, respectively

(Figure 4A). Early endosomes, stained with anti-EEA1 (early

endosome antigen 1 protein) antibody, showed a punctate dispersed

vesicle staining in control cells, while in CEDNIK cells, staining was

of a higher intensity (Figure 4 A and B), reflecting accumulation of

Figure 2. Expression of EHDs in CEDNIK fibroblasts. (A) RNA was
isolated from control (SV80) and CEDNIK (F110T and F165T) fibroblasts
and was subjected to Ehd1 specific quantitative real-time PCR (qRT-
PCR). Expression level of Ehd1 in SV80 was defined as 100%. (B) Protein
lysates prepared from CEDNIK (F165T, F110T) and control (SV80)
fibroblasts were subjected to Western blot analysis and interacted with
anti-EHD1 and anti-ERK antibodies, as a loading control. (C) Fibroblasts
(SV80 and F110T) were transfected with GFP-EHD1, fixed and visualized
by confocal microscopy. (D) RNA was isolated from SV80 and CEDNIK
fibroblasts and subjected to Ehd2, Ehd3 or Ehd4 specific RT-PCR as
detailed under Materials and Methods. (E) Control (SV80) and CEDNIK
(F110T) fibroblasts were transfected with YFP-EHD2, GFP-EHD3 and
YFP-EHD4 expressing plasmids for 18 h, after which they were fixed and
visualized by confocal microscopy. No change in EHD1 RNA level,
protein level or localization was observed in CEDNIK cells, compared to
control cells. Also, no change in the intracellular localization or RNA
levels of other EHDs was observed in CEDNIK cells. M- 1 kb marker.
Bar,10 mm.
doi:10.1371/journal.pone.0009759.g002
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early endosomes due to their impaired ability to fuse. Rab11, a

marker of the endocytic recycling endosomes, was found in a well

defined perinuclear compartment in control cells, while an

increased number of enlarged dispersed vesicles was observed in

CEDNIK cells, with a less defined perinuclear localization

(Figure 4C). This aberrant pattern was found in 50% of CEDNIK

fibroblasts and in only 23% of control fibroblasts (Figure 4D). These

results confirmed the impaired ability of vesicles to fuse properly in

CEDNIK cells and strongly indicated that SNAP29 mediated fusion

regulates several steps of endocytosis.

Transferrin recycling is attenuated in CEDNIK cells
Our results indicated aberrant morphology of several endocytic

organelles in CEDNIK cells. We, therefore, tested whether the

morphological changes have an impact on endocytosis. For this

purpose, transferrin recycling was studied, using pulse-chase assays

Figure 3. Altered Golgi morphology, intact exocytosis and trafficking to the Golgi in CEDNIK fibroblasts. (A) CEDNIK (F110T) and control
(SV80 or F572T) fibroblasts were either transfected with a GalT-YFP expressing plasmid or stained with anti-GM130 antibodies. Arrows point to
fragmented and dispersed Golgi. (B) Dispersed versus perinuclear Golgi pattern was counted in 500–750 randomly chosen cells, stained with anti-GM130
antibodies. Asterisks indicate statistical significance of ***p,0.001 as analyzed by the Student’s t-test. (C) CEDNIK (F110T) and control (SV80) cells were
transfected with a VSVG-YFP expressing plasmid and grown at 40uC for 18 h. Cells were shifted to 37uC at the indicated times, fixed and visualized by
confocal microscopy. The arrow indicates the atypical Golgi in CEDNIK cells. (D) Cells, labeled with AlexaFluor 555-conjugated CTxB, for the indicated
times, were fixed and visualized by confocal microscopy. Golgi complex appeared dispersed and fragmented in CEDNIK cells. VSVG trafficking from the
Golgi complex to the plasma membrane (PM) and CTxB trafficking from the PM to the Golgi appeared intact in CEDNIK cells. Bar, 10 mm.
doi:10.1371/journal.pone.0009759.g003
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and flow cytometry (Figure 5). Cells were labeled with AlexaFluor

488-conjugated transferrin for 1 h and monitored during different

times of chase. As shown in Figure 5A, transferrin internalization

was unchanged in CEDNIK cells compared to control fibroblasts.

However, CEDNIK cells displayed an accumulation of transferrin

in the perinuclear region (Figure 5A, arrows) and recycling of the

ligand was slower than that observed in control cells. Assays with

biotinylated transferrin confirmed the impaired endocytic recy-

cling kinetics of this ligand in CEDNIK cells (Figure 5B). During

the chase times, disappearance of transferrin from CEDNIK cells

was attenuated by 26–30% compared to control cells (Figure 5C).

We also quantified the kinetics of transferrin trafficking by flow

cytometry-based experiments, which confirmed the attenuation in

its endocytic recycling (Figure 5D).

Recycling of b1-integrin is impaired in SNAP29 deficient cells
Previous studies indicated that inhibition of a SNARE complex

component disrupted intracellular trafficking of b1-integrin

[28,29,30]. Integrins are transmembrane receptors for compo-

nents of the extracellular matrix (ECM), which provide a link

between the ECM and the cytoskeleton. As a consequence,

integrins play a role in transmission of signals to the intracellular

milieu [31] and undergo endocytic recycling [32]. Integrins play a

major role in cell migration, which is a hallmark of epidermal

differentiation [33] and brain development [34,35]. In addition,

CEDNIK syndrome is characterized by cerebral dysgenesis, which

has been related to defective neuronal migration. We therefore

analyzed the trafficking of b1-integrin in CEDNIK fibroblasts

(Figure 6). Plasma membrane staining of b1-integrin was more

intense in CEDNIK cells compared to control cells exhibiting a

fiber network staining (Figure 6A and F). Intracellular endocytic

recycling of b1-integrin was assessed using a pulse–chase

experiment. CEDNIK cells accumulated b1-integrin containing

vesicles (Figure 6C, D and E), which were enlarged and displayed

a stronger signal in comparison to control cells (Figure 6H, I and

J), indicating a slower trafficking. These findings were confirmed

by quantitation of internal b1-integrin. The results showed that in

CEDNIK cells, b1-integrin was still retained in vesicles after 3h of

chase (Figure 6K). Moreover, results of Western blot analysis on

lysates from CEDNIK and control fibroblasts strongly indicated

higher b1-integrin levels in CEDNIK cells (Figure 6L).

In CEDNIK as well as in control fibroblasts, plasma membrane

b1-integrin rarely colocalized with F-actin, stained with phalloidin

(Figure S1A). In addition, we tested a possible colocalization of b1-

integrin in SNAP29 containing vesicles. The results indicated

occasional localization of b1-integrin in SNAP29 containing

vesicles (Figure S1 B, C).

The distribution of focal adhesion complexes is altered in
CEDNIK cells

Focal adhesion kinase (FAK), paxillin (PAX) and their

phosphorylated forms (p-FAK and p-PAX, respectively) are

Figure 4. Changes in morphology of endocytic vesicles in SNAP29 deficient cells. Control (SV80 and F572T) and CEDNIK (F110T) fibroblasts
were fixed and stained with (A) anti-AP2 and anti-EEA1 antibodies. Arrows indicate the intense accumulation of EEA1 positive endosomes in CEDNIK
fibroblasts. (B) Bar graph shows quantitation of the intensity of EEA1 staining (presented in arbitrary units), measured in 90–100 cells, using the
ImageJ software. (C) Control (SV80) and CEDNIK (F110T) fibroblasts were transfected with Rab11-YFP expressing plasmid, fixed and visualized by
confocal microscopy. Arrows indicate Rab11 positive enlarged vesicles. (D) Bar graph shows quantitation of the enlarged and dispersed Rab11
positive vesicles in CEDNIK (F110T) in comparison to control (SV80) cells. Bar,10 mm. Asterisks indicate statistical significance of ***p,0.001 as
analyzed by the Student’s t-test. EEA1 intensity is significantly stronger in CEDNIK compared to control cells. Some Rab11 domains are dispersed.
doi:10.1371/journal.pone.0009759.g004
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integral components of the focal adhesion complexes [36]. Since

impaired recycling of b1-integrin affects cell motility [31], we

tested whether there are structural abnormalities of the focal

adhesion proteins in CEDNIK cells. Our results indicated

decreased FAK and phosphorylated-FAK expression in peripheral

adhesions in CEDNIK cells, in comparison to control fibroblasts

(Figure 7A–F). Staining for PAX and phoshorylated-PAX

disclosed thinner focal adhesion structures and diffuse cytoplasmic

distribution in CEDNIK fibroblasts in comparison to control

fibroblasts (Figure 7G–L). Albeit the structural abnoramalities no

Figure 5. Delayed transferrin recycling in SNAP29 deficient fibroblasts. (A) CEDNIK (F110T) and control (SV80) cells were starved and
labeled with AlexaFluor 488-conjugated transferrin. After different times of chase, cells were fixed and visualized by confocal microscopy. Arrows
indicate transferrin accumulation in the ERC. Asterisks denote dispersed ERC, as in Figure 4C. (B) CEDNIK and control cells (as in A) were pulsed with
biotin-conjugated transferrin and chased for the indicated times. Cell lysates were subjected to Western blot analysis and interaction with HRP-
conjugated streptavidin and anti-ERK antibodies, as a loading control. (C) Densitometric analysis of the kinetics of transferrin recycling in CEDNIK and
control cells, presented in B. To normalize the results, intensity of the transferrin band at each lane was divided by the intensity of total ERK (ERK1 and
ERK2) in the same lane. The value obtained for the pulse time was considered as 100%. (D) Cells were labeled with AlexaFluor 488-conjugated
transferrin and then chased for the indicated times after which they were analyzed by flow cytometry. The initial level of internalized transferrin in the
pulse was considered as 100%. Tf- transferrin, No Tf- non labeled cells. *- represents non-specific band found in non labeled cells. Bar, 20 mm.
Asterisks indicate statistical significance (*p,0.05 and **p,0.01) as analyzed by Student’s t-test. Transferrin recycling is attenuated in CEDNIK
fibroblasts.
doi:10.1371/journal.pone.0009759.g005
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significant changes were observed at the total protein level as

measured in Western blots (Figure 7M, N) or in immunofluores-

cence images (Figure 7O).

Taken together, these results provide evidence for struc-

tural abnormalities in focal adhesion complexes in CEDNIK

fibroblasts.

Loss of SNAP29 affects cell migration and cell spreading
Recycling of b1-integrin is essential for cell motility [37]. Given

the observed impaired recycling of b1-integrin, its accumulation in

enlarged endosomes in CEDNIK cells (Figure 6) and the

distinguishable expression pattern of FAK, PAX and their

phosphorylated forms in peripheral adhesions (Figure 7), we

examined the ability of CEDNIK cells to migrate and spread using

wound healing and cell spreading assays. Following wound,

control fibroblasts, grown on fibronectin, which engages b1-

integrin, migrated into the scratch area and closed the wound after

7.5 h (Figure 8A and B). CEDNIK fibroblasts showed a retarded

cell migration (Figure 8A and B), exhibiting 29% reduction in the

overall migration rate after 7.5 h (Figure 8C).

We also examined whether lack of SNAP29 interferes with cell

spreading. Cells were allowed to spread on fibronectin, following

trypzinization. Cell surface staining was quantified in phalloidin-

labeled cells. The results indicated that spreading of CEDNIK

cells was significantly slower than that of control cells (Figure 9A

and B). While control cells started to spread 10 min after seeding,

CEDNIK cells had a lag of 15 min and their spreading rate was

lower than that of control cells (Figure 9B).

To summarize, our results showed that CEDNIK cells display

decreased motility, exemplified by attenuated rate of wound

healing and cell spreading, highlighting the importance of

SNAP29 mediated membrane fusion in these processes.

Figure 6. Loss of SNAP29 in fibroblasts causes accumulation of b1-integrin in internal vesicles. (A–J) CEDNIK (F110T) and control (SV80)
fibroblasts, grown on fibronectin coated plates, were interacted with anti-b1-integrin antibody (binding: A and F). Following internalization (B, G),
cells were acid-washed and chased for the indicated times (C–E, H–J). After all the procedures, cells were fixed and immunostained with AlexaFluor
488-conjugated anti-mouse secondary antibody. Arrows indicate accumulation of b1-integrin in enlarged vesicles in CEDNIK cells. (K) The amount of
internalized b1-integrin in CEDNIK and control cells was quantified in 50–70 cells, using the ImageJ program. Asterisks indicate statistical significance
(**p,0.01 and **p,0.001) as analyzed by Student’s t-test. (L) To test the amount of b1-integrin in the different cells, Western blot analysis was
performed and the corresponding blot was interacted with anti-b1-integrin antibody and anti-ERK antibodies, as a loading control. Densitometry was
used to quantify the amount of b1-integrin in the different samples (numbers appear under each lane), using the Image Densitometer 1Dprime. To
normalize the results, the intensity of the b1-integrin band at each lane was divided by the intensity of ERK in the same lane. The value obtained for
SV80 was considered as 1. Bar, 10 mm. Recycling of b1-integrin in CEDNIK cells is attenuated and its amount in these cells is higher compared to
control fibroblasts.
doi:10.1371/journal.pone.0009759.g006

SNAP29 and Endocytic Recycling

PLoS ONE | www.plosone.org 7 March 2010 | Volume 5 | Issue 3 | e9759



SNAP29 and Endocytic Recycling

PLoS ONE | www.plosone.org 8 March 2010 | Volume 5 | Issue 3 | e9759



Discussion

SNAP proteins are t-SNAREs that participate in fusion

processes during endocytosis and exocytosis [3,38]. Ample work

has been published on the importance of SNAP25, a neuronal

SNAP, in regulating neurotransmitter release and modulating

calcium dynamics in response to depolarization [39,40]. SNAP23

is required for exocytosis from platelet granules [6]. The

importance of SNAP29 in fusion processes has not been

extensively studied. The discovery that CEDNIK syndrome results

from absence of SNAP29 provided us with the means to study the

biological role of this protein.

In this work, we present results strongly indicating that ablation

of SNAP29 leads to impaired recycling of clathrin-dependent

(transferrin and b1-integrin) and clathrin independent (b1-

integrin) ligands. It also leads to changes in the architecture of

EEA1 containing early endosomes, Rab11-expressing domains of

the endocytic recycling compartment and the Golgi complex. We

further show that the inability of SNAP29 deficient cells to

recycle b1-integrin affects the structure of focal adhesions as

exemplified by changes in the membranal expression pattern of

FAK, p-FAK, PAX and p-PAX, which are integral components

of the focal adhesion complexes. Such changes in the structure of

focal adhesion complexes could explain the defects in cell

migration observed in CEDNIK fibroblasts. Higher b1-integrin

levels were observed at the plasma membrane in CEDNIK cells

compared to control cells. Moreover, quantitation analyses

revealed that the level of steady state b1-integrin is also increased

in CEDNIK cells. We assume that this elevation reflects impaired

trafficking of b1-integrin containing vesicles from the plasma

membrane to the lysosomes, where b1-integrin undergoes

degradation.

Figure 8. Loss of SNAP29 impairs cell migration. (A) Confluent CEDNIK (F110T) and control (SV80) fibroblasts were plated on fibronectin coated
plates. Scratches, represented by the horizontal black bars, were introduced and measured. Cells were allowed to migrate and were visualized under
a microscope every 1.5 h. (B) A graph, showing the kinetics of cell migration. The results represent 8 independent experiments. The initial size of the
wound at time 0 was considered as 100%. (C) Bar graph presenting the colonization capacity of the cells (% cell migration) after 7.5 h, measured in
eight independent experiments. Control cells were considered as 100%. White bar, 60 mm. Asterisks indicate statistical significance (**p,0.01 and
***p,0.001) as analyzed by Student’s t-test. The results indicate retarded migration of CEDNIK cells.
doi:10.1371/journal.pone.0009759.g008

Figure 7. Loss of SNAP29 affects the pattern of focal adhesion complexes. (A–L) Control (SV80 and F572T) and CEDNIK (F110T or F165T)
fibroblasts were fixed and stained with anti-FAK (A–C), anti-p-FAK (D-F), anti-PAX (G–I) and anti-p-PAX antibodies (J–L). Nuclei were stained with
Hoechst. Bar, 10 mm. (M) Western blot analysis showing the expression of FAK, p-FAK, PAX and p-PAX in control (F572T) and CEDNIK (F165T, F110T)
cells. Anti-ERK antibodies were used as a loading control. The blot is a representative of 5 independent experiments. (N) Bar graph illustrating the
expression levels of the focal adhesion components: FAK, p-FAK, PAX and p-PAX. Densitometry was used to quantify the amount of each focal
adhesion component as seen in Western blot, using the Image Densitometer 1Dprime. To normalize the results, the intensity of each band was
divided by the intensity of ERK in the same lane. The value obtained for control cells (F572T) was considered as 100%. (O) Bar graph showing
quantitation of the intensity of FAK, p-FAK, PAX and p-PAX staining, measured in 14-168 cells, using the ImageJ software. The value obtained for
control cells (SV80) was considered as 100%. Expression pattern of FAK, phospho-FAK, paxillin and phospho-paxillin is different in CEDNIK cells in
comparison to control cells. However, their total level is similar.
doi:10.1371/journal.pone.0009759.g007
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b1-integrin, as a member of the integrin family, is a

transmembrane receptor for components of the extracellular

matrix. It functions in a wide variety of processes including:

migration, proliferation, differentiation, apoptosis and the regula-

tion of focal adhesion complexes. Regarding motility, b1-integrin

recycles to the leading edge of the cell during cell migration to

facilitate contact with the ECM, thereby stabilizing lamellipodia

and supporting the generation of motile forces [31,41]. Its

clustering promotes FAK phosphorylation, which creates a

binding site for the Src-homology SH2 domain. This FAK-Src

complex facilitates SH3-mediated binding of the adaptor protein

p130Cas (breast cancer anti-estrogen resistance protein 1) to FAK

and its subsequent phosphorylation. Crk (sarcoma virus c-10

oncogene homology) binding to phosphorylated p130Cas facili-

tates Rac (related to A and C protein kinases) activation,

lamellipodia formation and cell migration [42]. Absence of several

components in the b1-integrin signaling pathway leads to cell

spreading defects and refractory cell motility responses. Thus,

fibroblasts that derived from either FAK2/2, p130Cas2/2 or

paxillin2/2 mice exhibited retarded integrin-stimulated migration

[42]. Paxillin, an integrin-binding protein recruits FAK and

vinculin to focal contacts [42]. Disruption of integrin endocytosis

and recycling impaired cell spreading and migration [43]. It is

worth noting that involvement of SNARE-mediated trafficking in

cell migration and b1-integrin traffic has been reported in cells

expressing a dominant negative form of NSF (E329Q-NSF) or

through inhibition of the v-SNARE cellubrevin/VAMP3 (vesicle-

associated membrane protein 3) by the catalytic light chain of

tetanus toxin and by its silencing [28,29,30].

Migration is a crucial step in epidermal stratification and,

therefore, in epidermis differentiation and maintenance during

adult life [44,45]. Our results showing defects in cell migration in

Figure 9. Cell spreading is affected in SNAP29 deficient cells. (A) Confluent CEDNIK (F110T) and control (SV80) fibroblasts were grown in
fibronectin coated plates. Following trypsizination, cells were allowed to spread for the indicated times, fixed, permeabilized and stained with
AlexaFluor 568-conjugated phalloidin. Nuclei were stained with Hoechst. (B) Quantitative analysis of cell surface area of individual cells was
performed using the ImageJ program. Bar, 50 mm. Asterisks indicate statistical significance (**p,0.01 and ***p,0.001) as analyzed by the Student’s t-
test. Spreading of CEDNIK cells is retarded compared to control cells.
doi:10.1371/journal.pone.0009759.g009
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CEDNIK fibroblasts highlight the importance of membrane

fusion mediated by SNAP29 for normal terminal differentiation

of the skin. Cell migration is also essential in brain development,

and the migration defects in CEDNIK derived fibroblasts could

explain the cerebral dysgenesis in the patients, manifested by

polymicrogyria (excessive number of small convolutions (gyri) on

the surface of the brain) and pachygyria (thick convolutions of the

cerebral cortex) which are both disorders of neuronal migration

[46].

SNAP29 may not be the only SNAP protein associated with

neurological abnormalities. Recently, an association between the

abnormal expression of SNAP25 and bipolar disease has been

reported [47]. Furthermore, a loss of SNAP25 was noted in brains

of patients suffering from Huntington’s disease [48].

We did not observe a trafficking defect to and from the Golgi in

CEDNIK fibroblasts, though Golgi architecture was abnormal. It is

still plausible that secretion of proteins and lipids is impaired in

CEDNIK keratinocytes, as previously shown [14]. Interestingly,

there are cutaneous diseases, in which defective exocytosis from the

Golgi apparatus has been demonstrated. Thus, ARC (arthrogrypo-

sis-renal dysfunction-cholestasis) syndrome is caused by mutation in

the SNARE protein VPS33B, whose yeast homolog was shown to

have a key role in late stages of protein trafficking from the Golgi to

the vacuole [49]. In Cutis Laxa Type 2, caused by a loss of the a2

subunit of the vesicular ATPase H+-pump, fibroblasts showed

distended Golgi cisternae, impaired secretion and increased

intracellular retention of tropoelastin [50]. In Harlequin syndrome,

characterized by disturbance in lamellar granule, ichthyosis and

severe genodermatosis, ABCA12, an ATP-binding cassette trans-

porter, is mutated. This leads to impaired lipid transport from the

Golgi to lamelar granules in keratinocytes [51].

In conclusion, our results strongly indicate that in CEDNIK

fibroblasts there is compromised recycling and, therefore,

intracellular accumulation of transferrin and b1-integrin. Impaired

recycling of b1-integrin leads to retarded cell motility and

spreading.

Materials and Methods

Cells and transfection
SNAP29 deficient primary fibroblasts, derived from two

CEDNIK patients (F110 and F165), were transformed with

Simian Virus 40 (SV40) large T-antigen (F110T and F165T) as

previously described [14]. SV80 (SV40 transformed normal

human fibroblasts) [52] and normal fibroblasts transformed with

SV40 large T-antigen (F572T) were used as controls. Cells were

cultured in Dulbecco’s Modified Eagle medium (DMEM)

supplemented with 10% Fetal calf serum (FCS; Beit Haemek,

Israel). Cells were transfected with Fugene 6 reagent (Roche, USA)

according to the manufactorer’s recommendations.

Plasmids
GFP-EHD1 [20], GFP-EHD3 [24], YFP-EHD2 and YFP-

EHD4 were previously constructed in the lab. To construct the

GFP-SNAP29 plasmid, a 1.6 kb fragment of human SNAP29

cDNA was cloned into the BglII and SalI sites of pEGFP vector

(Clontech Laboratories, CA, USA). VSVG-YFP [53] and GalT-

YFP were kindly provided by Dr. K. Hirschberg (Tel Aviv

University, Israel). Rab11-YFP was kindly provided by Dr. A.

Sorkin (University of Colorado Denver, USA).

Antibodies and ligands
Anti-EHD1 [20] and anti-SNAP29 [12] antibodies were

described elsewhere. Anti-ERK (sc-93) and anti-FAK antibodies

(sc-558) were from Santa Cruz Biotechnology (Santa Cruz, CA,

USA). Horseradish peroxidase (HRP) or Cy2 or Cy3-conjugated

goat anti-rabbit or goat anti-mouse IgG were from Jackson

ImmunoResearch (West Grove, PA, USA). AlexaFluor 488

(T13342) or biotin conjugated-transferrin (T23363), AlexaFluor

568-conjugated phalloidin (A12380), AlexaFluor 555-conjugated

CTxB (B subunit of Cholera Toxin, C-34776), AlexaFluor 488-

conjugated goat anti mouse, anti-phospho FAK (44-624G) and

anti-phospho-PAX (44-722G) antibodies were from Invitrogen/

Molecular Probes (Eugene, OR, USA). HRP-conjugated strepta-

vidin (S5512) and anti-GM130 antibodies (G7295) were from

Sigma-Aldrich (Saint Louis, MO, USA). Anti-integrin b1 antibody

(anti-human CD29, MCA2028) was from AbD-Serotec (Oxford,

England). Anti-EEA1 (610456) and anti-PAX (610052) antibodies

were from BD Transduction Laboratories (San Jose, CA, USA).

Mouse monoclonal anti-a-chain of AP2 antibody was a gift from

Dr. M.S. Robinson (Cambridge Institute for Medical Research,

University of Cambridge, UK).

Immunoblotting
Cells were harvested and lysed in lysis buffer (10 mM Hepes,

100 mM NaCl, 1 mM MgCl2, 0.5% NP-40, nonylphenoxylpo-

lyethoxylethanol) containing protease inhibitors (1 mM PMSF-

phenylmethanesulphonylfluoride, 1 mg/ml aprotinin and leupep-

tin; Sigma, St Louis, MO, USA). Following centrifugation at

10,000 g for 15 min at 4uC, the supernatant was electrophoresed

through a 10% SDS-PAGE and transferred to a nitrocellulose

membrane (Schleicher Schuell, Dassel, Germany). Membranes

were blocked with 5% skim milk in TBS-Tween (20 mM Tris

HCl, 4 mM Tris base, 140 mM NaCl, 1 mM EDTA, 0.1%

Tween-20) and interacted with the appropriate antibodies after

which they were incubated with the secondary antibody and

washed with TBS-Tween. Bound antibodies were detected by

ECL-Luminol Reagent (Santa Cruz Biotechnology, Santa Cruz,

CA, USA). The blots were reprobed with anti-ERK antibodies as

a loading control.

Reverse transcription-polymerase chain reaction (RT-PCR)
and quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from fibroblasts using the EZ-RNA

isolation kit (Biological Industries, Beit Haemek, Israel). Two to

five mg RNA were reverse transcribed in 25 ml, using 100 units of

M-MLV reverse transcriptase (Promega, Madison, WI, USA). The

resulting cDNA was used to amplify different human Ehds with

specific primers. For Ehd2: sense primer 59-GACGCCACAAG-

GGCTCCG-39; antisense primer 59-CTATGGTAATGCCCA-

GTGCC-39; for Ehd3: sense primer 59-ATGTTCAGCTGGC-

TGGGTAC-39; antisense primer 59-CTCGTGGTTCTTGAG-

GGC-39; for Ehd4: sense primer 59-GGAAGTCCCTGCC-

CAAGG-39; antisense primer 59-CTGCCTCCAGGTGCCCT-

C-39. Thermal cycling consisted of 94uC for 10 min, followed by

30 cycles of denaturation (94uC, 1 min), annealing (60uC, 1 min)

and extension (72uC, 1 min), and a final extension at 72uC for

10 min.

For qRT-PCR, PCR amplification of cDNA was performed

using the Absolute QPCR SYBR Green Mix (ABgene, Epsom,

UK) in a Rotor-gene 3000 multifilter system (Corbett Research,

UK) with primer pairs specific for Ehd1 (sense primer 59-

GTACCACACAGCTGGGCTTCCC-39; antisense primer 59-

CGCATCCATCCTCACCTAATAC-39) and glyceraldehyde 3-

phosphate dehydrogenase, (GAPDH; sense primer 59-GAGTC-

AACGGATTTGGTCGT-39; antisense primer 59-GACAAGCT-

TCCCGTTCTCAGCC-39). Cycling conditions were as follows:

95uC for 10 min: 95uC for 10 s, 60uC for 25 s and 72uC for 15 s
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for a total of 40 cycles and one cycle of 95uC for 30 s, 60uC for

30 s and 95uC for 30 s. Each sample was analyzed in triplicate.

For quantitation, standard curves were obtained using serially

diluted cDNA, amplified in the same real-time PCR run. Results

were normalized to GAPDH mRNA levels.

Immunocytochemistry
Cells were plated on coverslips in 24-well plates. Cultures were

washed with PBS and fixed with 4% paraformaldehyde in PBS at

4uC for 15 min. Following washes, the cells were incubated in 3%

BSA and 0.1% triton X-100 (Sigma-Aldrich, Saint Louis, MO,

USA) in PBS for 10 min, after which they were incubated with the

respective primary antibodies for 1 h. Following washes, cell

cultures were incubated with the respective secondary antibodies.

Cells were washed, mounted with galvanol and imaged in

Confocal Zeiss LSM 510 or LSM 510 Meta microscopes (Carl

Zeiss, NY, equipped with an argon laser).

VSVG trafficking
Subconfluent cultures grown in 24 well plates were transfected

with 1 mg of VSVG-YFP ts045 (a temperature sensitive mutant of

the VSVG protein) and incubated at 40uC for 18 h. To follow

VSVG transport through the secretory pathway, cells were

transferred to 37uC and at different times of chase they were

fixed with 4% paraformaldehyde and imaged using confocal

microscopy.

Cholera toxin trafficking
Cells, cultured on coverslips coated with 20 mg/ml fibronectin

in DMEM without phenol red, supplemented with 10% FCS,

were labeled with 0.5 mg/ml AlexaFluor 555-conjugated CTxB at

37uC in DMEM lacking serum but containing 0.1% BSA, 20 mM

Hepes, pH 7.2. Cells were mounted with galvanol for confocal

microscopy.

Uptake and recycling of transferrin
For confocal analysis, fibroblasts were grown on coverslips and

were serum-starved for 30 min in binding medium (DMEM, 0.1%

BSA, 20 mM Hepes, pH 7.2, no phenol red). Following

incubation with 25 mg/ml Alexa 488-conjugated transferrin at

37uC for 1 h, cells were rapidly chilled on ice and washed three

times with cold PBS. Chase was performed for different times with

media containing serum (20% dialyzed FCS, 20 mM Hepes

pH 7.2, 50 mM deferoxamine, 2.5 mg/ml holo-transferrin) at

37uC. Cells were washed with cold PBS, fixed with 4%

paraformaldehyde and mounted with galvanol mounting solution

for confocal microscopy.

Kinetics of transferrin recycling was performed in cells grown

on 3 cm plates and serum-starved for 30 min in binding medium

as described above. Following 15 min incubation with 20 mg/ml

of biotinylated transferrin at 37uC, cells were chilled on ice and

washed once with cold citric buffer medium (25.5 mM citric acid

pH 3, 24.5 mM sodium citrate, 280 mM sucrose, 0.01 mM

deferoxamine) and twice with cold PBS. Chase was performed

with media containing serum (20% dialyzed FCS, 20 mM Hepes

pH 7.2, 50 mM deferoxamine, 2 mg/ml holo-transferrin) at

37uC. Following several washes with cold PBS, cells were

processed as described under immunoblotting. Samples, contain-

ing 20 mg of protein, were electrophoresed through a 10% SDS-

PAGE and transferred onto a nitrocellulose membrane (Schleicher

and Schuell BioScience, Keene, NH, USA). The corresponding

blots were blocked in a TGG solution (50 mM Tris pH 7.4,

100 mM NaCl, 1 M glucose, 10% glycerol, 0.5% Tween-20) with

1% skim milk and 3% BSA, for 1 h at 4uC. This was followed by

one wash with TGG and two additional washes with TBS-Tween-

20. Blots were probed with streptavidin/peroxidase for 1 h and

proteins were detected using the ECL-Luminol Reagent. Mem-

branes were rebloted with anti-ERK antibodies as a loading

control. Blots were scanned and the intensity of the proteins was

measured by the image densitometer 1Dprime (Amersham

Pharmacia Biotech, USA).

Flow cytometry analysis
Cells were serum starved in DMEM containing 0.1% BSA,

20 mM Hepes, pH 7.2 for 30 min. Twenty five mg/ml of human

Alexa 488-conjugated transferrin was added for 15 min at 37uC.

After three washes with PBS, cells were replenished in media

containing 20% dialyzed FCS, 20 mM Hepes pH 7.2, 50 mM

deferoxamine and 2.5 mg/ml holo-transferrin. Following different

incubation times at 37uC, they were washed with PBS, removed

from the dish with warm trypsin (15 s treatment), transferred to

4 ml cold DMEM and pelleted by centrifugation. Cell pellets were

resuspended in 500 ml of 4% paraformaldehyde. Alexa-488

conjugated transferrin was followed by flow cytometry in 5,000

cells using a Becton Dickinson FACSort (Mountain View, CA) and

CellQuest software. Baseline staining was obtained using non-

labeled cells.

b1-integrin recycling
To follow surface b1-integrin, cells were cultured on coverslips,

coated with 20 mg/ml fibronectin, The cells were incubated in

DMEM without phenol red, supplemented with 10% FCS and

starved for 1 h at 37uC in DMEM lacking serum but containing

0.5% BSA before addition of 5 mg/ml of anti-b1-integrin antibody

for 1 h on ice. For internalization, after the above treatment, cells

were transferred to 37uC for an additional 1 h to allow receptor-

antibody internalization. Surface antibodies were removed by acid

washes (0.5% acetic acid, 0.5 M NaCl, pH 3.0). Chase was

performed in complete media containing 20% FCS for different

times after which cells were fixed with 4% paraformaldehyde.

Cells were stained with AlexaFluor 488-conjugated goat anti-

mouse secondary antibody for 1 h and mounted with galvanol for

confocal microscopy. Internal b1-integrin was measured in 50–70

cells, chosen randomly for each time point, using ImageJ software.

Cell migration assay
Cells were grown at equivalent confluence for 18 h on 6 well

plates, precoated with 20 mg/ml fibronectin. Scratches were

introduced with a thin pipette tip, and cells were allowed to

migrate into the wound at 37uC. Pictures were taken every 90 min

with a Nikon microscope (Eclipse TE 2000-S, Japan). The size of

the scratch at time zero was considered 100%.

Cell spreading assay
Cells were trypsinized and replated on coverslips precoated with

20 mg/ml fibronectin at a concentration of 20,000 cells/well. The

cells were allowed to spread for different times after which they were

fixed and labeled with 0.2 units/ml of AlexaFluor 568-conjugated

phalloidin and 1 mg/ml of Hoechst (Sigma-Aldrich, Saint Louis,

MO, USA) for 1 h. Cell surface boundaries were outlined for 60–

280 cells, chosen randomly for each time point, and ImageJ software

was used to calculate the surface area of each cell.

Supporting Information

Figure S1 Colocalization of b1-integrin with F-actin and

SNAP29. (A) CEDNIK (F110T) and control (SV80) fibroblasts
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were grown on fibronectin coated plates and interacted with anti-

b1-integrin antibody at 4uC for 1 h on ice. Cells were washed,

fixed, permeabilized and immunostained with AlexaFluor 488-

conjugated anti-mouse secondary antibody and AlexaFluor 568-

conjugated phalloidin. Nuclei were stained with Hoechst. Cells

were examined under a confocal microscope. Arrows indicate

colocalization of b1-integrin and phalloidin stained F-actin. (B)

Control and CEDNIK fibroblasts (as above) were transfected with

GFP-SNAP29 expressing plasmid. Eighteen h later b1-integrin

binding assay was performed and was followed by internalization

for 1 h and a 2 h chase, as detailed in Materials and Methods. The

cells were fixed, and immunostained with secondary Cy3-

conjugated anti-mouse antibody. (C) Binding, internalization and

chase of b1-integrin were performed in control (SV80) fibroblasts

as above, after which the cells were fixed and immunostained with

secondary AlexaFluor 488-conjugated anti-mouse antibody. En-

dogenous SNAP29 was interacted with anti-SNAP29 antibodies

and stained with secondary Cy3-conjugated goat anti rabbit

antibodies. Nuclei were counterstained with Hoechst. Bar, 50 mm.

Arrows in (B, C) indicate colocalization between b1-integrin and

SNAP29. b1-integrin shows a plasma membrane staining and is

rarely colocalized with F-actin. There is occasional b1-integrin

staining in SNAP29 containing vesicles.

Found at: doi:10.1371/journal.pone.0009759.s001 (4.88 MB TIF)
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