
Identifying Unexpected Therapeutic Targets via
Chemical-Protein Interactome
Lun Yang1,2*, Jian Chen1,2, Leming Shi3, Michael P. Hudock1, Kejian Wang1, Lin He1,2,4*

1 Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China,

2 Institutes of Biomedical Sciences, Fudan University, Shanghai, China, 3 National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson,

Arkansas, United States of America, 4 Institute for Nutritional Sciences, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China

Abstract

Drug medications inevitably affect not only their intended protein targets but also other proteins as well. In this study we
examined the hypothesis that drugs that share the same therapeutic effect also share a common therapeutic mechanism by
targeting not only known drug targets, but also by interacting unexpectedly on the same cryptic targets. By constructing
and mining an Alzheimer’s disease (AD) drug-oriented chemical-protein interactome (CPI) using a matrix of 10 drug
molecules known to treat AD towards 401 human protein pockets, we found that such cryptic targets exist. We recovered
from CPI the only validated therapeutic target of AD, acetylcholinesterase (ACHE), and highlighted several other putative
targets. For example, we discovered that estrogen receptor (ER) and histone deacetylase (HDAC), which have recently been
identified as two new therapeutic targets of AD, might already have been targeted by the marketed AD drugs. We further
established that the CPI profile of a drug can reflect its interacting character towards multi-protein sets, and that drugs with
the same therapeutic attribute will share a similar interacting profile. These findings indicate that the CPI could represent
the landscape of chemical-protein interactions and uncover ‘‘behind-the-scenes’’ aspects of the therapeutic mechanisms of
existing drugs, providing testable hypotheses of the key nodes for network pharmacology or brand new drug targets for
one-target pharmacology paradigm.
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Introduction

Drug molecules inevitably affect not only their intended protein

targets but also other ‘‘off-target’’ proteins as well [1]. These

unexpected targets could, in some cases, mediate the physiological

effect of a drug, even if the drug is designed specifically to target

one particular protein [2]. Several antipsychotics, for example,

could trigger similar downstream molecular events when added to

the cell culture even without their target, the dopamine receptor,

expressed in it [3]. It is generally accepted that chemical-protein

interaction is the primary step in triggering molecular events in the

biological system when a drug is administered. The identification

of unexpected drug-protein interactions could therefore lead to the

discovery of new therapeutic targets and therapeutic pathways.

There are several strategies in mining such unexpected off-targets,

e.g., building new chemical-protein linkages in the known

therapeutic target space [2,4], investigating the pocket shape

[5,6] or sequence identity [7] between the off-target and the

known drug target. All these strategies operate on the narrow

space of the known drug targets, which represent only a small

portion of all human protein space.

Several ‘fishing’ techniques such as BIACORE [8], drug

affinity pull-down [9], drug affinity responsive target stability [10]

and quantitative proteomics based affinity enrichment [11] can

also assess the unexpected drug-protein interactions from a wider

protein space. Although not offering a systematic and convincing

evaluation of specificity and sensitivity in identifying true or false

bindings [12,13], docking one drug to a multi-protein set has

been a logical approach to ‘fishing’ unexpected targets. However,

none of the ‘fishing’ techniques described above offer the

dramatic progress recently achieved by transcriptomics [3],

metabolomics [14] and proteomics [15] in systematically

uncovering the molecular events following the administration of

a drug into the biological system. One reason might be the

inaccuracy of the scoring functions in the ‘fishing’ methodologies.

There is no guarantee, for instance, that if the docking score of

drug A to protein P1 is lower than A to P2, that P1 has a greater

affinity to A than P2 [16]. We therefore hypothesized that

investigating the relative strengths of chemical-protein interac-

tions from the ‘-omics’ viewpoint would be much more

meaningful than merely comparing the absolute values of a

drug’s effect on two proteins based on some certain scoring

function. Our second hypothesis was that drugs sharing the same

therapeutic effect also share the same therapeutic mechanisms by

targeting not only on the known target, but also on the same

unexpected targets. If the first hypothesis is correct, a more

accurate scoring method could be developed that could be

applied to the confirmation of the second hypothesis. The two

hypotheses require an overview of the drug-protein bindings at

the chemical-protein interactomics level.
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An interacting model of multi-drug towards multi-protein is

therefore introduced in this research, which has successfully been

applied in identifying unexpected drug-protein bindings in adverse

drug reactions [17]. To test the usefulness of this chemical-protein

interactome (CPI) technique on the therapeutic target mining in

an effective but low cost way, we chose the DOCK program [18]

to construct an in silico CPI. We first prepared 10 drug molecules

known to treat Alzheimer disease (AD) and 47 drug molecules

chosen randomly from Drugbank [19] as the ‘case’ and ‘control’

drugs, hypothesizing that clear differences between the interaction

profile of case and control drugs to multi-protein could be

observed. The target-mining strategy using this ‘-omics’ data was

based on the premise that if the protein was intensively targeted by

AD drugs, but did not tend to be targeted by the control drugs it

should be prioritized and be measured for its potential therapeutic

benefit to AD.

Results

Identifying the True Chemical-Protein Interactions Using
a Corrected Scoring Method

The docking scores are insufficient to assess absolute chemical-

protein interaction strength [16], which might explain why some

inverse docking techniques [12,13] are not widely used in

identifying unexpected bindings. To test the performance of our

optimization strategies on the drug-protein scorings, selected drug

targets from DrugBank [19] and their corresponding structures

from the Protein Databank (PDB). Each of the proteins was known

to be targeted by at least three FDA-approved drugs with co-

crystallized ligands occupying the functional sites. These ligands

were also chosen as probe molecules. Pockets without co-

crystallized ligands or with heme were excluded, leaving 46

proteins containing 48 pockets for the construction of the test CPI.

An in silico ‘hybridization’ was performed using DOCK program

[18]. Ligands too large to be docked into the pocket of every

protein were excluded. In all, an interactome of 44 ligands towards

48 protein pockets were generated in the form of a docking score

matrix of 48644 elements.

A 2-directional Z-transformation (2DIZ) was then applied to

transform the docking score matrix into a Z9-score matrix, where

the docking scores were normalized for each drug [20] and then

for each protein. Here the original ligand-protein bindings in PDB

structures were defined as true bindings, and the others classified

as unidentified bindings. The validity of the different scoring

systems in separating true and unidentified bindings was expressed

in the form of ROC curves (Fig. 1). Being close to the reference

line, the docking score matrix achieved a poor separating power.

However, using the 2DIZ made the AUC reached as high as 0.82.

The performance of Z-scores [17] was generally between the two.

The predictive accuracy of the Z9-scores may, in fact, be much

higher, since some of the unidentified bindings whose Z9-scores

were particularly low, might have occurred in any case, and

therefore been regarded as false positives. For example, the Z9-

score between retinoic acid receptor gamma-2 (1EXX) and

retinoic acid (REA) was -3.1, the lowest Z9-score of all drug-

protein bindings, was always classified as the true binding while

changing the classifying threshold. However, REA was originally

embedded in retinoic acid receptor RXR-alpha (1FBY) but not in

1EXX, so the binding of REA to 1EXX was always regarded as a

false positive according to the definition of true bindings.

Nevertheless, even with this biased evaluation, Z9-scores for 69%

of the true bindings compared with only 31% of the unidentified

bindings were less than 20.48, which was the threshold when the

absolute value of the differential coefficient of the ROC curve

reached its minimum, and the sensitivity and specificity are nearly

the same. A sensitivity of 0.70 and a specificity of 0.73 is

achievable when the threshold is set at 20.48, denoting that a Z9-

score less or greater than 20.48 indicates whether or not a binding

is likely to be the true binding.

Linear Model of the Chemical-Protein Interactome
Scoring

To give a reasonable explanation to why the Z9-score, not

docking score, is more suitable to represent chemical-protein

interactions, we put forward a linear model that a docking score

Figure 1. ROC curves representing the power for classifying true and unidentified bindings using docking score, Z-score and Z9-
score respectively. The AUC was 0.67, 0.77 and 0.82 for the three scoring systems.
doi:10.1371/journal.pone.0009568.g001
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Xij can be factorized as:

Xij~mzaizbjz(ab)ij , ð1Þ

where m is the mean of docking scores, ai and bj are the assessment

of the endogenous contributions of protein factor i and ligand

factor j respectively; (ab)ij is the interactive effect of the two factors,

which reflects the true nature of the chemical-protein affinity. Both

the ligand and the protein factors are considered as the random

effect. Comparing the variances of these effects within the example

CPI above, we found that the protein and the ligand effects

contributed largely to the variances of the docking scores, and

dominated the interactive effect significantly. The mean squares

ratios (F values) of the protein and the ligand effect towards the

interactive effect are 11.1 (p = 4.2E-67) and 65.8 (p = 0.0)

respectively (File S1). After applying 2DIZ however, the protein

and the ligand factors that contribute to docking scoring are

eliminated and the Z9-scores are as follows (see deducing

procedures in File S1):

Z 0 ij~
{b

ffiffiffiffiffiffiffiffiffiffi
n{1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{1)b2z (ab)ii{b½ �2

q (i=j), when (m?z?,n?z?)

Z 0 ij~ (ab)ij{b
h i ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(n{1)

(n{1)b2z (ab)ij{b
h i2

vuut (i~j),

when (m?z?,n?z?),

where n and m are the number of ligands and proteins respectively

and

b~

Pn
q~1

Pm
k~1

(ab)kq

mn
,

in which denotes that b is the mean of all the interactive effects

within the matrix. We can see from the above equations that the

Z9-score is determined solely by the chemical-protein interactive

effect when the elements in the docking score matrix approach

positive infinity.

Constructing the AD Drug-Oriented Chemical-Protein
Interactome

Based on the reliability of the Z9-score in specifying true and

unidentified bindings, we have initiated an AD drug-oriented CPI

that is independent of the test CPI. The chemicals selected here

were seven parent AD drugs and three of their major derivatives.

To avoid biases in the CPI assessment, we confirmed that the

seven drugs did not share significant chemical features (Fig. 2a).

They were then ‘hybridized’ onto 401 protein pockets (Table S1)

using DOCK program to generate a case CPI consisting of

docking-scores of 401610 relations. These pockets were derived

from third-party databases [19,21,22,23,24] of protein targets,

which were in agreement with the target using pre-defined criteria.

To make sure that this target set was not enriched for AD related

pathway, we performed KEGG pathway enrichment for all these

401 proteins using DAVID tools [25]. Seven pathways were

enriched whose FDR is less than 0.1, but none of them are

significantly associated with AD. The control CPI with 401647

relations was obtained simultaneously through docking all 47

control molecules onto 401 pockets. These 47 drug molecules were

randomly chosen from Drugbank, A joint CPI was constructed,

and after applying the 2DIZ, the interaction strengths were

transformed into a joint Z9-score matrix (401657 relations). It was

then reverted into the AD drug-oriented CPI and the control CPI.

For each protein in the CPI, we determined whether they could or

could not be targeted by a particular compound if the Z9-score of

the interaction was less than or greater than the 20.48. As

indicated earlier, Z9-scores beyond this threshold captured 70% of

the true bindings and enriched more than three-fold as compared

with the unidentified bindings, and the non-parameter hypothesis

test we used in the subsequent assessment only required

information of this binomial pattern.

Prioritizing Accredited and Unexpected Therapeutic
Targets of AD from the CPI

To identify proteins preferentially interacting with the case

drugs, we performed Fisher’s exact tests for every protein in

comparison to the control. The significance (2-sided) for each of

the proteins with relative resk (RR) value (see Methods)

exceeding one were then calculated and were used as a measure

to prioritize the potential drug targets. Proteins with p values less

than 0.01 were highlighted (Fig. 2b and Table 1). Arginase-1

achieved the lowest p value (p = 4.28E-06). This enzyme is

involved in the arginine-NO pathway [26], which has just been

discovered to be involved in AD pathogenesis [27]. The accredited

drug target, acetylcholinesterase (AChE), achieved a p value of

1.3E-3, as 8 of 10 case drugs tended to interact with it whereas

only 11 of 47 control drugs bind it. Surprisingly, we discovered

that two recently identified therapeutic target families of

neurodegenerative disease, the histone deacetylase (HDAC) family

and estrogen receptor (ER) family, might have already been

involved in the therapeutic pathways of these marketed AD drugs.

Both the representative protein of these two families achieved the

statistically significant p values (Table 1), indicating that they are

preferably targeted by case drugs than control drugs.

HDACs, the recently identified therapeutic targets for neuro-

degenerative diseases [28,29,30,31], catalyze the deacetylation

reaction of N6-acetyl-lysine of histone. Notably, several biochem-

ical similarities were found between the HDAC and the AChE.

For example, the hydrolyzation of acetylcholine catalyzed by

AChE is another form of deacetylation. Histidine residue and a

Zn2+ are involved in the catalytic mechanism of HDAC [32],

whereas His447 is also the catalyzing residue in acetylcholine

hydrolyzation [33] and the enzyme activity of AChE can be

significantly boosted by adding Zn2+ cation [34]. These facts

indicate similarities in their catalytic mechanisms. Furthermore, A

pocket comparison algorithm, SiteSorter, raised a contact

similarity score of 0.14 between the active sites of these two

enzymes, indicating that there are similarities between the nature

of the contacts each site makes with its co-crystallized ligand [35].

To validate the similarity between these two enzymes, we chose

another docking program, AutoDock [36], to generate a more

comprehensive interactome of two enzymes toward inhibitors and

their substrates. Firstly, we chose the substrate of AChE, the

acetylcholine, to run a pre-test. AutoDock was able to correctly

dock it to the active center of AChE [37] with its acetyl group

interacting with two catalyzing residues of AChE (Fig. S1) using

the docking parameters as described in the Methods section. We

also confirmed that an inhibitor of HDAC, trichostatin A (TSA)

could be docked to the correct position compared with that of the

co-crystal ligand (RMSD,0.5). We then chose another HDAC

Alzheimer Polypharmacology
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inhibitor (SAHA), together with acetylcholine, TSA and 10 case

drug molecules to constitute a ‘probe’ set, which was to ‘hybridize’

onto the two proteins. A control protein, HLA-B*5703, was

randomly chosen, hence a CPI of 1363 relations was constructed.

The Pearson correlation coefficient (PCC) between the docking

scores of AChE and HDAC7 towards 13 probes was 0.90

(p = 3.5e-5, Fig. 3a), whereas the PCC between AChE and HLA-

B*5703 was 0.62 (p = 0.024, Fig. 3b). When we randomly chose

50 other molecules from DrugBank (Table S2) to constitute a

control probe set, the PCC was 0.60 between AChE and HDAC7,

and 0.73 between AChE and HLA-B*5703 respectively (Fig. 3c,
d), indicating that correlation between the interaction profiles was

only high given the following two conditions: i) between AChE

and HDAC7; ii) using only ligands of AChE or HDAC as the

probe. Other members of HDAC family, including human

HDAC4, HDAC8 and a yeast HDAC, also showed significant

correlation of their interaction profiles with AChE (Table S3).

However, neither similarity in pocket shape (Fig. 2b) nor

significant sequence identity in binding site (Fig. S2) could be

observed between them, implying that the discovery of HDAC

could not be made by just comparing the structure or sequence.

We can see that the similarity between the pocket of HDAC7 and

the AChE is not determined by the pocket shape, but by their

interacting pattern with only the probe molecules, namely the AD

drugs and the HDAC inhibitors.

The successful recovery of both validated and candidate drug

targets of AD, which catalyze similar deacetylating reactions and

share a similar interaction profile with probe molecules, is not

likely to be achieved by chance. In addition, ERa and ERb were

also highlighted. The ligands of ERa and ERb are reported to

have neuroprotective and anti-inflammatory effects [38,39] and

are promising for AD therapy [40]. They might be the behind-the-

scene therapeutic targets of currently marketed AD drugs. Finally,

we could thus infer that other proteins highlighted along with these

proteins might also be involved in the therapeutic mechanisms of

AD, and might serve as the putative therapeutic targets. For

example, inositol monophosphatase, which interacts unexpectedly

with seven marketed AD drug molecules (p = 3.2E-3), is signifi-

cantly up-regulated in the AD brain and may be responsible for

the pathogenesis of AD [41]. Hence the interactions of AD drug

inositol monophosphatase need further investigating.

The Reliability of the CPI
To test the reliability of the CPI and to better mimic the real

situation of the drug space, we chose (from Drugbank) a control set

comprising 63 schizophrenia drug molecules (Table S4) together

with the original 10 AD drug molecules. All of the 73 drug

molecules where then ‘hybridized’ onto another published target

set to construct a matrix with 73*815 elements. These 63

schizophrenia drug molecules were taken from Drugbank using

Figure 2. Constructing and mining an AD drug-oriented chemical-protein interactome. (a) Structures of 10 case drug molecules. Drug
names followed by numbers indicate the derivatives. (b) Interactome of these 10 drug molecules towards 15 highlighted proteins in Table 1.
Proteins are represented by their PDB IDs. Blue, red or white squares represent a Z9-value less than, greater than or equal to zero. Deeper color
denotes the greater absolute value. Missing value is presented as a grey box. The accredited drug target of AD (human AChE) is marked with 1F8U.
The newly candidate therapeutic target of AD, human HDAC7, is marked with 3C0Z. Binding models of an AD drug, physostigmine, to the pockets of
the known (AChE) and unexpected (HDAC7) therapeutic targets of AD are enlarged. Though the shapes and the amino acids sequence of the two
pockets are different, the drug accommodates to the two pockets both with steric complementarity and low binding free energy estimated by
AutoDock.
doi:10.1371/journal.pone.0009568.g002
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the same criteria as choosing AD drugs. They were related to one

another because all of them could treat the schizophrenia, which is

a relevant disease to AD, but the drugs were not known to be

related to AD. Separating the AD drugs from these closely related

drugs will definitely demonstrate CPI’s ability of separating AD

drugs from other unrelated drugs. Similar procedures were applied

to perform Fisher’s exact test for each protein. Proteins with p

values less than 0.05 were selected for further investigation

(Table 2). Three AChEs (1GPK, 1GQS and 2ACE) were

included in these 85 highlighted proteins, which showed a

significant enrichment from all six AChEs in total 815 proteins

(Fisher’s exact test p = 0.019). No HDAC protein were highlighted,

however, two estrogen receptors (1QKT and 1R5K) and an

inosine phosphate (1I9Z) were still being highlighted. In general,

even with completely different control set and target set, most of

the AD related proteins could still be recalled.

CPI Profile of a Drug Reflects Its Therapeutic Effect of AD
One of the concepts of network pharmacology [1] is that drug

effect can be mediated by the interactions among drugs towards

multiple proteins. Hence drugs sharing the same therapeutic effect

would not only share the same drug targets, but might also display a

similarity in their interacting profile towards a multi-protein set. If this

similarity can be demonstrated from CPI vectors, the efficacy of CPI

could be broadened, e.g., the drug efficacy could be predicted by

using the docking score vector of a drug towards multi-protein set.

In the above section, the methodology could highlight the AD

related proteins based on the 63 control drugs. Distinguishing AD

drugs from the drugs of this AD relevant disease could be a

reference of its power in separating drugs of other diseases. Here

we applied the principle component analysis (PCA) to explore

whether AD drugs could be separated from schizophrenia drugs

based on their docking score vectors. The first two components

could explain 80.8% of the total variances, and the 10 AD drugs

and 63 control drugs could mostly be separated linearly

(accuracy = 93.2%, Fig. 4). The four ‘false positive’ points from

left to right were loxapine, olanzapine, clozapine and molindone

respectively. They were not only quite close to the AD drugs in

Fig. 4, but were also found to be closely linked to AD in their

therapeutic effects. For example, olanzapine was effective in

treating psychotic and behavioral disturbances in AD [42];

loxapine and molindone had the unlabeled effect of treating

psychosis/agitation related to Alzheimer’s dementia (http://www.

merck.com/mmpe/lexicomp/loxapine.html, http://www.merck.

com/mmpe/lexicomp/molindone.html); Clozapine was found

for the treatment of agitated-depressed patients with cognitive

impairment [43]. The PCA results denoted that the CPI profile of

a drug could reflect its therapeutic effect.

Discussion

It is not sufficient to conduct an accurate assessment of chemical-

protein bindings based solely on the original docking scores [16].

From our data we established that the scoring for both the inverse

dock [12] and the classical docking method could be improved

through systematically mining the CPI. When the Z-transformation

was applied for drug j towards multi-protein, the effect of bj was

eliminated, leaving only the effect of the ai and (ab)ij; when Z-

transformation was applied again for protein i towards multi-drugs

on the Z-score, the effect of ai was eliminated, thus only the effect of

drug-protein interaction was left. For the inverse docking, the

scoring will be inaccurate when ai dominates the (ab)ij. In other

word, one cannot be sure that P1 is more affinitive to drug A than

P2 if P1 ranks higher than P2 in the docking score list of A towards

multi-protein. With virtual screening, on the other hand, it is not

certain that D1 is more affinitive to P than D2 when D1 ranks

higher than D2 in the scoring list of P’s targeting by multi-drug,

because bj sometimes dominates (ab)ij. Based on the landscape of

the CPI, one can make more reliable judgments for drug-protein

interactions. Virtual screening can be considerably improved by the

use of the MASC method [20], but the 2DIZ transformation was

much more effective than this method on the CPI data (Fig. 1). It is

anticipated that target screening should consider the difference in

the interactome profiles of the library proteins towards multiple

drugs; whereas compound screening should investigate the

distribution of library molecules towards multiple proteins. Ideally,

a CPI comprising of all chemicals and all human macro molecules

would be constructed, as deduced in the linear model, the chemical-

protein interactive effect would solely be represented by Z9-score if

the chemical and target number approached positive infinity.

There may be undiscovered mechanisms which are responsible for

the therapeutic effect of the existing AD drugs, and a combined effect

on multiple targets may exist. This work demonstrates that the CPI can

generate testable hypotheses about the behind-the-scene pharmacology

of the existing drugs other than AD drugs. With the help of CPI,

candidate key nodes for network pharmacology [1] and new drug

targets for one-target pharmacology could be identified. There could

be a low cost, high throughput pre-screening step followed by ‘wet’

experiments, and recall of the off-targets would not be hindered by the

dissimilarity with the known target in either pocket shape [5,6] or

sequence identity [7]. The identification of unexpected but desired

bindings adds to the feasibility of identifying unexpected and unwanted

bindings for adverse drug reactions using the CPI methodology [17].

By constructing and mining the CPI, it will be possible not only to

harvest unexpected bindings, but also to predict the therapeutic effect

or the adverse effect of a drug [17] by uploading the small molecule to a

server to construct its CPI signature towards available a human macro

Table 1. Proteins highlighted from AD drug-oriented CPI
using 401 protein set.

PDB ID Protein Name a b c d RR Sig.

2AEB Arginase-1 10 10 0 37 4.278E-06

1F8U Acetylcholinesterase 8 11 2 36 8.00 0.001314

1VJB Estrogen-related receptor gamma 8 11 2 35 7.79 0.001512

1R5K Estrogen receptor 8 11 2 34 7.58 0.001745

3C0Z Histone deacetylase 7 6 5 1 22 12.55 0.002037

1F5F Sex hormone-binding globulin 8 9 2 28 7.06 0.002187

2BRO Serine/threonine-protein kinase
Chk1

7 9 3 38 5.98 0.003079

1IMB Inositol monophosphatase 7 11 2 36 7.39 0.003179

1YOL Proto-oncogene tyrosine-protein
kinase Src

7 10 3 36 5.35 0.005525

2C6Q GMP reductase 2 7 11 3 36 5.06 0.007531

1G8Q CD81 antigen 7 11 3 35 4.93 0.008457

1Z8G Serine protease hepsin 7 11 3 35 4.93 0.008457

1U54 Activated CDC42 kinase 1 8 14 2 33 6.36 0.009075

1B1C NADPH–cytochrome P450
reductase

8 14 2 33 6.36 0.009075

1EZF Squalene synthetase 7 11 3 34 4.80 0.009514

For each protein, a, b, c, d values, represents the number of binding (a or b) and
non-binding (c or d) by case drug molecules or control drug molecules
respectively. The two-sided p values were estimated from Fisher’s exact test.
doi:10.1371/journal.pone.0009568.t001
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molecule set [44]. The CPI signature of the small molecules, whose

therapeutic area is unknown, can be compared with the CPI signatures

of the existing drugs whose indications are known, providing a

potential methodology for pharmaceutical innovation. This is similar to

the process of uploading the expression profile of a cell treated by a

drug to the connectivity map [3], comparing it with the pre-constructed

transcriptomic data of the cell treated with different drugs, and then

making a functional linkage between the user’s drug and the drugs in

the server’s database. The expression profile of the cell provides a rich

description of cell status; whereas the CPI describes the primary step

when a drug is added to the biological system [11,45]. Knowing which

proteins’ function is affected by a drug is fundamental, for it could

explain the downstream molecular events at the source. The

comparison and the combination effect of using two ‘-omics’ platforms

in predicting the therapeutic effects and adverse effects of particular

drugs will be thoroughly evaluated in follow-up research.

As well as the methodology of CPI introduced above, our

research could also inform the search for therapeutic drugs for

AD. It is known that several HDAC inhibitors are now in clinical

trials aiming at AD therapy, but delivery of the drug to the brain

Figure 3. Correlations of docking scores among AChE, HDAC7 and HLA-B*5703 towards probe molecules. The assumed normality and
equal variances of docking scores within each group could not be rejectedin statistical tests. The PDB ID of the representative structures of AChE,
HDAC7 and HLA-B*5703 were 1F8U, 3Z0Y and 2BVP respectively. See Table S2 for the detail of their interactomes. (a, b) Correlations of docking
scores among AChE, HDAC7 and HLA-B*5703 towards 13 probe molecules. (c, d) Correlations of docking scores among these three proteins toward
50 control probes.
doi:10.1371/journal.pone.0009568.g003
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Table 2. Proteins highlighted from AD drug-oriented CPI using schizophrenia drugs as the control set.

PDB ID Protein Name a b c d RR Sig.

1Z93 Carbonic anhydrase 3 7 6 3 52 9.87 0.000162

1GPK Acetylcholinesterase 9 15 1 43 16.50 0.000205

1FKG Peptidyl-prolyl cis-trans isomerase FKBP1A 8 10 2 43 10.00 0.000356

1J02 Heme oxygenase 1 7 9 2 47 10.72 0.000441

1FVG Peptide methionine sulfoxide reductase 6 5 3 47 9.09 0.000546

1G8Q CD81 antigen 7 9 3 51 7.88 0.000763

1WXC Tyrosinase 4 0 6 41 7.83 0.000840

1EFH Bile salt sulfotransferase 4 1 6 58 8.53 0.001125

1C9H Peptidyl-prolyl cis-trans isomerase FKBP1B 6 6 4 53 7.13 0.001144

1R5K Estrogen receptor 7 11 3 49 6.74 0.001926

1DBK Ig gamma-1 chain C region secreted form 6 6 4 47 6.38 0.001941

1E4X TAB2 8 15 2 41 7.48 0.002271

1ME8 Inosine-59-monophosphate dehydrogenase 7 12 3 50 6.51 0.002405

1GQS Acetylcholinesterase 8 14 2 38 7.27 0.002511

1NR5 Pentafunctional AROM polypeptide 6 8 4 53 6.11 0.002797

2BFW GlgA glycogen synthase 7 12 3 48 6.26 0.002900

1C8P Cytokine receptor common subunit beta 6 8 4 52 6.00 0.003032

2DBL Ig gamma-1 chain C region secreted form 6 8 4 52 6.00 0.003032

1DBM Ig gamma-1 chain C region secreted form 6 7 4 47 5.88 0.003078

1DAR Elongation factor G 7 10 3 40 5.90 0.003489

1JCN Inosine-59-monophosphate dehydrogenase 1 7 12 3 46 6.02 0.003515

1FKF Peptidyl-prolyl cis-trans isomerase FKBP1A 6 8 4 50 5.79 0.003574

1ELA Chymotrypsin-like elastase family member 1 8 18 2 42 6.77 0.004085

1BZM Carbonic anhydrase 1 6 7 4 42 5.31 0.004893

1HFW L-asparaginase 6 7 4 42 5.31 0.004893

1DBB Ig gamma-1 chain C region secreted form 6 8 4 46 5.36 0.005035

2EU9 Dual specificity protein kinase CLK3 8 18 2 40 6.46 0.005096

1C41 6,7-dimethyl-8-ribityllumazine synthase 6 9 4 49 5.30 0.005591

1YTV Vasopressin V1a receptor 7 14 3 46 5.44 0.006041

1CPS Carboxypeptidase A1 6 10 4 52 5.25 0.006115

1H8P_3 Seminal plasma protein PDC-109 4 2 5 40 6.00 0.006322

2BU5 [Pyruvate dehydrogenase [lipoamide]] kinase isozyme 2,
mitochondrial

5 5 5 47 5.20 0.006645

2FKY Kinesin-like protein KIF11 5 5 5 47 5.20 0.006645

1TNJ Cationic trypsin 5 4 5 40 5.00 0.006978

1ZZD Ribonucleoside-diphosphate reductase large chain 1 5 5 5 46 5.10 0.007175

5CNA Concanavalin-A 6 8 3 35 5.43 0.007573

1MCR IMMUNOGLOBULIN LAMBDA DIMER MCG (LIGHT CHAIN) 6 10 4 48 4.88 0.008387

1GPM GMP synthase [glutamine-hydrolyzing] 5 7 5 53 4.83 0.010200

2HGS_2 Glutathione synthetase 5 7 5 53 4.83 0.010200

2CMD Malate dehydrogenase 3 1 7 51 6.21 0.011562

1JNW Pyridoxine/pyridoxamine 59-phosphate oxidase 5 7 5 51 4.67 0.011650

1UDH Uracil-DNA glycosylase 5 7 5 51 4.67 0.011650

2BYU 16.9 kDa class I heat shock protein 2 5 7 5 51 4.67 0.011650

1P8V_1 Platelet glycoprotein Ib alpha chain 6 10 4 44 4.50 0.011693

1I9Z Inositol-1,4,5-trisphosphate 5-phosphatase 1 6 11 4 47 4.50 0.012141

1GNX Beta-glucosidase 5 7 5 49 4.50 0.013353

2C6Q GMP reductase 2 6 12 4 49 4.42 0.013524

1AZM Carbonic anhydrase 1 5 5 5 38 4.30 0.013847

1FKI Peptidyl-prolyl cis-trans isomerase FKBP1A 6 12 4 48 4.33 0.014594
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remains a major obstacle [30]. Utilizing the endogenous nature of

how the existing AD drugs cross the blood brain barrier might

facilitate the design and development of HDAC inhibitors, or even

two-target drugs targeting AChE and HDACs to achieve a

combined therapeutic effect on AD.

Materials and Methods

Preparation of the Protein Pocket Set and the Ligand Set
for AD-Oriented CPI

Protein targets were obtained from third-party targetable

protein databases [19,21,22,23,24]. Every pocket had been

examined manually when constructing the protein set according

to the following criteria: Firstly, the species of the protein should be

confined to Homo Sapiens; secondly, the pocket must contain the co-

crystallized ligand to indicate the targetable state of the protein;

thirdly, the pocket should not contain missing residues; fourthly,

the protein set should not be redundant. Spheres whose radii

ranging from 1.1–1.4Å were generated to fill in the pocket. A grid

box was constructed 3–5Å departed from the balls. The case drugs

were derived from DrugBank, which were indicated for the

treatment of AD in the ‘‘Description, Pharmacology, Mechan-

ism_of_Action’’ fields of the FDA-approved drug table. Control

drugs were chosen randomly from DrugBank. The SMILES code

of the chemicals was retrieved from PubChem. The minimal

energy conformations of chemicals were simulated using COR-

PDB ID Protein Name a b c d RR Sig.

2CAB Carbonic anhydrase 1 4 4 5 45 5.00 0.015191

1BMA Chymotrypsin-like elastase family member 1 8 23 2 39 5.29 0.015779

1QKT Estrogen receptor 6 10 4 40 4.13 0.016597

1PTG 1-phosphatidylinositol phosphodiesterase 6 12 4 46 4.17 0.017042

5CPP Camphor 5-monooxygenase 8 21 2 35 5.10 0.017051

1AHA Ribosome-inactivating protein momordin I 4 5 5 49 4.80 0.018610

1ILH Nuclear receptor subfamily 1 group I member 2 6 12 4 44 4.00 0.019975

1NY3 MAP kinase-activated protein kinase 2 6 12 4 44 4.00 0.019975

1JQ9 Phospholipase A2 VRV-PL-VIIIa 6 13 4 47 4.03 0.019992

1PL7 Sorbitol dehydrogenase 6 11 4 40 3.88 0.021754

1TNH Cationic trypsin 4 5 6 53 4.37 0.021831

1D2F Protein malY 4 2 5 26 4.13 0.022041

2BO6 Mannosylglycerate synthase 6 13 4 45 3.87 0.023286

7YAS Hydroxynitrilase 6 11 4 39 3.79 0.023747

1F5F Sex hormone-binding globulin 7 13 3 34 4.32 0.024106

1A3G Branched-chain-amino-acid aminotransferase 4 5 6 51 4.22 0.024335

1II5 HYPOTHETICAL PROTEIN SLR1257 3 1 4 24 5.25 0.025306

1HNE Neutrophil elastase 7 17 3 43 4.47 0.025595

1JS3 Aromatic-L-amino-acid decarboxylase 5 11 4 49 4.14 0.026170

1Q1A NAD-dependent deacetylase HST2 5 10 5 52 3.80 0.027507

1Q3E Potassium/sodium hyperpolarization-activated cyclic
nucleotide-gated channel 2

5 10 5 52 3.80 0.027507

2ACE Acetylcholinesterase 7 16 3 38 4.16 0.027537

1CNY Carbonic anhydrase 2 4 6 6 54 4.00 0.030240

1DGD_1 2,2-dialkylglycine decarboxylase 5 9 5 46 3.64 0.030884

1K74_1 Retinoic acid receptor RXR-alpha 5 10 3 35 4.22 0.032835

2A3Z Wiskott-Aldrich syndrome protein 4 6 6 52 3.87 0.033525

2PK4 Plasminogen 4 6 6 52 3.87 0.033525

1GL5 Tyrosine-protein kinase Tec 7 20 3 42 3.89 0.033958

1DBJ Ig gamma-1 chain C region secreted form 5 9 5 44 3.50 0.035372

1YSC Carboxypeptidase Y 7 17 3 35 3.69 0.036841

1OIT Cell division protein kinase 2 4 7 6 55 3.70 0.039770

1AVN Carbonic anhydrase 2 5 10 5 46 3.40 0.040039

1CR1 DNA primase/helicase 5 10 5 46 3.40 0.040039

1HDK_2 Eosinophil lysophospholipase 4 5 5 36 3.64 0.043150

1IJE Elongation factor 1-alpha 4 7 6 51 3.45 0.048502

PDB IDs marked with a number indicate the pocket number. Refer to the note of Table 1 for the explanation of a, b, c, d and Sig.
doi:10.1371/journal.pone.0009568.t002

Table 2. Cont.
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INA. Charges and hydrogens of proteins and chemicals were

added using Chimera [46].

Construction of the AD-Oriented CPI Using DOCK
The running of the DOCK program and the extraction of the

results were controlled by Perl and shell scripts on a UbuntuTM

Linux cluster. The overall docking score of a chemical-protein

interaction was calculated using simple energy calculations

(electrostatic and van der Waals) with all default parameters used.

According to our experience, all the distributions of docking scores

in CPI correspond to normal distribution if the data points

(docking score .0) are excluded. Docking scores greater than zero

were therefore treated as an abnormal value and were excluded.

Visualization of CPI scoring matrix was performed using java

Treeview [47]. Visualization of chemical-protein interactions were

realized using PyMOL.

The 2-Directional Z-Transformation
Before the 2-directional Z-transformation (2DIZ) was applied

to process the original docking-score matrix, a joint CPI

(401657 relations) comprising of a case matrix (401610

relations) and a control matrix (401647 relations) was

constructed. Here Xij represents the docking-scores of ligand j

to protein i in the joint matrix. Firstly, the Z-scores were

calculated as:

Zij~
Xij{Xj

SDXj

,

where Xj and SDXj
are the mean and the standard deviation of

the docking score vector of ligand j. Then the Z-score vector for

each protein was normalized with the following formulas,

generating the Z9-score matrix.

Z 0ij~
Zij{Zi

SDZi

,

where Zi and SDZi
are the mean and the standard deviation of

the Z-score vector of protein i.

Comparing the Variances of between-Subjects Effects
within the Test CPI

The type IV method was used to calculate the sum of squares.

The normality of the chemical-protein interactive effect was

guaranteed by the Kolmogorov-Smirnov test. The F value was

computed as MSc/MScp and MSp/MScp respectively, where MSc,

MSp and MScp denoted the mean squares of the ligand, protein

and the interactive effects.

Test for Interaction Differences between ‘‘Case’’ and
‘‘Control’’ Drugs for Each Protein

A chemical-protein interaction with Z9-score less or greater than

20.48 was defined as binding or non-binding. For protein i, ai, bi,

ci, di values, representing the number of binding (ai or bi) and non-

binding (ci or di) by case or control drug molecules respectively,

were counted and the relative risk (RR) value was calculated as

follows:

RRi~
ai

aizbi

� �
cizdi

ci

� �
:

Protein targets with a RR value exceeding one were chosen for

Fisher’s exact tests, which were carried using an R software

package [48].

Correlation Analysis of CPI Profiles among Protein
Targets

The highest absolute value of docking scores generated by

AutoDock4 [36] among 50 runs for each chemical-protein

interaction was chosen as a reference score. All the default

parameters were used when making grids and running AutoDock4,

except that the parameter of the genetic algorithm, ‘‘Maximum

Number of Evals’’, was set to 2,000,000. Tests of normality were

performed using the Kolmogorov-Smirnov test. Levene’s test was

applied to the test of equal variances. The Pearson correlation

coefficient r between protein X and Y was calculated, and the

assumption of r equals zero was tested using the t-test.

Supporting Information

Table S1 The 401 human protein pockets set.

Found at: doi:10.1371/journal.pone.0009568.s001 (0.41 MB

DOC)

Table S2 Interactome of probe molecules towards the tree

proteins.

Found at: doi:10.1371/journal.pone.0009568.s002 (0.13 MB

DOC)

Table S3 Interactome and correlations of docking scores among

AChE and other members of HDAC family towards 13 probes.

Found at: doi:10.1371/journal.pone.0009568.s003 (0.04 MB

DOC)

Table S4 Sixty two schizophrenia drug molecules.

Found at: doi:10.1371/journal.pone.0009568.s004 (0.05 MB

DOC)

Figure 4. The first two principle components plot of AD and
schizophrenia drugs based on their docking score vectors. The
figure demonstrates that 10 AD drugs (red) could be basically separated
from 63 schizophrenia drugs (blue) linearly.
doi:10.1371/journal.pone.0009568.g004
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Figure S1 Visualization of the docking result of acetylcholine’s

interacting with the active center of AChE using AutoDock. The

acetyl of acetylcholine interacts with two catalyzing residues

(Ser203 and His447), which is accommodate to the catalytic

mechanism of AChE.

Found at: doi:10.1371/journal.pone.0009568.s005 (1.52 MB TIF)

Figure S2 Comparison of the binding site and sequence identity

in active site of AChE and HDAC7. (a, b) Comparison of the

docking result of physostigmine to the active site of human AChE

and hunan HDAC7. (c, d) Comparison of the docking result of

huperzine A to the active site of human AChE and hunan

HDAC7. Residues within 6Å of the docked ligand of AChE (PDB

ID: 1F8U) are Asp74, Gly82, Thr83, Met85, Trp86, Gly120,

Gly121, Gly122, Phe123, Tyr124, Ser125, Gly126, Leu130,

Tyr133, Gln202, Ser203, Ala204, Phe295, Phe297, Tyr337,

Phe338, Tyr341, Trp439, Pro446, His447, Gly448 and Tyr449.

Residues within 6Å of the docked ligand of HDAC7 (PDB ID:

3Z0Y) are His541, Pro542, Glu543, His544, Arg547, Asp626,

Pro667, His669, His670, Gly678, Phe679, Asp707, Val708,

His709, Phe738, Gly799, Phe800, Asp801, His806, Pro809,

Leu810, Gly811, Glu840, Gly841, Gly842 and His843. No

significant similarity could be observed within these amino acids

between the two proteins.

Found at: doi:10.1371/journal.pone.0009568.s006 (0.87 MB TIF)

File S1 Comparing the variances introduced by the ligands and

proteins respectively. Deducing procedures of elimination of the

protein and the ligand factors.

Found at: doi:10.1371/journal.pone.0009568.s007 (0.08 MB

DOC)
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