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Abstract

The 2006–2007 Angola Malaria Indicator Survey (AMIS) is the first nationally representative household survey in the country
assessing coverage of the key malaria control interventions and measuring malaria-related burden among children under 5
years of age. In this paper, the Angolan MIS data were analyzed to produce the first smooth map of parasitaemia prevalence
based on contemporary nationwide empirical data in the country. Bayesian geostatistical models were fitted to assess the
effect of interventions after adjusting for environmental, climatic and socio-economic factors. Non-linear relationships
between parasitaemia risk and environmental predictors were modeled by categorizing the covariates and by employing
two non-parametric approaches, the B-splines and the P-splines. The results of the model validation showed that the
categorical model was able to better capture the relationship between parasitaemia prevalence and the environmental
factors. Model fit and prediction were handled within a Bayesian framework using Markov chain Monte Carlo (MCMC)
simulations. Combining estimates of parasitaemia prevalence with the number of children under 5 we obtained estimates of
the number of infected children in the country. The population-adjusted prevalence ranges from 3:76% in Namibe province
to 32:65% in Malanje province. The odds of parasitaemia in children living in a household with at least 0:2 ITNs per person
was by 41% lower (CI: 14%, 60%) than in those with fewer ITNs. The estimates of the number of parasitaemic children
produced in this paper are important for planning and implementing malaria control interventions and for monitoring the
impact of prevention and control activities.
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Introduction

Malaria is a major public health problem and the principal

cause of morbidity and mortality in Angola. In 2004 there were

reported 3.2 million cases of malaria, two-thirds of which occurred

in children under 5 years of age ([1]). It is estimated that malaria

accounts for 35% of the overall mortality and 60% of hospital

admissions of children under five years ([2]), yet by 2003 only 2%

of under-5s used insecticide-treated nets ([3]). Angola recently

emerged from almost three decades of civil war (1985–2002) which

interrupted malaria control activities and severely damaged the

health infrastructure. Only 30% of the population currently has

access to government health facilities ([4]). The available statistics

for the burden of malaria are not reliable because of the poor case

reporting system and the lack of nationally representative malaria

surveys. Accurate maps of the distribution of malaria together with

human population data are valuable tools for generating valid

estimates of the infected population.

Because of the long period of civil unrest, no recent nationwide,

population-based surveys have been carried out in Angola.

Therefore there are no accurate estimates of the burden of

malaria in the country or nationwide coverage and use of key

malaria control measures. A Multiple Indicator Cluster Survey

(MICS) conducted by UNICEF in 2000 estimated household

ownership of insecticide treated nets (ITN) at less than 10% ([5]).

Indoor residual spraying (IRS) activities have been very limited in

the country over the last 10 years ([6]).

The 2006–2007 Angola Malaria Indicator Survey (AMIS) is the

first nationally representative household survey in the country

assessing coverage of the key malaria interventions and measuring

malaria-related burden among children under 5 years of age. The

survey was conducted with the support of National Malaria

Control Program (NMCP) within the Ministry of Health (MOH)

and was implemented by the Consultória de Serviços e Pesquisas –

COSEP, Consultória, Lda. and the Consultória de Gestão e

Administração em Saúde–Consaúde, Lda organizations. The

focus of the survey was to assess the prevalence of malaria and

anemia among children under 5 and estimate the use of ITNs and

intermittent preventive treatment (IPT) for malaria among

pregnant women, as well as coverage of IRS.

In this paper, the Angola MIS data were analyzed to produce the

first smooth map of parasitaemia prevalence based on contempo-

rary nationwide empirical data in the country. Non-linear

relationships between parasitaemia risk and environmental predic-

tors were modeled by categorizing the covariates as well as by

employing two non-parametric approaches, the B-splines and the P-

splines. To identify the method which best models the non-linear

environmental effects, three model validation approaches were
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applied. To account for geographical correlation in the malaria

data, Bayesian geostatistical models with household-specific random

effects were fitted. These models introduce spatial correlation into

the covariance matrix of the random effects. Model fit was

performed within a Bayesian framework using Markov chain

Monte Carlo (MCMC) methods, providing accurate estimates of

the model parameters and their standard errors.

Materials and Methods

Study area
Angola is located along the south Atlantic in southwest Africa

and covers 1,246,620 km2. It is bordered by the Republic of

Congo on the north, the Democratic Republic of the Congo on

the north-east, Zambia on the east and Namibia on the south. The

ethnic population of Angola is composed of Ovimbundu (37%),

Mbundu (25%), Bakongo (13%), mestiços - mixed European and

native African - (2%), European (1%) and other ethnic groups

(22%). Malaria is a major public health problem in Angola.

Plasmodium falciparum is the parasite responsible for more than 90%

of malaria infections. The transmission is greatest during the rainy

season and peaks between January and May. The prevailing

malaria vectors are Anopheles gambiae, Anopheles funestus and Anopheles

melas. National Malaria Control Programme in Angola assisted by

several international programs (such as Global Fund to Fight

AIDS, Tuberculosis and Malaria (GFATM), the President’s

Malaria Initiative (PMI), UNICEF etc.) adopted several key

strategies for malaria control including increasing the coverage of

antimalarial treatment, possession and use of insecticide-treated

nets (ITNs) and use of intermittent preventive treatment (IPT)

among pregnant women to at least 60%.

MIS Data
Ethic statement. The survey protocol was submitted to and

approved by the Ethical Review Committee at the National

Malaria Control Program and the Institutional Review Board

(IRB) of Macro International. Written informed consent was

obtained from the respondents participating in the survey.

The 2006–2007 AMIS sample was selected in three stages

stratified by epidemiological regions (hyperendemic: in the north

and in the lowlands of the Atlantic coast, mesoendemic stable: in

central and eastern areas and mesoendemic unstable: in southern

and eastern areas) and urban/ rural status, with sampling

probability proportional to the population size of selected

communes. Further details on sample design are available in [7].

Fieldwork was conducted between November 2006 and April

2007, during the rainy season. The survey collected information

from 2599 households. A total of 2973 women of reproductive age

(15–49 years) were interviewed on various health issues like

reproduction, pregnancy, intermittent preventive treatment of

malaria and treatment of fever in children. Information on the

demographic characteristics of the population as well as on

households facilities (water source, toilet facilities and flooring

materials) and assets (radio, bicycle, bed nets) were included in the

household questionnaires. As part of the AMIS, blood samples

from all children age 6–59 months were collected and tested for

anemia and malaria. In addition, fieldworkers collected informa-

tion on the use of IRS and mosquito bets to prevent malaria. To

determine the spatial coordinates of the surveyed communes three

different databases were used: Geographic Names Information

System (GNIS) (http://geonames.usgs.gov), GEOnet Names

(http://earth-info.nga.mil/gns/html) and Google Earth (Google,

Seattle, USA). The MIS Angola communes included in the survey

are shown in Figure 1.

Environmental and climatic data
Environmental and climatic data were extracted from satellite

images. Vegetation and land surface temperature (LST) data were

obtained from Moderate Resolution Imaging Spectroradiometer

(MODIS) at 1km2 spatial resolution for the period November

2005–April 2007. Dekadal rainfall data were available at 8km2

resolution via Africa Data Dissemination Service (ADDS).

Although the temporal and spatial resolution of the rainfall data

may seem high, these are reasonable resolutions because usually

precipitations cover rather large areas and the interest lies in the

variation of rainfalls between locations and not the absolute value.

Permanent rivers and lakes were extracted from Health Mapper

and the shortest Euclidean distance between the centroid of each

commune and the closest water body was calculated in ArcGIS

version 9.1 (ESRI; Redlands, CA, USA). Altitude data were

obtained from an interpolated digital elevation model (DEM) from

the U.S. Geological Survey - Earth Resources Observation and

Science (USGS EROS) Data Center at a spatial resolution of

1km2. The geographical distributions of the environmental factors

are displayed in Figure 2.

Bayesian geostatistical modeling
We assumed that the malaria status Yij of child i at location sj ,

which takes a value of 1 if the child has malaria and 0 otherwise,

follows a Bernoulli distribution Yij*Ber(pij). Logistic regression

models were run in Stata/SE version 10 (Stata Corporation,

College Station, Texas) to identify the environmental and climatic

factors significantly associated with malaria risk. The exploratory

analysis revealed a non-linear relationship between covariates and

malaria prevalence. To account for this non-linearity, three

methods were employed. First, the risk factors were categorized,

using cut offs based on scatter plots. Two further non-parametric

approaches based on spline smoothing were applied, B-splines and

P-splines. The advantage of the last two methods is that, instead of

specifying the function that describes the change in the response

variable when one or more explanatory variables are changed,

they estimate this function from the data. The probability of

having malaria pij is given by logit(pij)~
Pp

k~1 fk(X
(k)
ij ), where

Xij~(X
(1)
ij ,X

(2)
ij , . . . ,X

(p)
ij )T is the vector of p associated environ-

mental predictors observed at location sj and f (:) is a smooth

function of the covariates.

Bayesian geostatistical models with location-specific random

effects were fitted to estimate the degree of spatial correlation in

the malaria risk data and to assess the effect of different covariates

in the presence of geographical heterogeneity. Spatial dependence

was modeled by assuming that the random effects

w~(w1, . . . ,wn)T are distributed according to a multivariate

normal with mean 0 and the covariance between two locations

sj and sl an exponential parametric function of the distance djl

between them, Sjl~s2exp({djl=r). The s2 is the spatial variation

and r is the parameter which controls the rate of correlation decay

with increasing distance. An additional set of location-specific

random effects ~ 1, . . . , nð ÞT were included to account for

unexplained non-spatial variation. They are assumed to be

independent, arising from a normal distribution ej*N(0,t2),
where t2 is called the nugget effect and accounts for the non-

spatial variation in the malaria risk data. Due to the large number

of model parameters, Markov chain Monte Carlo ([8]) simulation

methods were used for model fitting.

Model validation was employed to select among the three

Bayesian models capturing non-linearity in the relationship

between parasitaemia prevalence and the environmental covari-

ates. For the purpose of validation, the model fitting is usually

carried out on 80% of the data locations and the comparison of the

Analysis of Angola MIS
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predictive ability of the models on the remaining 20% of locations.

In our case, the models were fitted to a randomly selected subset of

70 locations (training set). The remaining 17 locations (test points)

were used for validation. The predictive performance of the three

models was assessed by calculating: i) a Bayesian ‘‘p-value’’

analogue, ii) the Kullback-Leibler difference between observed

and predicted malaria risk and iii) probability of including the true

risk in its predicted highest posterior density interval (HPDI) in

relation to the width of this interval. The first two approaches are

described in detail in [9]. In particular, for each test location the

area of the predictive posterior distribution which is more extreme

than the observed data was calculated and the model with the

‘‘p-value’’ close to 0:5 is considered the one with the best

predictive ability. The Kullback-Leibler distance between the

observed prevalence and the predictive posterior distribution

is calculated by KL(k)~
P17

j~1 pobs
j � log(

pobs
j

p
rep(k)
j

),k~1, . . . ,500,

where pobs
j is the observed risk at test location sj and

p
rep
j ~(p

rep(1)
j , . . . ,p

rep(500)
j ) are 500 replicated data points from

the predictive distribution at test site sj . The model with the

smallest Kulback-Leibler value is considered the best. For the third

validation approach, 100(1{a)% HPDIs were obtained for

different confidence levels a, with 0vav1. The percentages of

test locations with observed malaria risk falling inside these

intervals were computed, as well as the width of the HPDIs. The

best model is considered the one with the highest coverage of the

test locations and the narrowest HPDIs.

To assess the effects of malaria interventions in the country after

adjusting for environmental factors, the model with the best

predictive ability was fitted again including additional covariates,

that is the socio-economic status, the indoor residual spraying

status of each household and the number of ITNs per person in

each household. The best model in terms of its predictive ability

was further employed to predict malaria prevalence at unsampled

locations using Bayesian kriging ([10]). The predictions were based

only on the relationship between the malaria risk and the

environmental factors since data on the socio-economic status

and the malaria interventions are not available at high resolution

for the whole country. Predictions were made for 161000 pixels

covering on a regular grid the whole area of Angola. In addition,

the estimates of the number of children v5 years old with malaria

parasites were obtained by multiplying for each pixel the number

of children with the parasitaemia risk. The number of children v5
years old in Angola were acquired from the International Data

Base of the U.S. Census Bureau, Population Division for the year

2006. The spatial analysis was implemented using software written

by the authors in Fortran 95 (Compaq Visual Fortran Professional

6.6.0) using standard numerical libraries (NAG, The Numerical

Algorithms Group Ltd.).

Results

The results of the model validation are presented first since both

inference and predictions are based on the model with the best

predictive ability. Figure 3 shows the distribution of the ‘‘p-values’’

of test locations estimated by the P-spline model (left box plot),

B-spline model (center box plot) and the model with categorized

covariates (right box plot). The median ‘‘p-value’’ of the former

model is closer to 0:5, suggesting that this is the best model.

However, there is no significant difference between the median

‘‘p-values’’ of the categorical and B-spline models. The distribution

Figure 1. Observed parasitaemia prevalence in children less than 5 years old from the MIS carried out in Angola at 92 locations
(left). Angola province map (right).
doi:10.1371/journal.pone.0009322.g001
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of the Kulback-Leibler difference measure is shown in Figure 4.

The categorical model has the smallest Kulback-Leibler value.

The accuracy of the prediction as well as the width of the HPDI’s

are shown in Figure 5. In terms of coverage, the best performance

is found for the categorical model. However, the B-spline model

shows narrower HPDI’s compared with the categorical model.

This might explain its failing performance to include the true

parasitaemia risk in its HPDI. Based on the results of the model

validation, the categorical model was employed for estimating the

relationship between malaria prevalence and environmental/

climatic factors and produce a smooth map of parasitaemia

prevalence.

The predicted parasitaemia risk obtained by employing the

Bayesian kriging over a grid of around 161000 pixels is shown in

Figure 6. The estimates are based on the Bayesian geostatistical

categorical model with environmental and climatic predictors and

correspond to the median of the posterior predictive distribution.

The predicted parasitaemia risk varies between 0% and 80%,

while the observed risks range from 0% to 100%, with only 4:5%
of the data having a risk larger than 80%. Low levels of

parasitaemia prevalence (v15%) are observed in the Namibe

province, the areas along the Atlantic Ocean, the central part of

Figure 2. The distribution of environmental factors in Angola.
doi:10.1371/journal.pone.0009322.g002

Figure 3. The distribution of Bayesian p-values for the three
Bayesian geostatistical approaches that model the non-linear
environmental effect. The box plots display the minimum, the 25th ,
50th, 75th and the maximum of the distribution.
doi:10.1371/journal.pone.0009322.g003
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Moxico province and parts of Huila, Cunene and Cuando

Cubango provinces. Relatively high prevalences were predicted

for Zaire, Malanje, Cuanza Sul, Bie and Muambo provinces. The

lower (2.5%) and upper (97.5%) percentiles of the posterior

distribution corresponding to the predicted malaria risk are

depicted in Figure 7.

Table 1 shows the effects of environmental and climatic factors,

socio-economic status and malaria control interventions on the

parasitaemia risk in children less than 5 years old. The estimates

are obtained from the bivariate model and the Bayesian

geostatistical models with the predictors environmental factors,

socio-economic status and the malaria interventions. The bivariate

analysis shows that all covariates are significantly associated with

the risk of parasitaemia. In particular, temperature, altitude,

distance to the nearest water body, socio-economic index and

indoor residual spraying were negatively associated with the

parasitaemia prevalence. A positive association was observed

between Normalized Differenced Vegetation Index (NDVI),

rainfall and number of ITNs per person. The results of the

Bayesian geostatistical models including only the environmental

factors show that none of the covariates remained significant.

When the effect of socio-economic status and malaria control

interventions was added, only the fourth quintile of the socio-

economic index (less poor) was negatively associated with the

disease prevalence, as well as the number of ITNs per person

(§0:2).

The posterior estimates of the spatial parameters are given in

Table 2. The decay parameter r had a posterior median of 0:25
(95% CI: 0:01,2:94) which, in the current exponential setting,

corresponds to a minimum distance for which the spatial

correlation becomes negligible of 12:17 km (95% CI:

1:02,370:4). This indicates a quite strong spatial correlation in

the parasitaemia data. The estimate of the spatial variance

parameter (s2~2:13, 95% CI: 0:11,4:81) is higher than the

estimate of the non-spatial variance (t2~0:81, 95% CI: 0:06,3:64).

The predicted number of children v5 years old with malaria

parasites is shown in Figure 8. The estimates of number of children

v5 with malaria parasites at the provincial level are presented in

Table 3. We observe that after adjusting for population

distribution, the mean risk of parasitaemia in the country dropped

from 26:26% to 23:38%. Namibe province, which is the second

lowest urban populated area has the lowest population-adjusted

prevalence (3:76%). The province with the highest population-

adjusted risk is Malanje (32:65%), one of the most populated

provinces in the country.

Discussion

In this paper we have analyzed the parasitaemia data from the

first nationally representative malaria survey in Angola to identify

significant predictors associated with the parasitaemia risk and to

produce a contemporary smooth map of the disease risk in the

country. The 2006/2007 Angola MIS included information on

malaria-related burden among children under 5 years of age,

malaria control intervention (ITNs and IRS) coverage and

background characteristics (i.e. household assets). One of the

goals of the project is to provide baseline data against which to

measure the effectiveness of on-going control interventions. Using

data on the population distribution in the country, estimates of the

number of children v5 years old infected with malaria parasites

were obtained. These could be compared with estimates from

future MIS surveys in Angola to evaluate the progress of

intervention programmes.

The map of parasitaemia risk in Angola presented in this paper

is the first map based on contemporary nationwide empirical data

in the country. [11] produced a climatic suitability map of malaria

transmission in sub-Sahara Africa, but this was based only on

biological constraints of temperature and rainfall on malaria

parasite and vector development. Recently a number of

prevalence maps based on historical malaria survey data in Mali

([12],[9]) and West Africa ([13],[14]) have been produced.

However, these maps do not reflect the current malaria situation

at a specific location, which could be influenced by control

measures or human activities on which historical information are

not available. In addition, the historical field survey data are

Figure 5. Percentage of test locations with malaria prevalence
falling in the predicted highest posterior density intervals (bar
plots). The wideness of the predicted highest density regions (line
plots). Non-linear environmental effects are modeled via P-splines (red),
B-splines (green) and categorizing the covariates (blue).
doi:10.1371/journal.pone.0009322.g005

Figure 4. The distribution of the Kullback-Leibler measure for
the three Bayesian geostatistical approaches that model the
non-linear environmental effect.
doi:10.1371/journal.pone.0009322.g004
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Figure 6. Smooth map of the parasitaemia risk in children vvvv5 years in Angola.
doi:10.1371/journal.pone.0009322.g006

Figure 7. The lower (left) and upper (right) percentiles of the posterior distribution for the predicted malaria parasitaemia.
doi:10.1371/journal.pone.0009322.g007
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heterogeneous in season and age since they are collected in

different seasons and they covered populations with non-

standardized and overlapping age groups. These constraints make

it difficult to consider seasonality and age adjustment in malaria

mapping. MIS are a new source of malaria data which address the

drawback of the historical data. They are contemporary nationally

representative data, collected all in the same season (usually the

season with highest malaria transmission), covering standardized

age groups. In addition, the MIS collect information on malaria

intervention coverage and wealth status of the population at

household level, allowing adjustment for these factors. The first

country which successfully completed the MIS is Zambia. The

data were analyzed by Riedel et al. (unpublished) and a first

parasitaemia map of Zambia was produced.

Table 1. Association of parasitaemia risk with environmental/climatic factors, socio-economic status and malaria interventions,
resulting from the bivariate and multivariate non-spatial models and the Bayesian geostatistical model.

Variable Bivariate non-spatial model Geostatistical model
Geostatistical model including SES
and interventions

OR 95%%%CI OR 95%%%CIa OR 95% CIa

Day LST (v250C) 1.0 1.0 1.0

25{28 0.67 (0.53,0.84) 0.93 (0.29,3.04) 0.85 (0.30,2.44)

28{32 0.44 (0.30,0.65) 0.95 (0.20,4.47) 0.66 (0.15,2.91)

§32 0.15 (0.09,0.25) 0.57 (0.08,3.82) 0.57 (0.12,2.80)

Night LST (v160C) 1.0 1.0 1.0

16{20 1.10 (0.85,1.42) 0.61 (0.18,1.96) 0.64 (0.20,1.92)

§20 0.34 (0.25,0.47) 0.73 (0.15,3.37) 1.04 (0.24,4.21)

NDVI (v0:30) 1.0 1.0 1.0

0:30{0:50 2.29 (1.25,4.17) 0.80 (0.10,5.87) 0.69 (0.11,4.21)

0:50{0:60 8.66 (5.02,14.94) 2.88 (0.30,24.36) 2.74 (0.35,22.58)

§0:60 10.62 (6.28,17.94) 3.92 (0.40,33.94) 4.34 (0.53,36.74)

Rainfall (v75mm) 1.0 1.0 1.0

75{112 8.16 (4.53,14.70) 4.61 (0.63,34.67) 2.69 (0.49,15.44)

112{135 10.97 (6.11,19.71) 3.34 (0.43,26.87) 2.81 (0.43,18.57)

§135 10.80 (6.00,19.43) 3.41 (0.44,27.54) 2.26 (0.37,14.83)

Altitude (v0:4km) 1.0 1.0 1.0

0:4{0:6 0.62 (0.49,0.79) 0.64 (0.22,1.81) 0.58 (0.22,1.47)

§0:6 0.96 (0.71,1.30) 0.96 (0.22,4.14) 1.35 (0.42,4.49)

Distance to nearest water body (v0:5km) 1.0 1.0 1.0

0:5{1:5 0.74 (0.50,1.10) 0.93 (0.17,5.27) 0.92 (0.18,4.81)

1:5{3:0 0.30 (0.20,0.44) 0.50 (0.10,2.56) 0.61 (0.13,2.86)

§3:0 0.36 (0.26,0.49) 0.72 (0.17,2.96) 0.67 (0.17,2.66)

Socio-economic status

Most poor 1.0 1.0

Very poor 0.77 (0.60,0.99) 0.96 (0.66,1.39)

Poor 0.31 (0.23,0.43) 0.66 (0.36,1.20)

Less poor 0.10 (0.06,0.17) 0.38 (0.16,0.85)

Least poor 0.16 (0.09,0.28) 0.77 (0.31,1.84)

IRS 0.22 (0.10,0.47) 0.49 (0.16,1.37)

ITNs per person (0) 1.0 1.0

0{0:2 1.28 (0.91,1.80) 0.79 (0.48,1.28)

§0:2 1.26 (1.0,1.58) 0.59 (0.40,0.86)

aCredible intervals.
doi:10.1371/journal.pone.0009322.t001

Table 2. Posterior estimates of spatial parameters.

Spatial parameter Median 95% CIa

s2 2.13 (0.11, 4.81)

t2 0.81 (0.06, 3.64)

rb 0.25 (0.01, 2.94)

aCredible intervals.
bBased on the decay parameter r, the range parameter 3=r (in km) is
calculated.
doi:10.1371/journal.pone.0009322.t002
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An important aspect that needs to be highlighted regarding the

MIS in general and AMIS in particular is that they are all

conducted during the transmission season, therefore the parasit-

aemia risk maps resulting from the analysis are specific to this time

period and may not reflect the situation of malaria for the whole

year. Since all future MIS are planned to be carried out also

during the highest transmission season, these maps are providing

the baseline situation of the disease against which the forthcoming

maps could be compared to assess the effectiveness of intervention

programs.

Angola has three main agro-ecological zones. The northern

region is characterized by a humid tropical climate, with an

annual rainfall over 2000 mm. Our model predicted one of the

highest levels of parasitaemia risk in this region (Zaire province).

The central region has a temperate tropical climate. This area is

characterized by an annual rainfall ranging from 1250 mm to

1500 mm. Estimates of parasite prevalence reach the highest level

in this region (provinces of Malanje, Cuanza Sul and Bie). The

south and south-west part of the country, where our model

predicted the lowest disease risk, is characterized by a dry climate

ranging from tropical desert to tropical dry, with low annual

rainfall (20 mm average). Based on this comparison, we can

conclude that the parasite prevalence map produced in this paper

is in line with the distribution of agro-ecological zones in Angola.

Malaria is endemic all over Angola, however the country is

stratified into three regions based on levels of endemicity ([7]).

Malaria is hyperendemic in the north, mesoendemic stable in

central and eastern areas, and mesoendemic unstable in southern

and eastern areas. The geostatistical model predicted low disease

risk in the south and south-east part of the country which is

classified as mesoendemic unstable. Low risk is also observed in the

central-west coastal and south-west regions which are classified as

mesoendemic stable. This may be explained by the highest

temperature and low rainfall and vegetation. There is a noticeable

low risk area in the central-east possible due to low level of

vegetation. The highest risk was observed in the central and north

part of the country which is classified as hyperendemic and

mesoendemic unstable regions. The estimated prevalence map

does not indicate clearly the geographical limits between the

hyperendemic and the mesoendemic stable zones. Also the ITN

coverage (presented in upper right hand side of Figure 6) reflects

the endemicity level of malaria. Few ITNs per person are present

in the unstable areas, while the number of ITN per capita

increases as we move towards the northern part of the country

which has perennial malaria transmission.

After adjusting for the population distribution, we observe that

the country is split in two main regions: the eastern part with low

population-adjusted prevalence and the western part with the

highest level of disease risk, with the exception of Namibe province

in the south-west. Based on the population-adjusted risk map,

control intervention should be concentrated mainly in the central-

south, central and north part of the country. Special attention

should be given to the Malanje province which has the highest

estimated number of infected children.

Malaria data are geographically correlated due to common

exposures, therefore the spatial correlation must be taken into

account. Most MIS are carried out on rather small number of

locations (around 100); however the locations cover the whole

country. Scarcity of the data in certain areas would introduce large

prediction errors. The advantage of the modelling method we

have used in this paper is that it provides estimates of the

prediction uncertainty which are shown in Figure 7. The modeling

approach employed in this study was based on the assumption of

stationarity, that is the spatial correlation was considered a

function of only the distance between locations and was

independent of the locations themselves. The results obtained

from the Bayesian geostatistical models were similar to the findings

of Riedel et al. (unpublished). In particular, the authors found no

relationship between environmental/climatic factors and the

parasite prevalence in Zambia. In addition, the only intervention

measure significantly associated with a decrease in parasitaemia

risk was bednet ownership, while IRS had no significant effect on

the disease risk. Our analysis indicates also no relationship

between IRS within the last 24 months and the parasitaemia risk.

More than 0.2 ITNs per person in a household was found to be

significantly associated with a decreased risk of parasitaemia. The

similar results regarding the effects of malaria intervention

measures between Angola and Zambia were to be expected

considering the similar coverage of ITNs among children younger

than 5 years in the two countries ([15]). Unfortunately, at the

moment there is no database on the distribution of malaria

intervention coverage at high spatial resolution, therefore these

factors may not be used when predicting malaria risk at

unsurveyed locations. Including these covariates in the kriging

would significantly increase the predictive ability of the models.

The estimates of the number of parasitaemic children produced

in this paper are very important for planning and implementing

control interventions and for monitoring the impact of prevention

and control activities. Information on the number of infected

children could be compared to existing levels of service provision

to identify under served populations and to target interventions to

high priority areas.

Figure 8. Estimated number of children less than 5 years old
with malaria parasites in Angola.
doi:10.1371/journal.pone.0009322.g008
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Table 3. Estimates of the number of children less than 5 years old with malaria parasites at province level.

Province Number of children ,5 Infected children 95%%% CI

Model-based
prevalence

Model-based prevalence
adjusted for population

Bengo 33703 8124 (1815,21119) 23.40% 24.10%

Benguela 160008 24604 (516,125302) 21.49% 15.38%

Bie 197908 62979 (2197,184612) 33.43% 31.82%

Cabinda 19926 5119 (105,18333) 26.90% 25.69%

Cuando Cubango 25856 4685 (123,22676) 18.95% 18.12%

Cuanza Norte 82365 25414 (893,77611) 30.63% 30.86%

Cuanza Sul 116591 35817 (1401,107114) 32.50% 30.72%

Cunene 48451 5433 (151,41044) 12.52% 11.21%

Huambo 246028 74375 (2785,228185) 31.54% 30.23%

Huila 144474 27610 (808,124421) 22.10% 19.11%

Luanda 284414 25015 (149,158791) 11.53% 8.80%

Luanda Norte 50845 13553 (419,46721) 30.43% 26.66%

Luanda Sul 22690 6557 (178,20710) 29.25% 28.90%

Malanje 176638 57670 (2335,163306) 32.62% 32.65%

Moxico 57179 13817 (286,49300) 24.64% 24.16%

Namibe 32026 1204 (24,19547) 7.79% 3.76%

Uige 155405 43108 (1208,143887) 27.85% 27.74%

Zaire 62031 12978 (315,53128) 29.65% 20.92%

TOTAL 1916540 448063 (106469,1156997) 26.26% 23.38%
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