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Abstract

Mycobacterium tuberculosis (Mtb), a dreaded pathogen, has a unique cell envelope composed of high fatty acid content
that plays a crucial role in its pathogenesis. Acetyl Coenzyme A Carboxylase (ACC), an important enzyme that catalyzes the
first reaction of fatty acid biosynthesis, is biotinylated by biotin acetyl-CoA carboxylase ligase (BirA). The ligand-binding
loops in all known apo BirAs to date are disordered and attain an ordered structure only after undergoing a conformational
change upon ligand-binding. Here, we report that dehydration of Mtb-BirA crystals traps both the apo and active
conformations in its asymmetric unit, and for the first time provides structural evidence of such transformation.
Recombinant Mtb-BirA was crystallized at room temperature, and diffraction data was collected at 295 K as well as at 120 K.
Transfer of crystals to paraffin and paratone-N oil (cryoprotectants) prior to flash-freezing induced lattice shrinkage and
enhancement in the resolution of the X-ray diffraction data. Intriguingly, the crystal lattice rearrangement due to shrinkage
in the dehydrated Mtb-BirA crystals ensued structural order of otherwise flexible ligand-binding loops L4 and L8 in apo BirA.
In addition, crystal dehydration resulted in a shift of ,3.5 Å in the flexible loop L6, a proline-rich loop unique to Mtb
complex as well as around the L11 region. The shift in loop L11 in the C-terminal domain on dehydration emulates the
action responsible for the complex formation with its protein ligand biotin carboxyl carrier protein (BCCP) domain of ACCA3.
This is contrary to the involvement of loop L14 observed in Pyrococcus horikoshii BirA-BCCP complex. Another interesting
feature that emerges from this dehydrated structure is that the two subunits A and B, though related by a
noncrystallographic twofold symmetry, assemble into an asymmetric dimer representing the ligand-bound and ligand-free
states of the protein, respectively. In-depth analyses of the sequence and the structure also provide answers to the reported
lower affinities of Mtb-BirA toward ATP and biotin substrates. This dehydrated crystal structure not only provides key leads
to the understanding of the structure/function relationships in the protein in the absence of any ligand-bound structure,
but also demonstrates the merit of dehydration of crystals as an inimitable technique to have a glance at proteins in
action.
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Introduction

Fatty acid biosynthesis is vital for the virulence and pathogenesis

of Mycobacterium tuberculosis (Mtb), a deadly pathogen [1,2]. The

first committed step in lipid biosynthesis is the biotinylation of

Acetyl Coenzyme A Carboxylase (ACC) mediated by biotin acetyl-

CoA carboxylase ligase/biotin protein ligase (BirA) [3–5]. It has

been shown that BirA is interchangeable between organisms [3,6]

suggesting conserved enzyme-substrate interactions. Yet, a recent

biochemical study on Mtb-BirA has revealed significant differences

in the ligand-binding properties of this enzyme compared to BirAs

from various other organisms [7]. Therefore, on one hand, BirA

appears to be an attractive target for the development of broad

spectrum therapeutic agents against multiple infections, while on

the other, it also appears to be ideal for the development of

species-specific novel anti-infective agent.

Several crystal structures of both monofunctional and bifunc-

tional BirAs [8,9] from many genera have been determined either

as apoenzyme or as complex with its ligands (Table 1) [10–14]. All

the apo BirA crystal structures have revealed the presence of

disordered flexible loops, which undergo a conformational

transition upon biotin and biotinyl-59-AMP binding. These loops

are known to participate in either dimer interface or ligand-

binding or both. The apo Escherichia coli (Ec) BirA has four-

disordered loops - biotin binding loop:BBL, adenylate binding

loop:ABL, dimer loop I:DLI and dimer loop II:DLII. Binding of

ligands induces dimerization of EcBirA and structural ordering of

these loops [12,15–17]. However, Pyrococcus horikoshii (Ph) BirA
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exists as a dimer in both the liganded and unliganded forms [13]

and the crystal structure of its apo form shows only one disordered

loop (BBL) [10,11]. Similarly, in the crystal structure of BirA from

M. tuberculosis (Mtb-BirA), two such loops and a few residues at the

N-terminal are missing (Ma and Wilmanns, PDB deposition 2cgh,

2006). Elucidation of molecular structure of these disordered loops

may provide insights into species-specific behavior of Mtb-BirA

towards its ligands.

As reported earlier, the transfer of Mtb-BirA crystals to paraffin

and paratone-N oil (cryoprotectants) and subsequent flash freezing

resulted in the dehydration of the crystals and significantly reduced

their solvent content [18]. Though the crystals diffracted at

2.69 Å, not better than the 1.8 Å data available in PDB for Mtb-

BirA (2cgh), the most fortunate effect of the dehydration in our

case turned out to be tracing of the structure of otherwise

disordered ligand-binding loops absent in 2cgh and other apo

BirAs. Involvement of these mobile loops in the biotinylation

reaction is indispensable and hence the knowledge of their

structure is critical for new leads into protein-ligand interactions.

The conditions used in this study for the crystallization of Mtb-

BirA protein were different from the one reported in 2cgh PDB

entry. Hence, to eliminate the effects arising out of these

differences, the Mtb-BirA structure (2.8 Å) was also determined

with normal hydration for the purpose of comparison.

The dehydrated crystal structure of apo Mtb-BirA reported here

provides the active structure of the disordered loops involved in

the ligand-binding and functioning of BirA. Since in a dehydrated

crystal, protein molecules are more densely packed leading to

enhanced intermolecular contacts amongst themselves, dehydra-

tion emerges as a simple approach for restricting the conforma-

tional flexibility of the loop regions. Furthermore, partial reduction

in the crystal’s bulk solvent results in entrapping a state, where two

protein subunits related by a non-crystallographic twofold axis co-

exist in two conformations - (1) the usual inactive apo form and (2)

the active ligand bound form, thus violating the symmetry of the

dimer.

Results

Purification and Oligomeric Status of Mtb-BirA
Recombinant Mtb-BirA was overexpressed in E. coli and

purified by Strep-Tactin affinity chromatography (Figure 1a).

The subunit composition of the purified protein was determined

by gel filtration chromatography using standard protein markers

(Figure 1b). Based on the chromatographic profile, the Mtb-BirA

corresponds to a monomer in solution as reported by Purushotha-

man et al. [7].

Structures of Dehydrated and Hydrated Mtb-BirA Crystals
Structures of dehydrated (dhMtb-BirA) and hydrated (hMtb-

BirA) Mtb-BirA, were determined at 2.69 Å and 2.8 Å, respec-

tively, using crystals grown under similar conditions. The hydrated

structure contains 44% solvent content similar to that of Mtb-BirA

structure (45.4%) solved at a resolution of 1.8 Å (PDB entry: 2cgh).

The asymmetric unit for both hydrated crystal forms (2cgh and

hMtb-BirA) includes two monomers in the asymmetric unit. Both

the crystal structures are quite similar as indicated by the root-

mean-square difference (rmsd) of 0.69 Å for 480 equivalent Ca
atom pairs. The backbone structures of subunits A as superim-

posed with RAPIDO do not display any significant difference

between the two structures either (Figure 2a). The Mtb-BirA

molecule is composed of two domains; N-terminal domain 1

comprises of 7 b-strands (b1: 29–32, b2: 55–59, b3: 82–88, b4:

124–126, b5: 131–133, b6: 137–147 and b7: 150–158) and 6 a-

helices (a1: 13–20, a2: 39–48, a3: 95–114, a4: 173–176, a5: 183–

203, a6: 206–215), while C-terminal domain 2 is a SH3 domain

Table 1. A comparative analysis of Mtb-BirA and other known bacterial BirA structures.

Organism
(Function) PDB

Identity
(%) Naligned

RMSD
(Å){

Space
group VM

Solvent
Content
(%)

Mol
per
a.u.

Oligomeric state
in solution Ligand Reference

M. tuberculosis (M) 3l2z 100 238 0.00 P212121 2.2 44 2 monomer - This study

M. tuberculosis 3l1a 100 238 0.82 P212121 1.7 28 2 monomer - This study

M. tuberculosis 2cgh 100 238 0.46 P212121 2.3 45.4 2 monomer - Unpublished

E. coli (B) 1bia 30.2 215 1.80 P43212 2.8 55.6 1 monomer - [10]

E. coli 1bib 30.4 217 1.76 P43212 2.8 55.5 1 dimer{ Biotin [10]

E. coli 1hxd 30.1 219 1.71 C2221 2.9 57.5 2 dimer{ Biotin [10]

E. coli 2ewn 29.5 220 1.72 P43212 3.8 67.8 2 dimer Biotinol-59-
AMP

[12]

P. horikoshii (M) 1wq7 27.2 206 1.55 P21 2.1 38.1 2 dimer - [11]

P. horikoshii 1wpy 26.7 209 1.50 P21 2.1 42.5 2 dimer Biotin [11]

P. horikoshii 2fyk 26.7 209 1.49 P21 2.1 42.5 2 dimer Biotin & ADP Unpublished

P. horikoshii 2dto 26.7 209 1.52 P21 2.1 42.5 2 dimer Biotin & ATP Unpublished

P. horikoshii 1wqw 26.7 209 1.53 P21 2.1 42.5 2 dimer Biotinyl- 59-
AMP

[11]

P. horikoshii 2 ejg 28.3 198 1.54 P21 2.4 49.2 2 dimer BCCP [13]

A. aeolicus (M) 3fjp 21.4 196 1.52 P21 2.4 48.2 2 monomer - [14]

A. aeolicus 3efs 21.4 196 1.52 P212121 2.3 45.5 2 monomer Biotin & ATP [14]

M. jannaschii (M) 2ej9 23.8 238 1.70 C2 2.8 56.1 1 monomer Biotin Unpublished

M: Monofunctional biotinylation activity; B: Bifunctional biotinylation and repressor activity; {The Ca superposition was performed between chain A of hMtb-BirA (3l2z)
and chain A of other PDBs; VM: Mathews Coefficient; {Weak dimer.
doi:10.1371/journal.pone.0009222.t001

Dehydrated BirA Structure
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with 5 strands forming an antiparallel b-sheet (b8: 220–227, b9:

231–240, b10: 246–250, b11: 253–257 and b12: 261–264). The

major loops (Figure 3) in domain 1 are: L1 (21–28), L2 (33–38), L3

(49–54), L4 (60–81), L5 (89–94), L6 (115–123), L7 (127–130), L8

(159–172) & L9 (177–182) and in domain 2 are: L11 (228–230),

L12 (241–245), L13 (251–252) & L14 (258–260). The two domains

are linked together with loop L10 (216–219) that connects helix a6

of domain 1 and b8 strand of domain 2. The 7 N-terminus

residues and two loop regions between residues 65–76 (L4) and

162–169 (L8) are not there in both subunits of high (1.8 Å, 2cgh)

and low-resolution structures (2.8 Å, hMtb-BirA). The disordered

loops are undetectable in other BirA structures (1bia, 1wq7 and

3fjp) as well and are associated with the conformational changes

upon biotinyl-59-AMP binding [12–14].

The asymmetric unit of dehydrated crystal form containing two

molecules is more compact and densely packed with a low solvent

content of 28% compared to the hydrated crystal forms. Analysis

of the two crystal forms shows the core regions to be identical, but

some significant conformational plasticity is clearly visible among

the loops (Figure 2b) leading to a relatively higher rmsd of 2.03 Å

for 454 equivalent Ca positions between 2cgh and dhMtb-BirA.

Large shift of ,3.5 Å in the flexible loop L6 as well as in the b8-

L11-b9 region is an apparent consequence of crystal dehydration.

Additionally, the most interesting feature is the appearance of two

missing loop regions L4 and L8 and 5 N-terminal residues in

subunit A of the dhMtb-BirA (Figure 2b). The two missing loops

L4 and L8 were built following the visible electron density at half

and full occupancy, respectively. The electron density for loop L8

leaves little doubt as to the position of the atoms (Figure 2c) and

though electron density for loop L4 is not complete, apex of this

loop constituting residues R69 and H70 has a well-defined density

(Figure 2c). Although L4 displays broken electron density

associated with it, the original weak positive density, without any

model built into it, improved markedly after loop building and did

not exhibit any negative density, increasing our confidence in the

modeled loop. Furthermore, it is interesting that position of these

density guided built loops (subunit A) turns out to be very close to

the ligand bound active loops (Figure 4) reported in EcBirA (2ewn)

Figure 2. Structure of dehydrated vs hydrated Mtb-BirA. (a) Superimposition of backbones of subunit A of 2cgh (green) and hMtb-BirA (red)
by using RAPIDO indicates similar structures. The secondary structures are indicated. (b) Superimposition of backbones of subunit A of 2cgh (green)
and dhMtb-BirA (orange) by using RAPIDO displays shifts in L6 as well as in the b8-L11-b9 region and the appearance of two missing loop regions L4
and L8 and 5 N-terminal residues in the later structure. (c) Sigma weighed 2 Fo–Fc electron density maps (gray mesh) contoured at 0.7s around the
modeled L8 and L4 loops (represented as sticks in atom type colors).
doi:10.1371/journal.pone.0009222.g002

Figure 1. Purification and oligomeric status of Mtb-BirA. (a)
Analysis of the purified recombinant Mtb-BirA by SDS-PAGE on a 12.5%
gel. Molecular-mass protein standards are also indicated. (b) Gel-
filtration chromatography profile of the affinity purified Mtb-BirA for
subunit determination. Calibration curve for the packed Sephadex G-
200 column (2.5 cm690 cm) obtained by plotting the logarithms of the
molecular weight (log MW) of the standards (x axis) versus the elution
volumes (y axis) is shown as an inset.
doi:10.1371/journal.pone.0009222.g001

Dehydrated BirA Structure
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and PhBirA (1wqw) and hence the subunit A of dhMtb-BirA

corresponds to the active form of the enzyme.

Water-Mediated Closed Structure of Loop L6
Two water molecules can be seen associated with residues

P121 and D111 at the distance of 3.4 Å and 3.1 Å, respectively,

in loop L6 of hMtb-BirA, whereas, these residues are no longer

hydrated in dhMtb-BirA (Figure 5). We have used the hydrated

structure instead of high-resolution 2cgh for water related

comparisons as similar crystallization conditions and structure

resolutions for hMtb-BirA and dhMtb-BirA make the analysis

more valid. The presence of water molecules in the hydrated

structure keeps this loop in a closed-compact conformation. Loss

of water molecules and hence associated interactions has resulted

in the opening out of this loop in the dehydrated structure.

Further, in hMtb-BirA (as well as 2cgh), the side chains of the

residue E123 and neighboring residues R135 & R215 are not

defined beyond Cb but they are well defined in the subunit A of

dhMtb-BirA, a consequence probably of outward movement of

loop L6.

Asymmetric Dimer in dhMtb-BirA
The two subunits of dhMtb-BirA have structural differences in

their loops and defy the expected two fold symmetry resulting in

an asymmetric dimer where, subunit A can be considered a

representation of the active ligand bound conformation of BirA

and subunit B is more an icon of apo BirA with disordered loops.

The rmsds between the two subunits of dhMtb-BirA are 0.887 Å

for 198 Ca equivalent atoms as opposed to the rmsds of 0.578 Å

for 208 Ca pairs of the hMtb-BirA subunits. The maximum

deviation of ,14 Å appears to be in L8 loop, which is adenosine

binding loop (Figure 6a) and may correspond to the conforma-

tional shift this loop undergoes upon biotin or biotinyl-59-AMP

binding. A noncrystallographic dyad exists between the two

subunits in both hMtb-BirA and dhMtb-BirA structures. Although

the mode of dimerization is same, small differences are observed in

the mutual orientation of the subunits in the dimer after

superposing the A subunits of two structures (Figure 6b). The

angle of rotation necessary for superposing the B subunits turns

out to be nearly 7u.

Dimer Interface Variations among BirAs
The pseudo-2-fold symmetric interface shared by two mono-

mers of the asymmetric unit in both hMtb-BirA and dhMtb-BirA

is ascribed to the C-terminal domain involving b11 strands and

loops L11 (between b8–b9) and L13 (between b10–b11) of two

monomers (Figure 7c). The residues E226, E231, V233, D241,

V250, V255, V256 and S258 of chain B interact with the interface

residues L227, P228, V233, V234, R245, R253, T254 and V256

Figure 3. Loop sequence diversity among BirAs. Loops and turns in Mtb-BirA and equivalent sequences in homologues (the first and the last
residue numbers are indicated before and after each loop) are represented. The important residues identified by mutational studies in EcBirA are
marked in red.
doi:10.1371/journal.pone.0009222.g003

Dehydrated BirA Structure
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of chain A. This dimeric interface of dhMtb-BirA is different from

Ec and Ph BirAs. The ligand induced dimeric interface in the

crystal structure of EcBirA (Figure 7b) involves a b strand

(corresponding to b6 in Mtb-BirA) and the loops DLI (L5 in Mtb-

BirA) and DLII (corresponding loop between b6–b7 is absent in

Mtb and Ph BirAs). On the other hand, dimerization in PhBirA

crystals occurs through N-terminal b strands of two monomers

(Figure 7a).

Discussion

Crystals of Mtb-BirA used in the present investigation were

grown in the conditions (12–16% PEG 4000 in 0.1 M HEPES

pH 7.5) different to those used for growing crystals in case of

2cgh. Yet, both the dehydrated (dhMtb-BirA) and hydrated

(hMtb-BirA) crystals belonged to the same space group as 2cgh.

However, post-crystallization soaking of crystals in cryoprotec-

tants followed by flash freezing resulted in a dehydrated

structure with changes in unit cell volume and low solvent

content [18].

Figure 4. Dehydration induced structural ordering of L4 and L8
loops corresponds to active conformations. Superimposition of
cartoon representation of subunit A of dhMtb-BirA (orange) onto EcBirA
(2ewn, blue) and PhBirA (1wqw, magenta). Dehydration induced
structural appearance of L4 and L8 loops in dhMtb-BirA coincides with
the active conformation of these loops on ligand-binding.
doi:10.1371/journal.pone.0009222.g004

Figure 5. Water-mediated closed structure of L6 loop. Confor-
mation of loop L6 in hMtb-BirA (green) and dhMtb-BirA (yellow) when
rest of the subunit A of two structures is superimposed. The two water
molecules associated with D111 and P121 in hMtb-BirA are marked W
and respective distances are labeled. An arrow depicts the outward
orientation shift of P121 main chain oxygen in the absence of water in
dhMtb-BirA.
doi:10.1371/journal.pone.0009222.g005

Figure 6. The asymmetric dimer. (a) Superposition of cartoon
representations of dhMtb-BirA subunit A (orange) and subunit B (green)
exhibiting the structural differences in two subunits. Seven N-terminal
residues and loop L4 are disordered in subunit B and have not been
built. Maximum conformational differences in the two subunits are
displayed in loop L8 with 14 Å shift measured at the apex of the loop.
Inset shows the sigma weighed 2 Fo–Fc electron density map (gray
mesh) contoured at 0.7s around the L8 loop in subunit B of dhMtb-BirA
(represented as sticks in atom type colors). (b) The dimeric molecule in
the asymmetric unit of dhMtb-BirA (green) and hMtb-BirA (red) are
shown after superposition of subunit A. The arrow indicates an
anticlockwise rotation (7u) of the twofold axis that relates to the two
monomers (indicated in the same color) required for subunit B of
dhMtb-BirA to superpose on the corresponding subunit of hMtb-BirA.
doi:10.1371/journal.pone.0009222.g006

Dehydrated BirA Structure
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Structural changes as a result of crystal dehydration have been

observed and studied extensively in many proteins like lysozyme

and bovine pancreatic ribonuclease A [19–22]. Water mediates an

essential role in maintaining structure, stability and functionality of

biological macromolecules not only in solution but also in the

crystalline form. A systematic reduction in the solvent content of

protein crystals has demonstrated that reduction in the quantity of

surrounding water affects the hydration shell of proteins, shrinks

the crystal lattice and improves the crystal packing and diffraction

resolution [23–25]. Moreover, as solvent reduces and additional

packing interactions are introduced, possibility for flexible loops to

adopt local structures increases and in the process kinetically

favorable conformations that occur during the protein action get

trapped [20,25,26].

This work is yet another example of a link between hydration

and plasticity in proteins. As stated earlier, in all known apo BirA

structures, the loops L4 and L8 are disordered. This is true for

normally hydrated Mtb-BirA (2cgh as well as our hMtb-BirA)

structure also. However, transfer of crystals to paraffin and

paratone-N oil (cryoprotectants) before collecting data at 120 K

resulted in a partially dehydrated structure. It is quite possible that

oil absorbed water and dehydrated the crystal during the period it

was dipped in the oil. Fortuitously, the structure solved from the

dehydrated crystal exhibited electron density for the otherwise

flexible L4 and L8 loops allowing model building of these loops

(Figure 2c). This is the first structural example of these flexible

loops being visible in the ligand free state of BirA. The overall

changes in the subunit A of dhMtb-BirA structure appear to mimic

those that arise during substrate binding (Figure 4) and

corroborate well with the established relationship between

hydration, mobility and enzyme action [20].

The ordered loops L4 and L8 in the structure of dehydrated

apo BirA form an open, large and spacious biotin-binding pocket.

The two different conformations for L8 in the two subunits of

dhMtb-BirA exhibit a shift of 14 Å (Figure 6a). The available

evidence from crystal structures of apo and ligand bound BirA’s

lead to the inference that L8 structure in subunit A represents the

active conformation, while that in subunit B (with more

peripheral placement) may mimic the inactive open state. As

the initial structure of this L8 loop has not been observed before,

characterizing the L8 structure (subunit B) from dhMtb-BirA as

ligand free form may appear to be assumptive to begin with,

however, all other observations point towards subunit B being a

snapshot of apo BirA leaving little doubt that for the first time we

have the molecular structure of the L8 loop available to us. The

biotin-binding pocket is conserved in BirA variants from different

Figure 7. Structural conservation and dimer interface in BirA. (a) N-terminal dimer interface in apo PhBirA (pdb code:1wq7). (b) Ligand
induced dimer interface involving DLI and DLII loops in EcBirA (pdb code:2ewn). The extended DLII loop in E. coli (shown in red color and depicted by
arrow) is known to be involved in the ligand induced dimerization and is shorter in the other two variants of BirA. (c) C-terminal dimer interface in
apo dhMtb-BirA. The structural elements of each monomer at the dimer interface are labeled.
doi:10.1371/journal.pone.0009222.g007

Dehydrated BirA Structure
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organisms and is lined with residues from L4 (G66, G68 and

W74) and b7 (G154 and G156). The conserved glycine and

tryptophan residues are required to cover the biotin ring and

AMP moiety, respectively. Despite the highly conserved pocket,

variable dissociation constants for biotin have been documented

for EcBirA (4.561028 M), Aquifex aeolicus (Aa) BirA (3.561026 M)

and Mtb-BirA (,161026 M) [7,14,27]. Similarly, a lower affinity

for Mtb-BirA:biotinyl-59-AMP and Mtb-BirA:ATP interactions

compared to E. coli homologue has also been reported. In

addition, a gain of 24 kcal/mol of Gibbs free energy was

observed on binding of EcBirA to biotinyl-59-AMP over biotin,

contrary to the similar gain of Gibbs free energies for binding of

these two ligands to Mtb-BirA [7]. The free energy of binding

between protein and its ligand includes an electrostatic and a

hydrophobic component and analysis of these components

provides an answer for these differential affinities. Crystal

structure of adenylate bound E. coli enzyme reveals that the

ABL loop (L8 in Mtb-BirA) folds by forming a hydrophobic

cluster involving side chains of V214, V219 and W223 around

the adenine base [12]. Single amino acid replacement of these

hydrophobic residues with Ala in EcBirA exhibited lower

affinities for the adenylate ligand as compared to the wild type

[16]. This hydrophobic cluster is critical not only for ATP

binding but also for the ligand induced disorder to order

transition of this loop. The loop L8 is shorter in Mtb-BirA and is

devoid of these hydrophobic residues (Figure 3) and hence,

maybe responsible for the lower affinities for ATP and biotinyl-

59-AMP ligands as compared to EcBirA.

Another intriguing feature that emerges from the structure of

Mtb-BirA relates to the loop L6. This loop is extended, more

proline rich and hydrophobic as compared to the corresponding

loop in other counterparts (Figure 3) and protrudes out from rest

of the protein. Further opening of this loop in the dhMtb-BirA

(Figure 5) akin to water mediated loop closure in b-lactoglobulin

on dehydration [26] provides an image of changes that might

occur during protein action. It has been shown that exposed

positioning of the proline rich loops mediates interactions with

other proteins [28]. Non-repetitive proline rich regions acting as a

‘sticky arm’ are known to bind rapidly and reversibly to SH3

domains through hydrophobic interactions. Coincidentally, L6 is

placed adjacent to the C-terminal domain of the Mtb-BirA that

bears similarity to SH3 domain, indicating interaction between

these components of the protein. On the other hand, as proline is

an unusual amino acid with restricted conformation, its multiple

presence in this loop may provide an extended surface with limited

mobility, suggesting a ‘rigid hinge or a linker’ role for L6. In Mtb-

BirA, L6 is connecting a3 and b4 where the later is followed by a

conserved loop L7 (127KWPN130). This L7 loop is crucial in the

placement of BCCP domain of ACCases and PCAases for biotin

transfer. Therefore, a more rigid L6 linker may contribute to the

spatial positioning of recognition elements involved in positioning/

transfer of biotin to BCCP domain. Though these postulations

need to be validated, it does appear that this unique region present

only in the Mtb complex may be critical for BirA’s function and

specificity.

Comparisons of oligomeric states of BirAs, both in solution

and crystals, from M. tuberculosis, E. coli, P. horikoshii, Methano-

coccus jannaschii and A. aeolicus, have revealed an immense

structural and functional diversity (Table1). Though, Mtb-BirA

packs as a dimer in the asymmetric unit of the crystal, it exists as

a monomer in the unliganded as well as liganded forms in

solution [7], contrary to Ec and Ph BirAs. Thermodynamic and

enzyme kinetic studies have clearly established the role of DLII

loop and other structural elements in promoting the ligand

induced dimerization in EcBirA [17]. This loop consists of a b
turn of two residues (Q148–P149) in Mtb and hence, shortening

of this loop element maybe correlated with the monomeric

functional state of the enzyme in this organism. The presence/

absence of loops has been known to play a role in enabling/

disabling homo-oligomerization of proteins [29]. PhBirA that

lacks this DLII loop is still present in solution as a dimer in both

apo and holo states albeit through a different dimer-interface. In

addition, only few of the residues (R118, A146 and K122)

important for homodimerization in EcBirA (R118, R119, A146,

K122, R212, V214, V219 and W223 marked red in Figure 3)

are conserved in Mtb and Ph BirAs further supporting the

oligomeric diversity. It appears that this dimerization event is

not a requirement for the enzymatic activity, but is required for

repressor activity in EcBirA [15,17] and for thermal stability as

proposed for PhBirA and other hyperthermophiles [11,30].

Mtb-BirA has neither N-terminal HTH DNA binding motif for

repressor activity nor a requirement for thermostable character

and hence, formation of a homodimeric state may not be

advantageous in its environment. Moreover, it is crucial for

some proteins to maintain their monomeric state for various

reasons such as rapid diffusion and stability at low concentra-

tions [31].

Plasticity around the active site of PhBirA has been seen to

assist in complex formation with its substrate BCCP [13]. In

addition, superposition of apo and holo PhBirA structures

exhibits maximum variations in the C-terminal domain, espe-

cially in L11 and L14 loops (Figure 8a). It has been proposed that

the loop L14 involving the residue Y227 (P. horikoshii sequence in

Figure 3) undergoes an open/close motion to regulate the

movements of ligands. In the active complex, L11 and L14 loops

shift outwards to place BCCP at the active site. However, the

docking of modeled BCCP domain of Mtb ACCA3 in the hMtb-

BirA and dhMtb-BirA, representing free and ligand bound states

of Mtb-BirA, respectively, reveals contrary movements of these

loops (Figure 8b). The loop L14 in Mtb structure is only three

residues long and is devoid of the tyrosine residue Y227 (Figure 3).

Moreover, the absence of any significant structural change in this

very short loop negates its possible involvement during substrate

binding. But the closing in of L11 loop in the Mtb-BirA BCCP

complex put forward the notion that the ligand placement role of

L14 in phBirA is carried out by L11 in Mtb. Interestingly, this

loop does not appear to be involved in any gated mechanism for

the entry/exit of BCCP substrate thus providing a constitutive

access to the ligand. This Mtb specific behavior of C-terminal

domain justifies the need for accommodating different BCCP

domains [32] and biotinylation turnover necessary for the

biosynthesis of unique fatty acids in Mtb under varying

environmental conditions.

The dehydrated crystal structure of apo Mtb-BirA provides

another example of water-mediated transformations emulating

protein in action. BirA, an elegant enzyme that carries out multi-

step chemical reaction, has conserved core structure and multiple

loops participating in protein folding, ligand-binding and homo/

hetro dimerization. Dictated by the need of an organism, these

loops have evolved under constraints, weaker than those for a

protein core yet strong enough to preserve the overall structure,

for fulfilling the specific requirement of the organism. Under-

standing and correlating those critical variables with an

environment that BirA is operating in, may be the key to

successfully decipher the working of this complex enzyme. Final

confirmation relating these dehydration-induced changes to

protein in action awaits the structure solution of BirA with its

ligands.
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Methods

Protein Expression, Purification, Crystallization and
Subunit Composition

The gene encoding BirA (Rv3279c) was PCR amplified with

C-terminus Strep-tag, cloned in pASK-IBA43plus (IBA) vector

and expressed in E. coli BL21 (DE3) cells after induction with

1 mM IPTG at 37uC as previously reported [18]. The protein

was purified by using Strep-Tactin resin (IBA), concentrated to

,5 mg/ml and crystallized at 293 K in 12–16% (w/v) of PEG

4000 or PEG 8000 in 0.1 M HEPES pH 7.5 by hanging drop

method. Subunit composition of the protein in solution was

analyzed by gel filtration chromatography. A 500 ml column

packed with Sephadex G-200 resin (pre-equilibrated with

0.1 M Tris-HCl buffer pH 8.0 containing 0.1 M NaCl) was

used for the estimation of molecular mass of the affinity-

purified protein.

Data Collection, Processing and Molecular Replacement
Two data sets were collected on these crystals (i) at room

temperature (hMtb-BirA) with synchrotron radiation source of

X13 beamline (EMBL, Hamburg) to 2.8 Å resolution and (ii) at

cryogenic temperature (dhMtb-BirA) with a MAR345 dtb detector

(MAR Research) using a home source rotating-anode generator

(Rigaku) to 2.69 Å. For the low temperature data, crystals were

quick-dipped into 1:1 mixture of Paraffin and Paratone-N oil for

cryo-protection and immediately flash frozen in gas stream of

liquid nitrogen prior to data collection. Data for hMtb-BitA under

cryo conditions could not be collected, as usual cryoprotectants

lowered the resolution and exhibited a diffused pattern [18]. The

data for 2cgh structure (solvent content of 45.4%) has been

collected under cryo conditions and hence is used as a reference

for hMtb-BirA under cryo conditions. The data collection,

processing statistics and molecular replacement solution for both

the data sets is summarized in Table 2. Crystals of hMtb-BirA

exhibited a solvent content of 44% comparable to the reported

hydrated BirAs (Table 1) as opposed to dhMtb-BirA that had an

unusually lower solvent content of 28%.

Refinement
The structures obtained were refined with the PHENIX

refinement package phenix.refine [33] where intermittent model

building was performed by using COOT [34]. Refinement

statistics are summarized in Table 2. Water molecules were

positioned into well-defined positive (Fo –Fc) difference densities

with a lower cutoff of 3s, if they participated in hydrogen bonds to

either the protein or to well established water molecules. They

were removed, if their isotropic temperature B-factor refined to a

value exceeding 60 Å2. Unexpectedly, inspection of the electron

density map of dehydrated structure indicated weak density for the

loop segments corresponding to residues 65–76 and 162–169 in

chain A of the asymmetric unit. This electron density guided

manual rebuilding, allowed to trace these loops with confidence in

main chain position. The geometrical quality of the model was

assessed with PROCHECK [35]. The Ramachandran plot shows

that ,96% of the residues fall into the favorable/allowed regions.

The outliers are either supported by the density or are present in

the aforementioned loops.

Homology Modeling of BCCP Domain of Mtb-ACCA3
BCCP domain of ACCA3 (Rv3285) protein of Mtb was

modeled by MODELLER 9v6 [36] based on its homology with

multiple templates (Figure 9) of known NMR or crystal

structures of BCCP or BCCP containing proteins (E. coli

BCCP:1bdo, Propionibacterium shermanii transcarboxylase:1dcz,

Bacillus subtilis BCCP:1z7t, P. horikoshii BCCP:2d5d and Human

acetyl Co-A carboxylase:2ejm). The model with the minimum

DOPE score was selected as the best model and the

stereochemical quality of the model was evaluated and

confirmed with PROCHECK.

Figure 8. BirA-BCCP complex. (a) Structural superposition of cartoon representations of subunits A of apo (yellow) and BCCP complexed
(magenta) PhBirA illustrating the open/close movement (marked by an arrow) of L14 loop to regulate the entry/exit of BCCP. (b) Similar superposition
of hMtb-BirA (green) and dhMtb-BirA (orange) representing apo and active forms, respectively, demonstrate no such movement in L14 loop. Contrary
to the movement of C-terminal loops in PhBirA, the loop L11 in Mtb-BirA moves inwards (marked by an arrow) on BCCP binding. BCCP molecule in
both figures is shown as blue cartoon.
doi:10.1371/journal.pone.0009222.g008
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Table 2. Data collection and refinement statistics for hMtb-BirA (3l2z) and dhMtb-BirA (3l1a).

Statistics 3l2z 3l1a

Diffraction data

Space group P212121 P212121

Unit-cell (Å) a = 79.7,b = 62.8,c = 105.8 a = 60.1,b = 64.0,c = 103.6

Temperature (K) 295 120

Wavelength (Å) 0.8088 1.5418

Crystal-detector distance (mm) 170 100

Resolution limit (Å) 15-2.8 (2.9-2.8) 24-2.69 (2.82-2.69)

Exposure time per image (s) 4 300

No. of observed reflections 89516 44885

No. of Unique reflections 15831 13250

Completeness (%) 99.4 (99.6) 98.7 (96.8)

Average redundancy 5.7 (5.8) 3.2 (3.25)

Mean I/s (I) 17.2 (2.2) 4.3 (2.1)

{Rmerge (%) 9.8 (46.2) 8.7 (34.9)

No. of molecules in ASU 2 2

Matthews coefficient (Å3 Da21) 2.2 1.7

Solvent content (%) 44 28

Refinement and model quality

Resolution (Å) 14-2.8 (2.89-2.80) 23.99-2.69 (2.81-2.69)

No. of reflections used 13373 (1188) 11423 (1245)

Completeness (%) 99.3 (100) 99.2 (99)

{Rwork/1Rfree (%) 17/23 (24.5/33.5) 23/31 (26.6/37.4)

rms deviation bond lengths (Å) 0.007 0.009

rms deviation bond angles (u) 1.036 1.350

Average B factor (Å2) 45.7 43.6

Number of protein/solvent atoms 3535/26 3579/31

Ramachandran validation

Residues in favoured regions (%) 97.2 90.8

Residues in allowed regions (%) 2.4 4.8

Residues in disallowed regions (%) 0.4 4.4

Values in parentheses are for the highest resolution shell.
{Rmerge =ShklSi |Ihkl 2,Ihkl.|/ShklSiIhkl, where Ihkl is the intensity of an individual measurement of the reflection with Miller indices h, k and l and ,Ihkl. is the mean
intensity of redundant measurements of that reflection.
{Rwork =Shkl |Fo(hkl)2Fc(hkl)|/Shkl |Fo(hkl)|, where Fo and Fc are observed and calculated structure factors, respectively.
1Rfree calculated for a randomly selected subset of reflections (10%) that were omitted during the refinement.
doi:10.1371/journal.pone.0009222.t002

Figure 9. Structure-based multiple sequence alignment of BCCP domain of Mtb-ACCA3. The structure-based sequence alignment of
BCCP domain of ACCA3 was generated by MODELLER 9v6 with known structures from different sources as identified by their PDB codes (E. coli
BCCP:1bdo, P. shermanii transcarboxylase:1dcz, B. subtilis BCCP:1z7t, P. horikoshii BCCP:2d5d and human ACC:2ejm). The first and the last residue
numbers are indicated before and after each sequence. The topological positions of b strands, as defined in the known structures of BCCPs are shown
on the top of the aligned sequences. Identical residues including MKM motif are highlighted in gray boxes.
doi:10.1371/journal.pone.0009222.g009
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Modeling Mtb-BirA-BCCP Complex
The modeled BCCP domain was docked manually onto the

subunit A of dhMtb-BirA by using the crystal structure of BirA and

BCCP complex from P. horikoshii OT3 (2ejf) as a template. To fix

the orientation of the ligand to the receptor, dhMtb-BirA and

modeled BCCP domain were structurally superimposed on 2ejf:

Chain A and 2ejf: Chain C representing homologous BirA and

BCCP, respectively, from P. horikoshii. This model was further

minimized in Discovery Studio 2.1 (using CHARMM forcefield) to

improve the energies and eliminate clashes.

Coordinates
Coordinates and structure factors for hMtb-BirA and dhMtb-

BirA are deposited in the RCSB Protein Data Bank (www.rcsb.

org) under accession code 3l2z and 3l1a, respectively.

Acknowledgments

We thank the beamline staff at EMBL (Hamburg, Germany) for their kind

help with the data collection. DBT-Distributed Information Sub-Centre,

Department of Biochemistry, University of Delhi South Campus, New

Delhi, is gratefully acknowledged for providing computational facilities.

Author Contributions

Conceived and designed the experiments: VG RKG AKT. Performed the

experiments: VG RKG GK. Analyzed the data: VG RKG. Contributed

reagents/materials/analysis tools: DMS. Wrote the paper: VG RKG

AKT. Provided overall supervision throughout the study: AKT. Critically

read the manuscript: DMS AS.

References

1. Parrish NM, Houston T, Jones PB, Townsend C, Dick JD (2001) In vitro activity
of a novel antimycobacterial compound, N-octanesulfonylacetamide, and its

effects on lipid and mycolic acid synthesis. Antimicrob Agents Chemother 45:
1143–1150.

2. Bhatt A, Molle V, Besra GS, Jacobs WR Jr, Kremer L (2007) The Mycobacterium

tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis,

acid-fastness, pathogenesis and in future drug development. Mol Microbiol 64:

1442–1454.
3. Chapman-Smith A, Cronan JE Jr (1999) The enzymatic biotinylation of

proteins: a post-translational modification of exceptional specificity. Trends
Biochem Sci 24: 359–363.

4. Beckett D (2007) Biotin sensing: universal influence of biotin status on

transcription. Annu Rev Genet 41: 443–464.
5. Beckett D (2009) Biotin sensing at the molecular level. J Nutr 139: 167–170.

6. Polyak SW, Chapman-Smith A, Mulhern TD, Cronan JE Jr, Wallace JC (2001)
Mutational analysis of protein substrate presentation in the post-translational

attachment of biotin to biotin domains. J Biol Chem 276: 3037–3045.
7. Purushothaman S, Gupta G, Srivastava R, Ramu VG, Surolia A (2008) Ligand

specificity of group I biotin protein ligase of Mycobacterium tuberculosis. PLoS One

3: e2320.
8. Mukhopadhyay B, Purwantini E, Kreder CL, Wolfe RS (2001) Oxaloacetate

synthesis in the methanarchaeon Methanosarcina barkeri: pyruvate carboxylase
genes and a putative Escherichia coli-type bifunctional biotin protein ligase gene

(bpl/birA) exhibit a unique organization. J Bacteriol 183: 3804–3810.

9. Rodionov DA, Mironov AA, Gelfand MS (2002) Conservation of the biotin
regulon and the BirA regulatory signal in Eubacteria and Archaea. Genome Res

12: 1507–1516.
10. Wilson KP, Shewchuk LM, Brennan RG, Otsuka AJ, Matthews BW (1992)

Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure
delineates the biotin- and DNA-binding domains. Proc Natl Acad Sci U S A 89:

9257–9261.

11. Bagautdinov B, Kuroishi C, Sugahara M, Kunishima N (2005) Crystal structures
of biotin protein ligase from Pyrococcus horikoshii OT3 and its complexes:

structural basis of biotin activation. J Mol Biol 353: 322–333.
12. Wood ZA, Weaver LH, Brown PH, Beckett D, Matthews BW (2006) Co-

repressor induced order and biotin repressor dimerization: a case for divergent

followed by convergent evolution. J Mol Biol 357: 509–523.
13. Bagautdinov B, Matsuura Y, Bagautdinova S, Kunishima N (2008) Protein

biotinylation visualized by a complex structure of biotin protein ligase with a
substrate. J Biol Chem 283: 14739–14750.

14. Tron CM, McNae IW, Nutley M, Clarke DJ, Cooper A, et al. (2009) Structural

and functional studies of the biotin protein ligase from Aquifex aeolicus reveal a
critical role for a conserved residue in target specificity. J Mol Biol 387: 129–146.

15. Kwon K, Streaker ED, Ruparelia S, Beckett D (2000) Multiple disordered loops
function in corepressor-induced dimerization of the biotin repressor. J Mol Biol

304: 821–833.
16. Naganathan S, Beckett D (2007) Nucleation of an allosteric response via ligand-

induced loop folding. J Mol Biol 373: 96–111.

17. Zhao H, Naganathan S, Beckett D (2009) Thermodynamic and structural
investigation of bispecificity in protein-protein interactions. J Mol Biol 389:

336–348.
18. Gupta V, Gupta RK, Khare G, Surolia A, Salunke DM, et al. (2008)

Crystallization and preliminary X-ray diffraction analysis of biotin acetyl-CoA

carboxylase ligase (BirA) from Mycobacterium tuberculosis. Acta Crystallogr

Sect F Struct Biol Cryst Commun 64: 524–527.

19. Salunke DM, Veerapandian B, Kodandapani R, Vijayan M (1985) Water-

mediated transformations in protein crystals. Acta Crystallographica Section B:

Structural Science 41: 431–436.

20. Nagendra HG, Sukumar N, Vijayan M (1998) Role of water in plasticity,

stability, and action of proteins: the crystal structures of lysozyme at very low

levels of hydration. Proteins 32: 229–240.

21. Bell JA (1999) X-ray crystal structures of a severely desiccated protein. Protein

Sci 8: 2033–2040.

22. Harata K, Akiba T (2007) Effect of a sodium ion on the dehydration-induced

phase transition of monoclinic lysozyme crystals. Acta Crystallogr D Biol

Crystallogr 63: 1016–1021.

23. Heras B, Edeling MA, Byriel KA, Jones A, Raina S, et al. (2003) Dehydration

converts DsbG crystal diffraction from low to high resolution. Structure 11:

139–145.

24. Kuo A, Bowler MW, Zimmer J, Antcliff JF, Doyle DA (2003) Increasing the

diffraction limit and internal order of a membrane protein crystal by

dehydration. J Struct Biol 141: 97–102.

25. Heras B, Martin JL (2005) Post-crystallization treatments for improving

diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr 61:

1173–1180.

26. Vijayalakshmi L, Krishna R, Sankaranarayanan R, Vijayan M (2008) An

asymmetric dimer of beta-lactoglobulin in a low humidity crystal form–structural

changes that accompany partial dehydration and protein action. Proteins 71:

241–249.

27. Kwon K, Beckett D (2000) Function of a conserved sequence motif in biotin

holoenzyme synthetases. Protein Sci 9: 1530–1539.

28. Williamson MP (1994) The structure and function of proline-rich regions in

proteins. Biochem J 297 (Pt 2): 249–260.

29. Akiva E, Itzhaki Z, Margalit H (2008) Built-in loops allow versatility in domain-

domain interactions: lessons from self-interacting domains. Proc Natl Acad

Sci U S A 105: 13292–13297.

30. Dams T, Auerbach G, Bader G, Jacob U, Ploom T, et al. (2000) The crystal

structure of dihydrofolate reductase from Thermotoga maritima: molecular features

of thermostability. J Mol Biol 297: 659–672.

31. Goodsell DS, Olson AJ (2000) Structural symmetry and protein function. Annu

Rev Biophys Biomol Struct 29: 105–153.

32. Daniel J, Oh TJ, Lee CM, Kolattukudy PE (2007) AccD6, a member of the Fas

II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A

carboxylase in Mycobacterium tuberculosis. J Bacteriol 189: 911–917.

33. Afonine PV, Grosse-Kunstleve RW, Adams PD, Lunin VY, Urzhumtsev A

(2007) On macromolecular refinement at subatomic resolution with interatomic

scatterers. Acta Crystallogr D Biol Crystallogr 63: 1194–1197.

34. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics.

Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

35. Laskowski RA MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK:

a programme to check the stereochemical quality of protein structures. J Appl

Crystallog 26: 283–291.

36. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure

modeling with MODELLER. Methods Mol Biol 426: 145–159.

Dehydrated BirA Structure

PLoS ONE | www.plosone.org 10 February 2010 | Volume 5 | Issue 2 | e9222


