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Abstract

Background: Humans detect faces with direct gazes among those with averted gazes more efficiently than they detect
faces with averted gazes among those with direct gazes. We examined whether this ‘‘stare-in-the-crowd’’ effect occurs in
chimpanzees (Pan troglodytes), whose eye morphology differs from that of humans (i.e., low-contrast eyes, dark sclera).

Methodology/Principal Findings: An adult female chimpanzee was trained to search for an odd-item target (front view of a
human face) among distractors that differed from the target only with respect to the direction of the eye gaze. During visual-
search testing, she performed more efficiently when the target was a direct-gaze face than when it was an averted-gaze face.
This direct-gaze superiority was maintained when the faces were inverted and when parts of the face were scrambled.
Subsequent tests revealed that gaze perception in the chimpanzee was controlled by the contrast between iris and sclera, as
in humans, but that the chimpanzee attended only to the position of the iris in the eye, irrespective of head direction.

Conclusion/Significance: These results suggest that the chimpanzee can discriminate among human gaze directions and
are more sensitive to direct gazes. However, limitations in the perception of human gaze by the chimpanzee are suggested
by her inability to completely transfer her performance to faces showing a three-quarter view.
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Introduction

Gaze perception is one of the most critical social–cognitive

abilities possessed by primates, including humans. In humans,

mutual gaze or eye contact plays a critical role in regulating social

interactions by providing information and expressing intimacy (for

a review, see [1]). Like humans, great apes such as gorillas (Gorilla

spp.), orangutans (Pongo spp.), bonobos (Pan paniscus), and

chimpanzees (Pan troglodytes) frequently exhibit social staring

behavior, defined as prolonged gazing by one individual at

another when both are in close proximity to each other, in various

social contexts [2,3,4,5]. Furthermore, studies of mother–infant

pairs of chimpanzees have found that the frequency of mutual

gaze increased when the infant reached about 2 months of age [6].

In contrast, many species of simian primates exhibit ‘‘gaze

aversion’’ because mutual gaze or eye contact frequently triggers

antagonistic interactions between those involved in the gazing

behaviors [7,8,9,10]. Although the sensitivity of apes and monkeys

to direct gaze varies, these findings demonstrate that nonhuman

primates can and do discriminate gaze direction. However, the

cues used by these species for making judgments about being

watched by others remain unclear. One reason for this lingering

ambiguity is the difficulty experienced by observers in precisely

identifying the target of these animals’ gazes in the context of

natural or semi-natural habitats (e.g., [11]).

Few empirical studies of gaze perception in nonhuman primates

have been conducted in the laboratory, even though many

researchers recognize the importance of gaze perception in

relation to social cognition and the theory of mind [12].

Chimpanzees can follow the direction of human and conspecifics’

gazes and use these gaze cues for object discrimination based on

cues provided by either the eyes alone or the eyes in combination

with the head orientation [11,13,14,15,16,17,18,19,20]. In

addition, infant chimpanzees look at human faces with direct

gazes for a longer period of time than they look at those with

averted gazes when they reach the age at which they exhibit

mutual gaze with their mothers [21]. A gibbon (Hylobates agilis)

infant has also been reported to exhibit a direct-gaze preference in

response to schematic faces used as stimuli [22]. Similar studies of

macaques and other simian primates have also been performed.

Rhesus macaques (Macaca mulatta) can discriminate among the

gaze directions of human faces [23,24,25]. Like great apes, various

species of monkeys also follow the directions of others’ gazes and

use these cues for object discrimination [14,26,27,28]. In response

to facial stimuli, macaques scan eye regions more frequently than

they scan other regions [29,30,31]. However, their sensitivity to

direct gaze and the effects of gaze direction on their visual

behavior are rather inconsistent, although most studies agree that

macaques can discriminate among the directions of the gazes of

others. One study reported that infant macaques looked less at the
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direct-gaze faces of monkeys than at their averted-gaze faces,

showing clear evidence of gaze aversion [9], whereas another

study reported the opposite results using a human face [31].

Furthermore, both humans and rhesus macaques attended to eye

regions of conspecific faces but not to the eye regions of faces of

other species [32]. More recently, eye-tracking studies have found

that chimpanzees also attended to eye regions, as do humans, but

that their degree of fixation on the eyes was less than that exhibited

by humans [33,34].

Since the 1960s, many studies have examined how humans

distinguish between direct and averted gazes [35,36,37]. Humans

can distinguish an averted gaze when it is at least 1.4u from a

direct gaze [36]. Furthermore, humans are more sensitive to a

direct gaze than to an averted gaze [38,39]. During a visual-search

task, human observers detected the direct-gaze target among

averted-gaze distractors more quickly than they detected the

averted-gaze target among direct-gaze distractors. Such search

asymmetry [40] with respect to gaze direction is known as the

‘‘stare-in-the-crowd’’ effect. This effect may be closely related to

the direct-gaze preference in apes [21,22] because the direct gaze

captures the observer’s attention in both phenomena [cf. 41].

It is well known that the morphology of the eyes of chimpanzees

(and of other nonhuman primates) is quite different from that of

humans [42]. This fact raises questions about what cues

chimpanzees actually use during gaze discrimination. The color

of the exposed area of sclera in the chimpanzee is much darker

than that in humans. Humans have a dark iris and white sclera,

but the sclera is darker than the iris in most chimpanzees. Such

low-contrast eyes may not be suitable for the medium of visual

communication frequently observed in humans, which is also

consistent with the results of observational studies indicating that

the great apes exhibited staring behavior when the distance

separating two individuals was minimal, about 30 cm [3,5].

Previous studies have reported that nonhuman primates can

discriminate gaze directions in laboratory experimental contexts,

but most of these studies have used human faces or schematic faces

with high-contrast eyes [23,24,25,31]. Thus, it is plausible that the

primate subjects in these studies used cues different from those

used in the context of their everyday lives, even though high-

contrast eyes are actually processed in the same areas of their brain

(i.e., the superior temporal sulcus and lateral intraparietal area), as

is the case in humans [23,24,25,43].

In the present study, we trained one adult chimpanzee to

perform a visual-search task involving human gaze direction. This

study was designed to meet two goals. The first goal was to

establish whether the chimpanzee exhibited the stare-in-the-crowd

effect; that is, whether she would demonstrate more efficient

search for direct-gaze than for averted-gaze human faces, which

are not conspecific but have high-contrast eyes. The chimpanzee

participating in the present study had been raised by human

caregivers from infancy but spent most of her time with other

chimpanzees as well as with human experimenters and caretakers.

During her extensive time with humans, this chimpanzee might

have learned to discriminate among human eye gazes and their

meanings. We thus hypothesized that the chimpanzee would

exhibit an efficient search for a human direct-gaze face, but would

also differ substantially from humans with respect to gaze

processing. This was examined in Experiment 1.

Our second aim was to identify those characteristics of human

eyes that were critical to the chimpanzee’s ability to discriminate

among gazes. This was examined in Experiments 2–4. It is clear

that the position of the dark iris in the eye region serves as the

discriminative cue for humans with respect to the gaze of

conspecifics. Interestingly, in addition to contrast per se, contrast

polarity (i.e., whether the iris or sclera is darker) is also crucial in

judgments about the gaze direction of humans by humans [44].

Furthermore, when the brightness of the left and right sides of the

sclera of a direct-gaze eye differ, the perceived gaze direction shifts

to the darker side of the sclera, which is referred to as the

‘‘bloodshot’’ illusion [45]. If the chimpanzee identified the gaze

direction on the basis of the high contrast of human eyes, as do

humans, the same effect would be observed in the chimpanzee.

This hypothesis was examined in Experiment 2.

We used front-view faces in the first visual search experiment.

Direct gaze can be unambiguously defined for these stimuli

because the iris is located at the center of the eye. However, when

the head is rotated, the direct gaze should be calculated on the

basis of the relationship between the position of the iris and the

degree of head rotation [25]. For example, if we see the eye region

of the direct-gaze three-quarter-view face separated from the facial

context, we will judge that these eyes did not make eye contact

with us. The so-called ‘‘Wollaston illusion’’ represents one of the

best examples of the impact of the relationship between eye

regions and face contours on the discrimination of gaze direction

[46,47]. Wollaston [47] found that a change in the orientation of

the face (i.e., mirror reversal) resulted in a shift in the perceived

gaze direction even though the eyes themselves remained

unchanged. If the chimpanzee discriminated between the gaze

directed at her (the directed-to gaze) and the gaze directed away

from her, she would be demonstrating an ability to distinguish the

direction of a gaze even when the stimulus head was rotated.

However, if the chimpanzee simply attended to the eye region

alone, her ability to discriminate would deteriorate when the faces

were shifted from the direct frontal view. This was examined in

Experiment 3 by manipulating the relationship between eye

regions and face contours.

Methods

Chimpanzee Participant
Chloe, an adult female chimpanzee who was 20 years of age

when the experiments began, participated in the experiments.

Chloe was born in a zoo and raised by human caregivers. She was

moved to the Primate Research Institute, Kyoto University

(KUPRI), Japan, when she was 4 years of age. She has engaged

in various types of computer-controlled perceptual–cognitive tasks,

including visual-search tasks [48,49,50,51]. She has also engaged

in face recognition tasks using a matching paradigm [52] as well as

in visual-search tasks involving the orientation of faces [53]. Before

this study, she participated in an orienting task using human gazes

as cues [54]. Chloe lives in a social group of 14 individuals in an

environmentally enriched outdoor compound (770 m2) connected

to the experimental room by a tunnel [55]. She was not deprived

of food or water during the study, and no invasive treatments or

special restraints were used in the present study. The care and use

of the chimpanzee adhered to the 2002 version of the Guide for

the Care and Use of Laboratory Primates by the KUPRI, which is

compatible with the guidelines issued by the National Institutes of

Health in the United States of America. The research design was

approved by the Animal Welfare and Animal Care Committee of

the KUPRI and the Animal Research Committee of Kyoto

University. All procedures adhered to the Japanese ‘‘Act on

Welfare and Management of Animals.’’

Apparatus
Experimental sessions were conducted inside an experimental

booth designed for chimpanzees (1.862.1561.75 m). A 21-inch

color CRT monitor (NEC PC-KH2021) with a capacitive
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touchscreen device (Microtouch SM-T2) was installed 15 cm from

the floor on one side of the booth. Touching the monitor surface

with a finger was defined as a response. The screen was protected

from deterioration by a transparent Plexiglas panel fitted with an

armhole (10647 cm) that allowed hand contact with the CRT.

The resolution of the monitor was 6406400 pixels. One hundred

pixels corresponded to 55 mm. Chloe sat approximately 40 cm

from the monitor surface; thus, 100 pixels corresponded to 8u
visual angle, and 1u corresponded to approximately 7 mm (13

pixels). A food tray was installed below the CRT monitor. A

universal feeder (Biomedica BUF-310) delivered pieces of food

(apples or raisins) to this tray. All equipment was connected to a

personal computer (NEC PC-9821 Xn) that controlled the

stimulus display, detected touches to the CRT, delivered rewards,

and collected data.

Experiment 1: Testing the ‘‘Stare-in-the-Crowd’’ Effect in
the Chimpanzee Using the Visual-Search Task

Stimuli. Gray-scale photographs of the front-view faces of 18

Asian women were prepared (Fig. 1). Chloe was unfamiliar with

all individuals depicted in the photographs, which were retouched

with Paintshop ProH 3.0 and PhotoshopH CS2 to 1306160 and

956117 pixels in size and trimmed into elliptical shapes. Larger

stimuli were used in pretraining under each condition, and

smaller stimuli were used in the visual-search testing because the

size of the monitor did not allow us to use the larger stimuli in the

visual-search setting. The diameter of the iris was approximately

nine pixels in the larger stimuli and seven pixels in the smaller

stimuli, and the distance between the left and right irises was 40

pixels in the larger and 30 pixels in the smaller stimuli. Using

direct-gaze stimuli as the baseline images, we prepared averted-

gaze faces by shifting the iris to the right. This shifted distance

was six pixels in the larger and four pixels in the smaller stimuli.

These stimuli were presented on a black or gray background

(Fig. 1). Note that all the individuals appearing in the

photographs presented in this article provided written informed

consent for their publication.

We also prepared three types of faces by manipulating facial

configurations. The first configuration involved an upright face,

and the second involved an inverted face. The third configuration

involved a scrambled face, in which the eyebrows, nose, and

mouth of an upright face were randomly rearranged, while the eye

positions remained intact (Fig. 2). Six conditions were prepared

according to whether the direct or averted gaze served as the

target and on the basis of the type of face presented.

Pretraining. Prior to testing with the visual-search task,

Chloe participated in a 3-item oddity discrimination task as

pretraining under each condition (Fig. 1A). In this pretraining, a

single face was randomly selected from the 18 faces. Each trial

typically began with the presentation of a 0.5-s beep sound and a

blue circle (40 pixels in diameter) at the bottom center of the CRT

display as a start key. When the chimpanzee touched this circle,

three photographs (1306160 pixels in size) were presented

horizontally. The distance between the photographs was 200

pixels from center to center. One stimulus (target) differed from

the other two stimuli (distractors) in terms of the direction of the

gaze depicted. If the chimpanzee touched the target, all stimuli

disappeared, a 1-s chime was presented, and a food reward was

delivered. If the chimpanzee touched a distractor, all stimuli

disappeared, a 0.5-s buzzer was sounded, and the same trial was

presented again until the correct choice was provided (correction

trials). The intertrial interval was 3 s. Each session consisted of 144

trials, with the target position randomly distributed among them.

When accuracy did not improve during the course of training, we

introduced two types of stimulus-fading training: an ‘‘iris position-

shift training’’ for the direct-gaze target trials and an ‘‘iris brightness-

fading training’’ for the averted-gaze target trials. The intact target

was initially paired with a face without irises (i.e., the iris area was

the same color as the sclera) in both types of training. When the rate

of correct responses exceeded 80%, the iris was gradually shifted

from the rightmost position to the normal averted-gaze position

under the iris position-shift condition, and the darkness of the iris

gradually faded into the normal direct-gaze brightness level under

the iris brightness-fading condition. The pretraining session

continued until the rate of correct responses exceeded 80% for

two consecutive sessions under the normal condition.

Transfer tests. After Chloe’s performance reached the

criterion level, she engaged in two series of tests measuring her

ability to transfer gaze discrimination to stimuli that differed from

those used in the pretraining. Each transfer test consisted of four

216-trial sessions in which pretraining stimuli appeared in 144

trials (baseline trials) and new stimuli appeared in 72 trials (test

trials). Six new stimuli were randomly selected from the stimulus

pool. Each test stimulus appeared 12 times in each test session.

The responses in each test session (the first and second series) of

each trial were differentially reinforced. After the first four test

sessions, Chloe was trained in gaze discrimination using the new

stimuli (144–150 trials per session) until her rate of correct

responses exceeded 80%; this was followed by the second test

series, in which six other new stimuli were presented. The second

test also consisted of four sessions.

Figure 1. Schematic examples of the stimulus display. (A) oddity discrimination for Experiment 1 (preliminary training and transfer tests) and
Experiments 2–5, and (B) visual search task for Experiment 1.
doi:10.1371/journal.pone.0009131.g001
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We then selected the four stimuli associated with Chloe’s best

performances for use in the visual-search testing. Using the

smaller-sized stimulus sets (956117 pixels), we conducted 3-item

oddity training. Chloe participated in three to six sessions of this

training until her rate of correct responses exceeded 80% for three

consecutive sessions under each condition.

Visual-search test. After the completion of the three-item

oddity training using the smaller-sized stimuli, Chloe immediately

began the visual-search testing. Each trial began with the

presentation of the start key (blue circle, 40 pixels in diameter)

at the bottom center of the CRT screen and an accompanying 0.5-

s beep sound. When she responded to the start key, it disappeared,

and the search display appeared on the screen. The search display

consisted of a 462 predefined stimulus presentation area

containing one target stimulus and several uniform distractors

that differed from the target in gaze direction (956117 pixels in

size; Fig. 1B). The number of search items varied among three,

five, and eight, and the configuration of the search display

changed randomly from trial to trial. The target position was

counterbalanced. The chimpanzee’s task was to detect the target

and touch it on the screen. Feedback accompanying the responses

matched that used in the pretraining. When Chloe responded

incorrectly (i.e., touched one of the distractors), the same search

display reappeared. If she made a second error, only the target

stimulus appeared on the screen during a second correction trial.

This correction procedure was introduced to prevent Chloe from

stopping her participation when the rate of non-reinforced trials

was too high [48,53].

Experimental design. The testing conditions proceeded in

the order described in Table 1. No visual-search testing was

conducted under the first condition (upright D/A = direct-gaze

target/averted-gaze distractor with upright face), which was

regarded as preliminary training. Upright D/A and A/D

conditions were tested twice to verify the effects of prolonged

training, but transfer tests were not conducted in the second cycle.

Chloe participated in nine to 12 sessions under each condition,

and data obtained in the last six sessions were used for analyses.

Using SPSS 14.0J, analyses of variances (ANOVAs) were

conducted on the error score and response-time data under each

condition using sessions as repeated measures.

Experiment 2: Effects of Brightness Contrast on Gaze
Perception

Experiments 2–5 used three-item oddity tasks instead of visual-

search tasks. In these experiments, we examined the generaliza-

tion or transfer of the discrimination performance to the sets of

new stimuli instead of investigating visual-search asymmetries.

Thus, we focused primarily on accuracy data in Experiments 2

and 3.

We used a new stimulus set in Experiment 2 (Fig. 3). One of the

18 stimuli used in Experiment 1 was selected and manipulated to

produce the following six types of stimuli. (1) Positive face with positive

eyes: Both the eyes and the other regions were of normal contrast

polarity. The grayscale value of the iris was set to 0 (minimum

value, darkest) and that of the sclera to was set to 255 (maximum

Figure 2. Mean response times in correct trials for each condition as a function of the number of stimulus items in the visual-search
testing in Experiment 1. Error bars indicate standard errors of means across sessions. *p,0.05; **p,0.01. Chloe showed faster response times
when the direct-gaze face than when the averted-gaze face was the target irrespective of the facial configurations.
doi:10.1371/journal.pone.0009131.g002

Visual Search for Gaze

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e9131



value, brightest). Both direct- and averted-gaze faces were

prepared and used for baseline trials. (2) Bloodshot 1: The direct-

gaze face was identical to that of Stimulus (1), but the right part of

the sclera in both eyes of the direct-gaze face was darkened to a

grayscale value of 138 in the averted-gaze face because previous

literature on humans as subjects showed that perceived gaze

Table 1. Summary of the results of Experiment 1.

Pretraining Transfer tests (% Correct)
Small-size
training Visual search

Criterional Sessions4) First Test Second Test

Condition1) # of Sessions
%
Correct

Response
Time (s) Baseline Test Baseline Test

# of
sessions

%
Correct

# of
sessions

%
Correct6)

Response
Time (s)6)

Up-D/A (pre) 182) (position [10])3) 89.9 0.873 92.7 50.0 87.5 75.7 -----5) ----- -----5) ----- -----

Up-A/D(1) 38 (dark [33]) 84.4 1.206 86.8 41.3 78.4 64.2 3 87.5 9 84.7 1.736

Inv-A/D 13 87.2 1.166 79.9 75.7 85.4 83.0 3 89.6 9 82.1 1.584

Scr-D/A 36 (position [25]) 86.1 1.273 89.9 75.0 81.1 71.9 5 83.2 9 85.4 1.525

Up-D/A(1) 4 92.7 0.974 93.1 81.3 91.0 81.6 4 87.2 9 92.2 1.515

Scr-A/D 26 (dark [18]) 86.1 1.313 78.8 47.3 93.1 70.3 4 86.1 12 86.5 1.680

Up-A/D(2) 2 96.2 0.956 -----5) ----- ----- ----- 6 80.2 9 96.0 1.546

Inv-D/A 14 (position [11]) 94.4 1.178 96.2 41.3 90.8 79.2 3 91.4 12 95.7 1.445

Up-D/A(2) 2 95.5 0.869 ----- ----- ----- ----- 6 92.8 12 94.4 1.432

1) Up: upright face, Inv: inverted face, Scr: scrambled face, D: direct gaze, A: averted gaze. The letter before the slash designates the target and the letter after the slash
designates the distractor.
2) Special fading training sessions were included in the number of sessions.
3) Type of fading training: position, shift in the iris position; dark, iris darkness fading. The numbers in the brackets show the number of fading sessions.
4) Data from the last two sessions for each condition.
5) Not conducted.
6) Data from the last six sessions.
doi:10.1371/journal.pone.0009131.t001

Figure 3. Mean accuracy in each of the baseline and test conditions in Experiment 2. Examples of the stimuli are shown below the graph.
Pos: positive polarity, Neg: negative polarity. Broken lines: 5% significance levels of binomial tests for each test condition. Chloe exhibited the so-
called ‘‘bloodshot illusion.’’ Furthermore, her behavior was controlled by the contrast polarity.
doi:10.1371/journal.pone.0009131.g003
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direction shifted to the side in which the sclera was darkened [45].

(3) Bloodshot 2: The right part of the sclera of both eyes was

darkened to a greater extent than in stimulus (2), to a grayscale

value of 102. (4) Negative face with negative eyes: The contrast polarity

of both the eyes and the other regions was reversed. (5) Negative face

with positive eyes: The contrast polarity of the eyes remained normal,

but that of the other regions was reversed. (6) Positive face with

negative eyes: The contrast polarity of the eyes was reversed, but that

of the other regions was normal. These manipulations were

implemented using Paintshop ProH 3.0 and PhotoshopH CS 2.

The size of these stimuli was 1306160 pixels.

Test sessions of Experiment 2 were inserted between the

conditions of Experiment 1. Chloe participated in two series of test

sessions in Experiment 2. The first series, conducted immediately

after the first upright D/A condition of Experiment 1, involved two

test sessions in which the direct-gaze face was the target. The second

series consisted of two test sessions in which the averted-gaze target

appeared immediately after the second upright A/D condition of

Experiment 1. The sequence of events in each trial was identical to

that in the pretraining oddity task of Experiment 1. Each session

consisted of 72 baseline trials in which a positive face with positive

eyes appeared and 60 test trials in which the other five types of

stimuli appeared equally often. Correct positions were counterbal-

anced. If the chimpanzee made an error, only the positive face with

positive eyes appeared as a target in the next correction trial,

irrespective of whether it was a baseline or test trial. In total, Chloe

participated in 144 baseline trials and 24 trials for each type of test

stimulus under both the direct-gaze and averted-gaze conditions.

Binomial tests were used to determine the statistical significance

of differences between the actual accuracy rates for each type of

test and those expected on the basis of chance (i.e., 33.3%).

Experiment 3A: Tests on the Transfer to New Front-View
and Three-Quarter-View Faces

Three-quarter-view faces of 10 new women were prepared for

Experiments 3A–D. Three new front-view faces were also

prepared. These photographs were the same size as those used

in Experiment 2. These newly introduced stimuli were manipu-

lated according to the purpose of each test series (Fig. 4–6).

Chloe was shifted to Experiment 3 immediately following the

last condition of Experiment 1 (the second test of upright D/A).

The direct gaze was always the target, and Chloe participated in

four successive test series. Each session consisted of 108–144

trials, depending on the type of test. The number of sessions for

each test series also varied between one and 11. We used the

same three-item oddity task and procedure as used in Experiment

2. Baseline and test trials were presented alternately. Baseline

stimuli were the same as those used in Experiment 2. If the

participant made an error, only the target appeared in the

subsequent correction trials.

In Experiment 3A, Chloe participated in the transfer tests using

novel front-view and three-quarter-view faces. In this test, she was

tested for the transfer of discrimination ability to the three new

front-view faces and the 10 new three-quarter-view faces (Fig. 4).

Chloe engaged in a total of 11 sessions, with 603 baseline trials, 36

test trials with front-view faces (12 trials for each stimulus), and 270

Figure 4. Mean accuracy in transfer tests using novel front-view and three-quarter-view faces in Experiment 3A. Examples of the stimuli
are shown below the graph. Error bars indicate the standard errors of means across test stimuli. **p,0.01. The chimpanzee showed significant transfer of
eye-gaze discrimination from front-view to three-quarter-view faces, but the accuracy was significantly lower than that for the new front-view faces.
doi:10.1371/journal.pone.0009131.g004
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test trials with three-quarter-view faces (12–36 trials for each

stimulus). Two-tailed t-tests were used to determine the statistical

significance of differences between the actual accuracy rates for

new faces and those expected on the basis of chance as well as the

statistical significance of differences between the accuracy of

responses for front- and three-quarter-view faces.

Experiment 3B: Tests for the Transfer from Eye Direction
to Head Orientation

In this experiment, Chloe participated in four types of test trials

using three sets of faces to test the transfer of gaze discrimination

defined by eyes to that defined by head orientation (Fig. 5). (1) HD

+ ED/HA + EA (head direct + eyes direct/head averted + eyes

averted): The target was the front-view face with direct gaze, and

the distractors were the three-quarter-view faces with averted gaze.

(2) HA + ED/HD + EA (head averted + eyes direct/head direct +
eyes averted): The target was the three-quarter-view face with

direct eye gaze, and the distractors were the front-view faces with

direct eye gaze. (3) HD/HA with mask: The eye regions of stimuli

used in (1) were masked with a black rectangle. (4) HA/HD with

mask: The eye regions of s used in (2) were masked with a black

rectangle. These two conditions were the control conditions for (1)

and (2) to test the role of eye regions. These four types of test

stimuli appeared equally often but randomly within a session.

Chloe engaged in 216 baseline trials and 36 trials under each test

condition during the four test sessions. Unlike Experiment 3A,

Experiment 3B used the face of only a single individual. Thus, the

results of the test trials were analyzed using binomial tests.

Experiment 3C: Is an Iris Centered in the Sclera a Critical
Cue for Gaze Discrimination in the Chimpanzee

We prepared new three-quarter-view faces based on photo-

graphs of the three people used in Experiments 3A and B. In

addition to direct- and averted-gaze three-quarter-view faces, we

prepared a third type of face in which each iris was located at the

center of the eye (Fig. 6). We combined these three types of stimuli

to produce two test conditions: iris center/averted gaze and iris center/

direct gaze. Under both conditions, the target was the face with the

iris in the center of the sclera. The procedure was identical to that

used in Experiment 3A. Chloe received two 144-trial sessions in

which the 72 baseline (target was the direct-gaze front-view face)

and 72 test trials appeared in random order. If Chloe had

evaluated the direct gaze on the basis of the position of the iris

alone rather than on the basis of the relationship between the

position of the iris and the orientation of the head, she would have

chosen the three-quarter-view face with the iris at the center of the

eye. The rates of correct responses under each condition (each

contained three faces) were compared with those that would be

obtained on the basis of chance using two-tailed t-tests.

Results

Experiment 1
Training and transfer tests. Eighteen sessions, including 10

special fading training sessions, were required to reach the

criterion for the first pair (upright D/A) presented as

preliminary training (Table 1). Overall, the number of sessions

required for pretraining seemed to decrease across conditions

during the course of the experiment, but this trend was not

statistically significant (Spearman’s test, rs = 20.60, N = 9,

p = 0.086). Not surprisingly, Chloe needed more sessions when

the target–distractor mapping was reversed across conditions (28.5

sessions on average) than when the mapping was maintained (5.3

sessions on average). The mean percentage correct in the last two

sessions averaged across conditions was 90.3% (standard error

[SE] = 1.4) and the mean response time was 1.09 s (SE = 0.054).

Figure 5. Mean accuracy in tests for the transfer to head orientation in Experiment 3B. Examples of the stimuli are shown below the
graph. HD, head direct; HA, head averted; ED, eyes direct; EA, eyes averted; broken lines, 5% significance levels of binomial tests for each test
condition. Chloe showed significantly above-chance performance for head-orientation discrimination, but showed chance-level performance when
the eye regions were masked.
doi:10.1371/journal.pone.0009131.g005
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During the first transfer test series, Chloe was able to achieve a

58.8% correct response rate (SE = 6.2) in the test trials and a 75.1%

correct response rate (SE = 2.4) in the second test series (Table 1).

Her accuracy in the test trials of both series was significantly better

than would be expected on the basis of chance (i.e., 33.3%; first

series: t(6) = 3.82, p = 0.004; second series: t(6) = 16.37, p,0.001,

two-tailed). Furthermore, her accuracy in the second series was

significantly higher than that in the first series (two-tailed paired t-

test, t(6) = 2.87, p = 0.014), but her performance did not improve or

deteriorate across conditions in the first (rs = 20.13, N = 7, p = 0.788)

or second (rs = 0.14, N = 7, p = 0.760) series.

Visual-search testing. Chloe participated in nine visual-

search testing sessions under five of the eight conditions, and 12

sessions under the remaining conditions (Table 1). These

differences were due to the instability in the accuracy rates

and response times during the earlier phase of testing under

each condition. Table 2 shows the mean percentages of errors

under each condition during the data-collection sessions.

Overall, Chloe performed better when the target exhibited

direct than averted gaze. These error data were analyzed

separately for facial configurations using two-way ANOVAs (2

targets63 stimuli). In the first set of upright faces, the main

effects of target, F(1, 10) = 30.00, p,0.001, g2 = 0.750, and

number of stimuli, F(2, 20) = 12.62, p,0.001, g2 = 0.558, were

both significant. The two-way interaction was not significant,

F(2, 20) = 0.79, p = 0.468, g2 = 0.073. In the second set of

upright faces, the main effect of target was not significant, F(1,

10) = 1.53, p = 0.245, g2 = 0.133, but effect of number was

significant, F(2, 20) = 3.88, p = 0.038, g2 = 0.280. The two-way

interaction was not significant, F(2, 20) = 0.48, p = 0.626,

g2 = 0.046. When the faces were presented with an inverted

orientation, the main effects of target, F(1, 10) = 24.65,

p = 0.001, g2 = 0.711, and number, F(2, 20) = 4.83, p = 0.019,

g2 = 0.326, were significant, but the interaction was not

significant, F(2, 20) = 1.03, p = 0.377, g2 = 0.093. For the

scrambled faces, the main effect of number was significant,

F(2, 20) = 31.38, p,0.001, g2 = 0.758, but the effect of target,

F(1, 10) = 0.24, p = 0.633, g2 = 0.024, and the interaction, F(2,

20) = 0.59, p = 0.563, g2 = 0.056, were not significant.

Figure 2 shows the mean response times under each condition

as a function of the number of stimuli. Chloe responded faster to

the direct-gaze than to the averted-gaze target, irrespective of

facial configuration. The response-time data for facial configura-

tion were also analyzed separately using a two-way ANOVA (2

targets63 stimuli). The main effects of target F(1, 10) = 7.15,

p = 0.023, g2 = 0.417, and number of stimuli, F(2, 20) = 274.75,

p,0.001, g2 = 0.964, were significant for the first set of upright

faces. The two-way interaction was also significant, F(2, 20) = 3.44,

p = 0.052, g2 = 0.256. Further tests of the simple main effects [56]

revealed that the effect of the target was significant when five, F(1,

10) = 9.62, p = 0.011, g2 = 0.490, and eight, F(1, 10) = 6.36,

p = 0.030, g2 = 0.389, stimuli were used. The main effects of

target, F(1, 10) = 7.75, p = 0.019, g2 = 0.437, and number, F(2,

20) = 267.22, p,0.001, g2 = 0.964, were significant for the second

set of upright faces. The two-way interaction was also significant,

F(2, 20) = 3.92, p = 0.037, g2 = 0.282. The effect of the target was

Figure 6. Mean accuracy for each condition in Experiment 3C. Examples of the stimuli are shown below the graph. The target stimuli
contained eyes with the iris located at the center. White bar indicates the results for baseline trials, and black bars show those for test trials. Error bars
indicate the standard errors of means across test stimuli. *p,0.05. The chimpanzee significantly chose the face with iris at the center of eye region
more than the other types of faces irrespective of ‘‘eye contact’’.
doi:10.1371/journal.pone.0009131.g006
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significant when five, F(1, 10) = 12.91, p = 0.005, g2 = 0.563, and

eight, F(1, 10) = 4.79, p = 0.053, g2 = 0.323, stimuli were used.

When the faces were presented with an inverted orientation, the

main effects of target, F(1, 10) = 10.78, p = 0.008, g2 = 0.518, and

number, F(2, 20) = 173.66, p,0.001, g2 = 0.946, as well as the

interaction effect, F(2, 20) = 4.62, p = 0.022, g2 = 0.316, were

significant. Post-hoc tests of simple main effects showed that the

effect of target was significant when eight stimuli were presented,

F(1, 10) = 10.45, p = 0.009, g2 = 0.511. The main effects of target,

F(1, 10) = 7.57, p = 0.020, g2 = 0.431, and number, F(2,

20) = 120.56, p,0.001, g2 = 0.923, were significant, but the

interaction was not, F(2, 20) = 0.15, p = 0.861, g2 = 0.015, for the

scrambled faces.

Chloe was presented with successive stimulus conditions in a

blocked-sessions manner. Thus, we cannot exclude the possibility

that learning or training effects might have biased the results. To

examine the training effect, we presented the upright-face

conditions twice. Chloe maintained her efficient search for direct

gaze during the second test series with upright faces (Fig. 2). We

combined the first and second tests with the upright faces and

conducted a 3-way ANOVA (2 repetitions63 targets63 stimuli)

for the response-time data. The main effects for the number of

stimuli, F(2, 40) = 539.04, p,0.001, g2 = 0.964, the target, F(1,

20) = 13.30, p = 0.002, g2 = 0.399, and the interaction between the

target and the number of stimuli, F(2, 40) = 6.81, p = 0.003,

g2 = 0.254, were significant. Response times during the second test

series were significantly faster than those during the first test series,

F(1, 20) = 8.45, p = 0.009, g2 = 0.297, and the interaction between

number of stimuli and repetition was also significant, F(2,

40) = 4.01, p = 0.026, g2 = 0.167. However, the interaction be-

tween repetition and target, F(1, 20) = 1.25, p = 0.276, g2 = 0.059,

and the 3-way interaction, F(2, 40) = 0.48, p = 0.620, g2 = 0.024,

were not significant. Thus, prolonged training did not seriously

affect the results.

Experiment 2
Chloe achieved a 95.1% correct response rate for the direct-

gaze baseline and a 97.9% correct response rate for the averted-

gaze baseline trials during the test sessions of Experiment 2 (Fig. 3).

Under the bloodshot conditions, she performed significantly better

than would be expected on the basis of chance under three of the

four test conditions (58.3%–66.7% correct responses, ps,0.05,

binomial tests). She performed better when the target exhibited a

direct gaze than when it exhibited an averted gaze, especially

during the averted-gaze trials under the second bloodshot

condition (45.8%). This might be attributable to the manipulation

of the averted- but not of the direct-gaze target. On average,

58.3% of Chloe’s responses were correct under the four bloodshot

conditions, t(3) = 5.55, p = 0.012. These results may imply that the

so-called bloodshot illusion is also found in the chimpanzee. When

the contrast polarity was fully reversed (negative face with negative

eyes) and when only the polarity of the eye region was reversed

(positive face with negative eyes), the rate of accurate responses

decreased to the level of chance (24.0% on average, t(3) = 1.41,

p = 0.255), and Chloe’s accuracy deteriorated to significantly

below the level of chance on one of the four test series (the direct-

gaze target with the positive face and negative eyes, 4.2% correct,

p,0.001, binomial test). However, when the contrast polarity of

the eye region remained intact (negative face and positive eyes),

her performance was significantly better than would be expected

on the basis of chance, 72.9% on average.

Experiment 3A
Chloe demonstrated significantly greater accuracy than would

be expected on the basis of chance in response to the three new

front-view faces, t(2) = 19.0, p = 0.003 (Fig. 4). Her performance in

the test trials, in which the 10 three-quarter-view faces were

presented, was also better than chance, t(9) = 3.40, p = 0.008, but

was worse than that in the front-view test trials, t(11) = 3.24,

p = 0.008.

Experiment 3B
The test examining Chloe’s ability to transfer what she had

learned to stimuli using head orientation showed that she was able

to transfer eye-gaze discrimination for the front-view faces to head-

direction discrimination (Fig. 5). In contrast, when the eye region

was masked, her performance dropped to the level of chance,

suggesting the strong role of the eyes in gaze discrimination; that

is, facial contours were not sufficient for judging the direction of

the other’s gaze. However, familiar stimuli (front-view faces) were

paired with unfamiliar stimuli (three-quarter-view faces) in the

unmasked test series. In this experimental context, the participant

primarily selected the familiar target (under the HD + ED/HA +
EA condition) or avoided the familiar distractor (under the HA +
ED/HD + EA condition). Thus, these results may be interpreted

in terms of Chloe’s history of participation in experiments rather

than in terms of the transfer of gaze discrimination from eyes to

head.

Experiment 3C
Under both test conditions (iris center/averted gaze and iris center/

direct gaze), Chloe chose the face with the iris at the center of the

sclera more frequently than she chose the direct or averted gaze

(iris center/averted gaze: t(2) = 5.00, p = 0.038; iris center/direct

gaze: t(2) = 4.27, p = 0.051; Fig. 6).

Table 2. Mean percentages of errors for each condition during the visual search testing in Experiment1.

Direct/Averted Averted/Direct

Number of Stimuli

Condition 3 5 8 3 5 8

Up(1) 3.6 (0.5) 6.8 (2.0) 13.0 (2.8) 8.3 (3.1) 13.5 (2.2) 24.0 (2.8)

Up(2) 1.6 (0.7) 7.3 (2.8) 7.8 (1.9) 2.1 (0.7) 4.7 (1.8) 5.2 (1.7)

Inv 2.1 (0.7) 4.7 (1.8) 6.3 (2.6) 14.1 (1.8) 16.1 (3.2) 23.4 (4.3)

Scr 4.7 (1.8) 13.5 (2.2) 22.4 (3.2) 9.4 (2.0) 12.5 (4.0) 21.9 (3.1)

Numbers in parentheses show the standard errors of mean.
doi:10.1371/journal.pone.0009131.t002
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Discussion

Stare-in-the-Crowd Effect
In this study, we investigated how an adult chimpanzee, Chloe,

perceived human gaze direction under visual-search and oddity-

discrimination conditions. In Experiment 1, we examined the stare-

in-the-crowd effect; that is, we explored whether Chloe would

exhibit a more efficient search for a direct than for an averted gaze.

Chloe was able to discriminate between the directions of human

gazes in the oddity tasks, and the discrimination was successfully

transferred to untrained stimuli. These results suggest that she did

not use stimulus-specific features for gaze discrimination. More

importantly, she exhibited faster response times when the target was

a direct-gaze than when it was an averted-gaze face, and this effect

was not explained by the specific order of training tests used in this

experiment. Two additional observations should be noted. First, we

generally observed an efficient search for direct-gaze faces,

irrespective of facial configuration. These results are consistent with

those reported by von Grünau and Anston [39], who originally

found the stare-in-the-crowd effect among humans, using eye

regions alone as stimuli, as well as in a gibbon infant [22], who

looked longer at direct gazes than at averted gazes in upright,

inverted, and scrambled faces. Our results also imply that face

processing and gaze perception are relatively independent in the

chimpanzee.

Second, the chimpanzee demonstrated a more efficient search

pattern for the direct-gaze than for the averted-gaze faces, and her

response times increased linearly as a function of the number of

stimuli. In the visual-search experiments using much simpler stimuli,

such as line orientations or line intersections, targets containing these

visual ‘‘features’’ were more quickly detected than were targets

without the features but with the distractor. Under the former

condition, response times were very fast and did not increase,

irrespective of the number of stimuli (parallel search, or ‘‘pop out’’).

Under the latter condition, however, response times increased

linearly as a function of the number of stimuli (serial search) [40,50].

These phenomena are frequently referred to in terms of search

asymmetry. The present results, showing search asymmetry but not

parallel versus serial search, are not consistent with those of search

asymmetry experiments using simpler stimuli [40,50], but are

consistent with those of previous experiments on visual searches of

gazes [38,39], which have shown search asymmetry for gaze but not

parallel search for direct gaze. It is noteworthy that efficient but not

parallel searches have generally been reported in search experiments

with humans and chimpanzees using faces as stimuli [53,57,58].

Our results suggest that the direct gaze did not ‘‘pop out’’ from

among averted gazes for the chimpanzee as it did for humans, even

though the processing of direct gazes may be more efficient than

that of averted gazes in the chimpanzee.

What Cues Did the Chimpanzee Utilize for Gaze
Discrimination

Experiments 2 and 3 explored the cues used by the chimpanzee

during the present experiments. In Experiment 2, we manipulated

the brightness contrast and contrast polarity of the eye regions.

When the sclera with asymmetrical brightness in both eyes was

presented, the chimpanzee perceived these eyes as averted even

though the irises were located at the center of the eyes. This effect

is known as the ‘‘bloodshot’’ illusion. Our results showed clear

evidence of this illusion, suggesting that chimpanzees and humans

use similar kinds of cues to discriminate among the gazes of front-

view faces. Furthermore, when the contrast polarity was reversed,

the participant’s performance deteriorated severely, as observed in

humans. Both brightness contrast and contrast polarity are critical

to discriminations made by humans and chimpanzees with respect

to the direction of human gazes.

Experiment 3 examined the robustness of the results on direct

gaze in the context of head rotations. If Chloe could categorically

discriminate among the gaze directions of front-view faces—that

is, if she could choose the face exhibiting ‘‘eye contact’’ under the

direct-gaze target conditions and vice versa—she would have chosen

the ‘‘eye-contact’’ face irrespective of its head orientation. The

results of Experiment 3A, which showed that the ability to

discriminate among eye gazes was significantly generalized from

front- to three-quarter-view faces, supported this possibility.

However, we should note that the transfer was significantly

inferior for the three-quarter compared to the front-view faces.

Experiment 3B also found that the ability to discriminate among

eye-gaze stimuli was successfully transferred to the ability to

discriminate among head-orientation stimuli. However, as noted,

these results can also be explained on the basis of simple

association. Furthermore, if Chloe’s performance with respect to

eye gaze had generalized to head orientation, she could have

discriminated among the eye-mask conditions on the basis of head

orientation alone. As Emery [8] noted, the gaze-perception system

of humans is hierarchical, and the direction of the gaze of an

individual is not determined simply by the direction of the eyes per

se. Indeed, humans calculate the direction of the other’s gaze on

the basis of both the orientation of the head and the position of the

irises in the eyes. The results of Experiment 3C clearly indicate

that this was not the case for Chloe under the current

experimental setting. The results showed that she primarily

utilized information from the eye regions independently from

information about head orientation to discriminate among gaze

directions. Chloe just attended to the ‘‘iris located at the center of

eye.’’ One reasons for this limited performance may relate to her

long-term training history with front-view faces.

Based on our results, which indicate the relative independence

of eye and head directions, on those of naturalistic observations of

staring behaviors, which indicate that gaze discrimination occurs

when very short distances separate individuals, and on consider-

ations of the low-contrast eyes of chimpanzees, eye direction may

not be as critical as head or body orientation for gaze

discrimination by chimpanzees [59]. In particular, chimpanzees

may not rely as much on eyes during social interactions with

conspecifics as they do during interactions with humans. To test

this possibility, additional systematic comparisons should be

conducted on the ability of chimpanzees to discriminate between

human and chimpanzee faces. Chimpanzees may differ with

respect to their sensitivity to gaze-related information from the

eyes and head even when human faces are used as stimuli.

Humans show similar levels of sensitivity with respect to

discriminating eye gaze and head orientation, with 1.4u for the

eyes [36] and 1.9u for the head [60]. Unfortunately, no

comparable psychophysical data on the gaze perception of

nonhuman primates have been collected. Future investigations

will provide more detailed information on the characteristics of

gaze perception in nonhuman primates.

Finally, we tested only one experimentally sophisticated

chimpanzee, who had been reared by humans but lived with

other chimpanzees in a captive community. The generalizability of

the current results to chimpanzees in general remains unclear. We

hypothesize that most captive chimpanzees might implicitly learn

to discriminate among human gazes on the basis of their long-term

and extensive histories of social interactions with humans. Thus,

our results can be extended, at least, to chimpanzees in captivity.

Future studies to replicate and extend these results as well as

testing with conspecific faces are required.
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