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Abstract

Androgen ablation therapy is currently the primary treatment for metastatic prostate cancer. Unfortunately, in nearly all
cases, androgen ablation fails to permanently arrest cancer progression. As androgens like testosterone are withdrawn,
prostate cancer cells lose their androgen sensitivity and begin to proliferate without hormone growth factors. In this study,
we constructed and analyzed a mathematical model of the integration between hormone growth factor signaling,
androgen receptor activation, and the expression of cyclin D and Prostate-Specific Antigen in human LNCaP prostate
adenocarcinoma cells. The objective of the study was to investigate which signaling systems were important in the loss of
androgen dependence. The model was formulated as a set of ordinary differential equations which described 212 species
and 384 interactions, including both the mRNA and protein levels for key species. An ensemble approach was chosen to
constrain model parameters and to estimate the impact of parametric uncertainty on model predictions. Model parameters
were identified using 14 steady-state and dynamic LNCaP data sets taken from literature sources. Alterations in the rate of
Prostatic Acid Phosphatase expression was sufficient to capture varying levels of androgen dependence. Analysis of the
model provided insight into the importance of network components as a function of androgen dependence. The
importance of androgen receptor availability and the MAPK/Akt signaling axes was independent of androgen status.
Interestingly, androgen receptor availability was important even in androgen-independent LNCaP cells. Translation became
progressively more important in androgen-independent LNCaP cells. Further analysis suggested a positive synergy between
the MAPK and Akt signaling axes and the translation of key proliferative markers like cyclin D in androgen-independent
cells. Taken together, the results support the targeting of both the Akt and MAPK pathways. Moreover, the analysis
suggested that direct targeting of the translational machinery, specifically eIF4E, could be efficacious in androgen-
independent prostate cancers.
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Introduction

Prostate cancer is the most common cancer in men and the

second leading cause of cancer-related death in the United States

[1]. It has been known since the 1940s that androgens, such as

testosterone, are required for prostate cancer growth [2].

Accordingly, androgen ablation in combination with radiation or

traditional chemotherapy remains the primary non-surgical

treatment for androgen-dependent prostate cancer. Androgen

ablation initially leads to decreased tumor growth and reduced

secretion of biomarkers such as Prostate Specific Antigen (PSA)

[3–5]. However, in nearly all cases androgen ablation fails to

permanently arrest cancer progression. As testosterone is with-

drawn, malfunctioning prostate cells lose their sensitivity to

androgen and begin to proliferate without hormone growth factor

signals. These testosterone insensitive cells can then lead to

Androgen-Independent Prostate Cancer (AIPC) [6]. The AIPC

phenotype is closely related to metastasis and decreased survival.

Unfortunately, current treatments for metastatic AIPC have

demonstrated only modest survival advantages [7]. Thus, an

effective therepy for metastatic AIPC represents an unmet medical

need and an ideal target for systems biology.

AIPC is characterized by androgen action in the absence of

androgen stimulation. At the core of androgen action is the

regulation of Androgen Receptor (AR) by hormones such as

testosterone. AR is a cytosolic steroid hormone receptor belonging

to the superfamily of ligand activated transcription factors. Other

members of this family include Vitamin A/D, estrogen, proges-

terone and thyroid hormone receptors [8,9]. In healthy prostate

epithelial cells, androgens activate AR and drive an AR-dependent

gene expression program. Sexual androgens such as testosterone

typically circulate in the blood, bound to proteins such as the Sex

Hormone Binding Globulin (SHBG) protein. Free testosterone

enters prostate cells where the 5a-reductase enzyme converts it to

activated dihydrotestosterone (DHT) [10]. Both cytosolic testos-

terone and DHT can bind AR, however DHT has a higher affinity
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for AR. Binding of DHT to AR promotes cytosolic AR activation

and the translocation of activated AR to the nucleus. Nuclear AR

drives the expression of target genes including PSA by binding to

AR-responsive promoter elements [11,12]. Because of its ligand

dependence, one would expect AR activation and AR-driven gene

expression to be absent without hormone stimulation. However,

AIPC often has higher PSA expression and increased cell-

proliferation compared to its androgen-dependent counterpart

even without stimulation [13,14].

AIPC’s increased proliferation and PSA secretion in the absence

of androgen suggests a failure in the regulation of androgen

receptor activation. Feldman and Feldman reviewed several

possible AR regulatory pathways perhaps responsible for androgen

action in the absence of hormone stimulation [15]. One

hypothesis, referred to as the hypersensitivity pathway, suggests

that AR may be more sensitive to androgen in AIPC. This would

allow AR activation and AR-driven gene expression at much

lower levels of extracellular testosterone signals. Another hypoth-

esis, referred to as the promiscuous pathway, suggests that AR can

be activated by non-androgen antagonists. A third hypothesis,

explored here, suggests that AR can be activated by other

pathways, for example, the Mitogen Activated Protein Kinase

(MAPK) cascade. Several studies support this cross-talk hypothesis,

sometimes referred to as the outlaw pathway. Culig et al. showed in

DU-145 human prostatic tumor cells that growth factors e.g., IGF-

I, KGF, and EGF could drive AR activation without androgen

[16]. Nazareth and Weigel showed in human prostate PC-3 cells

that AR could also be activated by the protein kinase A activator,

forskolin in the absence of androgen [17]. Other studies have

suggested a connection between Her2 induced activation of the

primary MAPK cascade and AR activation [18]. For example,

Her2 overexpression was positively correlated with diminished

sensitivity to androgen ablation, increased AR dependent PSA

expression, increased AR activation, increased tumor mass and

shortened tumor latency [14,18–20]. Thus, one would expect

regulators of Her2 activation, for example the different forms of

the 100 kDa glycoprotein Prostatic Acid Phosphatase (PAcP),

could be important factors in androgen dependence and tumor

grade [21–26]. Intracellular PAcP (cPAcP) whose expression is AR

responsive, downregulates Her2 by dephosphorylation. On the

other had, secreted PAcP (sPAcP) promotes modest Her2

activation by an unknown mechanism [26].

Results

The objective of this study was to determine which signaling

components were important in AI versus AD LNCaP cells.

Toward this objective, we constructed and analyzed a mecha-

nistic mathematical model of the androgen response of three

different LNCaP prostate adenocarcinoma sub-lines. We inves-

tigated MAPK-dependent outlaw activation of AR in AD (C-33),

mid-range (C-51) and AI (C-81) LNCaP cells [13,27]. Our

network model included: nuclear hormone and transmembrane

growth factor receptor activation; transcriptional activity via the

MAPK subsystem [28–30] together with outlaw activation of AR

via MAPK [15,18]; PI3K/AKT/TOR mediated translation

initiation [31,32]; the transcriptional and translational regulation

of PSA, cyclin D and PAcP expression [14,20]; and the regulation

of Her2 activity by PAcP [26] (Fig. 1). The network described 212

species and 384 interactions (Table S1). Transcription and

translation were modeled using elementary reactions based on

literature (supplemental materials). Constitutive and regulated

expression of PSA, cyclin D and the two forms of PAcP were

considered in the model. The total level of all other model

proteins was constant. We modeled the molecular interactions

using mass action kinetic processes within an ordinary differential

equation (ODE) framework. ODEs are a common method of

modeling biological pathways and have been used to model a

range of signal transduction processes [29,33–41]. Mass action

kinetics have also been used extensively, for example, to model

receptor tyrosine kinase signaling [41], blood coagulation [39],

pain networks [40] or Toll like receptor signaling [42,43]. They

have also been a key component in the success of perturbation-

response approaches which have shown that simple linear rules

often govern the response behavior of biological networks [44].

The ODE model was deterministic and captured only population

averaged behavior. While we assumed spatial homogeneity, we

differentiated between cytosolic and membrane localized pro-

cesses. We used mass-action kinetics to describe the rate of each

molecular interaction. Thus, the 384 kinetic model parameters

were mainly association, dissociation or catalytic rate constants.

With one exception, model parameters were estimated and

validated using LNCaP training data taken from literature

sources (Table S2). However, we were unable to estimate unique

model parameters. Instead, we estimated a family or ensemble of

parameters that was consistent with the training data. The

ensemble allowed us to estimate the model uncertainty associated

with the many poorly characterized parameters. We analyzed the

model ensemble to better understand which architectural features

were important in androgen dependent versus independence

cells.

Estimating the Ensemble of Prostate Model Parameters
Signal transduction models often exhibit complex behavior [45–

48]. It is often not possible to identify model parameters, even with

extensive training data [49]. Thus, despite identification standards

[50] and the integration of model identification with experimental

design [51], parameter estimation remains challenging. In this

study, an ensemble of plausible model parameters was estimated

from AI and AD LNCaP sub-clones. Ensemble approaches have

successfully addressed uncertainty in systems biology and other

fields like weather prediction [40,52–55]. Their central value is the

ability to constrain model predictions despite uncertainty. For

example, Sethna and coworkers showed in a model of growth

factor signaling that predictions were possible using ensembles

despite incomplete parameter information (sometimes only order

of magnitude estimates) [46]. They further showed that model

ensembles were predictive using many different mathematical

models [56].

The 420 unknown model parameters (384 kinetic constants and

36 non-zero initial conditions) were estimated using 14 time-series

and steady-state training sets taken from literature sources (Table

S2). The parameter identification procedure used a maximum

likelihood random-walk strategy with a correlation constraint to

identify a diverse family of likely parameter sets (Fig. 2C). We

generated 3210 possible parameter sets and selected 107 of these

for inclusion in the final ensemble. The selection was made to

minimize the correlation between possible sets (materials and

methods). The majority of parameters had a Coefficient of

Variation (CV) of greater than 100%. Thus, although the model

qualitatively recapitulated the training data, many of the

parameters were poorly constrained (Fig. 2B). However, param-

eters involved with key features such as cyclin-D and PSA

expression were relatively well constrained (CVƒ50%). The low

deviation of these parameters could be attributed to the

abundance of PSA/cyclin D training data. Alternatively, it may

suggest that these mechanisms had a large impact on model

behavior. A single network structure described both Androgen

Simulations of Prostate Cancer
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Dependent (AD) and Androgen Independent (AI) training data

with only two experimentally justified parameter changes. The

parameters controlling the expression rate of cellular PAcP

(cPAcP) and secreted PAcP (sPAcP) were reduced by a factor of

0.01 and 0.5, respectively, for the C-81 and C-51 cell-lines

compared to C-33 (Fig. 2A). The PAcP expression scaling factors

were chosen to correspond with measured steady-state PAcP

expression ratios for the different cell-lines [57]. The kinetic

parameters and non-zero initial conditions for C-33 are given in

Table S1 and Table S3, respectively.

The Ensemble of AI/AD Lncap Models Recapitulated
Androgen Action and the Activity of the Outlaw Pathway

AR can be activated by both hormone dependent and

independent pathways. In this study, we considered both the

traditional hormone dependent and MAPK mediated AR

activation. We selected training data sets to constrain each mode

of AR activation and the subsequent AR-driven gene expression

program. The data of Lee et al., was used to constrain the

relationship between PSA expression and AR activation in AI and

AD cells [14]. Activated AR was modeled as both a transcriptional

Figure 1. Schematic overview of the interaction network used in modeling the androgen response in prostate epithelial cells. The
model architecture was formulated by aggregating molecular modules into a single network (see insert for high level details). The model describes
growth factor and hormone induced expression of cyclin D, PSA and the two forms of PAcP. The complete list of molecular interactions that comprise
the model (along with kinetic parameter values) are given in Table S1.
doi:10.1371/journal.pone.0008864.g001

Simulations of Prostate Cancer
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activator of PSA expression [58] and a transcriptional represser of

PAcP expression [20]. The model recapitulated the qualitative

features of PSA expression at the protein level for C-81 and C-33

(Fig. 3B). Additionally, the basal and increased level of PSA

mRNA following Her2 overexpression in C-33 was also well

described (Fig. 4). The PSA mRNA data was taken from a

separate LNCaP study [18]. The C-33 simulations recapitulated

the observed lower PSA expression (*4 fold) compared to C-81 in

the absence of androgen (Fig. 3B, initial point). Following DHT

stimulation (10nM at t = 1 hr) PSA expression increased for both

clones. However, the increase was more significant for C-33

(Fig. 3B). The study of Meng et al. was used to constrain the

relationship between AR activation and PAcP expression [20].

The addition of DHT to C-33 cells decreased PAcP expression

and increased Her2 phosphorylation (Fig. 3A).

The model recapitulated the positive feedback between Her2

induced MAPK activation and androgen action. Several studies

have demonstrated that MAPK can activate AR in the absence of

hormone stimulation. Activated AR transcriptionally down-

regulates cPAcP expression which in turn increases Her2

activation. Both Her2 dimerization along with the traditional

EGFR-growth factor pathway can activate MAPK, leading to a

positive feedback loop. However, typical growth factor induced

MAPK activation is transient whereas de-regulated Her2 induced

MAPK activation is persistent. The MAPK module in the model

described both activation pathways. Growth factor dependent

MAPK activation was constrained by dynamic measurements of

phosphorylated ERK (ERKpp) levels following stimulation of

EGFR with 8nM EGF (Fig. 5D). The EGF induced ERKpp data

was taken from HeLa cells [30]. However, we expect transient

EGF-induced MAPK activation in LNCaP cells will be qualita-

tively similar to HeLa given the conserved nature of mitogenic

signaling. We constrained Her2 induced MAPK activation using

cyclin D protein expression data in C-33 and C-81 cells without

androgen following PAcP expression (Fig. 5C). Cyclin D

expression was coupled to ERK through the ETS and AP1

transcription factors, both of which activate cyclin D expression

[59]. Her2 induced MAPK activation led to a persistent ETSp

signal compared to ETS activation following EGFR-induced

MAPK activation (Fig. 5D, inset). Nominally, C-33 cells have

lower cyclin D expression compared to C-81 (Fig. 5C, lane 1 and

4). The difference in cyclin D expression between C-33 and C-81

cells was qualitatively consistent with increased C-81 proliferation

[13]. While the expression of cPAcP in C-81 reduced cyclin D

levels (Fig. 5C, lane 2), sPAcP expression resulted in no change

(Fig. 5C, lane 3). Furthermore, the model predicted a dose

Figure 2. Identification and properties of the prostate model ensemble. A: Steady state PSA level as a function of cPAcP and sPAcP
expression. The circles represent the values used to model the C-51 and C-81 LNCaP clones. All values are relative to C-33. B: Coefficient of Variation
(CV; standard deviation of a parameter relative to its mean value) for the parameter ensemble used in this study. A small CV suggested a parameter
was tightly constrained by the training data used for model identification. The parameters with the three smallest CVs are listed. C: Parameter
identification strategy. Multiple monte-carlo trajectories were used to randomly explore parameter space. The simulation error and the correlation
between parameter sets was used to generate the family of parameter sets used in the simulation study.
doi:10.1371/journal.pone.0008864.g002
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dependent increase in C-33 cyclin D levels 24 hours after addition

of DHT (Fig. 6A). Although the cyclin D increase is only notable

in response to high levels of DHT (10 or 100nM) the prediction is

qualitatively consistent with experimental data not included in the

ensemble calculations [60].

To further constrain the relationship between MAPK, Her2

and AR activation, we used the Her2 perturbation study of Lee et

al. [14] in the ensemble calculations. Because the perturbation

magnitudes were not reported, we assumed +50% for all changes.

Where possible, this assumption was validated by analyzing the

corresponding Western blots using the GelEval software package

(v1.22, Frog Dance Software). The +50% perturbation magni-

tude was approximately consistent with the published blots. A 50%

increase in Her2 led to an approximately 50% increase in PSA

expression in C-33 without androgen (Fig. 5A, lanes 1 and 3).

While a 50% decrease in Her2 in C-81 led to a similar decrease in

PSA secretion (Fig. 5B, lanes 1 and 2). Further disruption of Her2

effectively blocked PSA expression in C-81 without androgen

(Fig. 5B, lane 3). A 50% reduction of MEK, one of the three

primary protein kinases in MAPK, resulted in reduced PSA

expression in C-81 (Fig. 5B, lane 4). While a 50% increase of

MEK in C-33 increased PSA expression by 5-fold (Fig. 5A, lane 2).

The combination of MEK inhibition and Her2 activation (50%

increase in Her2 and a 50% decrease in MEK) decreased PSA

expression in C-33 (Fig. 5A, lane 4). Furthermore, the model

predicted an increase in C-33 PSA levels 72 hours after a 2nM

addition of the androgen testosterone. Simulations performed with

10% of the AR initial condition predicted an approximate 50%

decrease in testosterone stimulated PSA (Fig. 6B). The reduced

PSA levels are consistent with reported experimental data on AR

antisense knock-downs in androgen dependent LNCaP cells [61].

This data was not included in the ensemble calculations. Taken

together, the model replicated qualitative features of the

relationship between MAPK, AR activation and androgen action.

In addition, the qualitative agreement between model and

experiments for PSA and cyclin D expression suggested that the

transcription and translation subsystem models were operating

correctly.

Sensitivity and Robustness Analysis Revealed Key
Subsystems in AI and AD Cells

Sensitivity analysis identified interactions important in C-33, C-

51 and C-81 cells (Fig. 7 and Table S4). We calculated overall

State Sensitivity Coefficients (OSSCs) for the three LNCaP clones

over the parameter ensemble (materials and methods). The OSSC

values were ranked-ordered based on their absolute magnitude.

The dissociation of AR from Heat Shock Proteins (HSP),

components of the Akt signaling axis and MAPK activation were

important (top 2% of sensitive interactions) irrespective of

androgen status. Sequestered AR was unable to become activated

by androgens or MAPK. Thus, increased AR-HSP dissociation

promoted increased AR activation and AR-driven gene expres-

sion. Several components of the MAPK cascade were also

important including Ras binding to GAP and Raf, and the

dephosphorylation of ERK. The sensitivity of MAPK was not

unexpected. ERK was critical to outlaw activation of AR.

Moreover, ERK activation was modeled as being Ras dependent.

Figure 3. Simulation results for the addition of 10nm DHT at
1 hour to C-33 and C-81 LNCaP clones. A: Her2 phosphoralation
(circles) and cPAcP expression (squares) for C-33 cells following the
addition of DHT. Experimental data reproduced from Meng et al. [20]. B:
PSA expression following the addition of DHT to C-81 (squares) and C-
33 (circles) LNCaP clones. Experimental data reproduced from Lee et al.
[14]. The shaded region in each plot denotes one standard deviation
centered about the ensemble mean (line).
doi:10.1371/journal.pone.0008864.g003

Figure 4. Simulated PSA mRNA levels in C-33 cells with and
without Her2 overexpression. Her2 overexpression was modeled as
a 50% increase in the expression rate of Her2. Bars denote the mean
PSA mRNA level over the parameter ensemble while error bars denote
one ensemble standard deviation. The experimental PSA mRNA data
was adapted (replotted) from [18].
doi:10.1371/journal.pone.0008864.g004

Simulations of Prostate Cancer
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Figure 5. Simulation results for key species under androgen free conditions. A: Effect of HER2 and MEK overexpression on LNCaP C-33
steady state PSA levels. The inhibition of MEK blocks the effect HER2 overexpression. Experimental data adapted from Lee et al. [14]. B: Effect of HER2
and MEK inhibition on LNCaP C-33 steady state PSA levels. The inhibition of either HER2 or MEK blocks high AIPC PSA levels. Experimental data
adapted from Lee et al. [14]. C: Effect of PAcP isoforms on LNCaP steady state cyclin D levels. Experimental data adapted from Lingappa and
coworkers (Prosetta Corporation, unpublished data). D: Transient activation of ERK via ligand dependent EGF signaling (8nM EGF at t = 60s) in HeLa
cells. The HeLa data was reproduced from [30]. Inset: Simulated phosphorylated ETS (ETSp) levels following the addition of 8nM EGF in the presence
and absence of Her2. Her2 activation drives a sustained MAPK signal which in turns sustained ETS activation. The shaded region denotes one
standard deviation centered about the ensemble mean (line).
doi:10.1371/journal.pone.0008864.g005

Figure 6. Independent model predictions versus experimental observations. A Ensemble prediction of cyclin D expression following the
addition of DHT at 1 hour to C-33 clones. The ensemble predicted a dose dependent increase of cyclin D at 24 hours after DHT addition.
Experimental data was adapted from Barnes-Ellerbe et al. [60]. B Predicted effect of an AR knockdown on PSA expression following the addition of
androgen at 1 hour to C-33 wild-type and C-33 AR knock-down clones. The ensemble predicted an approximate 50% decrease in androgen
stimulated PSA expression due to AR knock-down 72 hours after treatment. Experimental data was reported by Eder et al. [61]. The error bar denotes
one standard deviation centered about the ensemble mean.
doi:10.1371/journal.pone.0008864.g006

Simulations of Prostate Cancer
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We also found the Akt signaling axis to have components in the

top 2% of sensitive interactions irrespective of androgen status. For

example, the formation of PIP3, an early step in the PI3K/Akt

signaling axis regulated by PTEN, was found to be highly sensitive

in all clones. Looking beyond the upper 2% of sensitive

interactions, additional common mechanisms were identified.

These included AR interactions with DHT, recruitment of adapter

molecules by Her2, activation of ERK by MEKpp and additional

regulation of PIP3 formation by PTEN.

Translation interactions became more fragile while transcrip-

tion became more robust with increasing androgen indepen-

dence. Her2 auto-activation and Her2 cPAcP interactions were

also increasingly important with increasing androgen indepen-

dence. The difference in the importance of interactions in AI

versus AD LNCaP clones was estimated by computing shifts in

the sensitivity rankings (Table S5). In addition to considering C-

33 and C-81, we analyzed a third clone, C-51, which was

moderately androgen dependent. There were 117 statistically

significant shifts (52 more and 65 less sensitive) between the C-81

and C-33 clones. However, only 14 shifts were larger than one

standard above the mean shift. Of the 14 large shifts, 50%

involved PSA and PAcP translation while the remainder were

associated with Her2 and cPAcP. Conversely, PSA transcription

became more robust with increasing androgen independence.

Similarly, when comparing C-33 to C-51, PSA translation and

Her2 activity became more sensitive with increasing androgen

independence. Inspection of the importance of the final step in

PSA transcription and translation among the individual models in

the ensemble showed a shift away from transcription (Fig. 7C)

toward translation (Fig. 7D) across the population of models. The

increasing importance of translation was not limited to PSA,

although PSA was the most significant example. Globally, 16 of

the 52 interactions that were more sensitive in C-81 involved

translation while only 4 of 52 involved transcription. No

translation mechanisms became more robust in C-81 compared

to C-33. Similar to PSA, translation of other key proteins such as

cPAcP became more sensitive in C-81 versus C-33. Of the

statistically significant shifts, 7/9 of the cPAcP translation

interactions were more sensitive in C-81. Additionally, both

mechanisms for the phosphorylation of 4E-BP1 by TOR kinase, a

key step in translation initiation that liberates eIF4E, were also

more importance in C-81. Taken together, the sensitivity analysis

suggested that the fragility of the translational subsystem directly

correlated to androgen independence.

Figure 7. Sensitivity analysis of the model parameters. A: Comparison of the mean OSSC parameter ranks for the C-33 and C-81 LNCaP
models. Large ranks indicate fragility. Points left of the 45o line are more important in C-33, while shifts to the right show increased importance in C-
81. Points are organized by biological function. B: Comparison of the mean OSSC parameter ranks for translation mechanisms (including the role of
Akt signaling in translation initiation) in C-33 versus C-81 LNCaP clones. The error bars indicate one standard deviation centered about the mean
ensemble value. C: The final mechanism in PSA transcription becomes increasingly more robust w.r.t cancer aggressiveness, as indicated by a
significant reduction in mean OSSC Rank. D: The final mechanism in PSA translation (translation termination) was increasingly fragile w.r.t cancer
aggressiveness, as indicated by a significant increase in mean OSSC rank. The results indicate a shift in the bottle neck for generation of PSA from
transcription to translation as prostate cancer cells lose their androgen dependence. The top and bottom of each box denote the 25th and 75th
percentile of the OSSC rank over the parameter ensemble. The center line denotes the median value. Whiskers show the furthest observations and
black crosses indicate outliers.
doi:10.1371/journal.pone.0008864.g007
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To quantify the effects of perturbing key species in C-81

clones we preformed robustness analysis on four functional

protein markers. The initial conditions of seven key protein

species were altered by a factor of 10, .1 or 0 for knock-in,

knock-down or knock-out perturbations, respectively. We then

calculated the effect of these perturbation on cyclin D and PSA

expression levels along with ERK and AR activation levels.

Perturbation of Raf, MEK or ERK had similar effects on the

functional markers with ERK being the most notable (Fig. 8,

lanes 1, 2 and 3). Trivially, ERK perturbations directly effected

ERK activation levels. However, more importantly, ERK

perturbations greatly effected cyclin D expression levels. ERK

knock-ins approximately doubled cyclin D while ERK knock-

outs reduced cyclin D to less then one third of wild-type levels.

The functional markers were robust to perturbations in AKT

and TOR with differing effects on ERK activity and slight

decreases in expression levels upon AKT or TOR knock-out

(Fig. 8, lanes 4 and 5). Furthermore, the translation initiation

factor eIF4E demonstrated a limiting reagent behavior in the

expression of both cyclin D and PSA while perturbations in 4E-

BP1 had little effect (Fig 8, lanes 6 and 7). However, the 4E-

BP1 results could be an artifact of artificially high background

levels of eIF4E as no direct eIF4E measurements were included

in the training data. Knock-in simulations of eIF4E demon-

strated an 8.7 and 5.2 fold increase in cyclin D and PSA

expression. Reduction of eIF4E resulted in a 89% loss of

expression and, full knock-out simulations predicted a complete

loss of cyclin D and PSA.

The MAPK and Akt Pathways Synergistically Activated
Cyclin D Expression

Complex systems composed of interacting subsystems can

display emergent properties that are not explained by the

individual subsystems alone [62]. In cancer biology, it is

common to speak of signal transduction pathways as if they

were isolated. In reality, these components are highly intercon-

nected and can interact in a variety of ways sometimes leading

to unpredictable behavior. In this study, we explored whether

the MAPK and Akt signaling axes synergistically activated the

expression of cyclin D. We compared the steady-state cyclin D

expression in Akt and ERK knock-outs with wild-type C-81 cells

in the absence of androgens. At steady-state, the MAPK and Akt

pathways synergistically (DcycDw0) activated cyclin D expres-

sion in C-81 cells without androgen (Fig. 9A). Thus, steady-state

cyclin D expression was greater in wild-type cells (Aktz-ERKz)

than the linear combination of cyclin D expression in Akt{-

EKTz and Aktz-ERK{ cells. The above-additive (superlinear)

cyclin D expression was statistically significant within a 95%

confidence interval. However, the relatively large standard

deviation suggested that cyclin D expression varied widely

across the ensemble. To address this, we inspected every model

in the ensemble and found that each predicted an above-

additive increase in cyclin D expression (data not shown).

Superlinear cyclin D expression may be the result of positive

synergy between the MAPK and translation subsystems. To

elucidate the underlying mechanisms responsible for synergy we

expanded the analysis to include all modeled species (both

proteins and protein complexes) and rates. Many functional

network subunits demonstrated no statistically significant

deviations from additive behavior (Fig. 9C, grey). However,

22 species (79 interactions) were negatively coupled to Akt/

ERK (Djv0; Fig. 9B, red) while 14 species (37 interactions) had

a positive synergy (Djw0; Fig. 9B, green). Synergy between the

MAPK and Akt signaling subsystems negatively effected

transcription factor activation. Phosphorylated ERK (ERKpp)

activated AR (pAR), and the transcription factors AP1 and ETS

all showed a below additive response (Fig. 9B). Conversely,

positive synergy was almost exclusively limited to translation

interactions. The binding of eIF4E, 40S and 60S ribosomes to

form the mRNA initiation complex, elongation and termination

steps all had positive synergy with ERK/Akt knockdowns

(Fig. 9B).

Figure 8. Robustness analysis of functional protein markers. The expression level of seven key proteins was altered by a factor of 10, .1 or 0
(knock-in, knock-down or knock-out) and robustness coefficients (area under the curve for the perturbed versus wild-type simulation) were calculated
for cyclin D and PSA expression levels along with ERK and AR activation levels. Simulations were run for C-81, with the indicated perturbation, to
approximate steady-state and 10nM of DHT was added for 72 hours. Ensemble mean values are reported.
doi:10.1371/journal.pone.0008864.g008
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Discussion

A critical milestone in prostate cancer progression is the onset of

androgen independence. In this study, we formulated and

analyzed an ensemble of mathematical models of the androgen

response of AI and AD LNCaP prostate cancer epithelial cells.

The model ensemble was identified using 14 different steady-state

and dynamic data sets taken from literature. With the exception of

one study, all the training data was generated in LNCaP cell-lines.

We estimated which molecular subsystems were important in AI

versus AD cells using sensitivity analysis. For example, the

assembly and regulation of Her2 adapter complexes and the

regulation of ERK were sensitive irrespective of androgen status.

The dissociation of AR from HSP was also in the top 2% of

sensitive interactions for both C-33 and C-81. On the surface, the

importance of AR in C-81 was surprising as the proliferation of C-

Figure 9. Synergy analysis between the ERK and Akt signaling axes in LNCaP C-81 cells. The double ERK and Akt knock-out was
used as the control. A: The difference in steady state cyclin D expression (compared to the control) with the knock-in of Akt (left), ERK (center) and
both (right). The predicted cyclin D levels were normalized by the basil C-81 steady state cyclin D level in each case. The error bars denote one
standard deviation centered about the ensemble mean. The region denoted by the asterisks represents above-additive cyclin D expression. B:
Species and interactions that demonstrated a positive (negative) synergy are shown as green (red) in the connectivity diagram. Species or
interactions not effected are shown in grey. C: The full connectivity diagram qualitatively clustered in functional groups. Positive (negative) synergy
are shown in green (red) in the connectivity diagram. Species or interactions not effected are shown in grey.
doi:10.1371/journal.pone.0008864.g009
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81 is androgen independent. However, AR can be activated

independently of androgen, thus, the presence of androgen is not

required for androgen action [15,63]. The differentiating factor

between the AI and AD models described here was the expression

rate of PAcP conformers. We demonstrated the ability of

decreased PAcP expression to describe the PSA levels of

increasingly androgen independent sub-lines. Moreover, interac-

tions involving Her2 auto-phopshporylation, cPAcP availability

and cPAcP phosphatase activity were significantly more fragile in

C-81 versus C-33. These results suggest that the regulation of the

phosphorylation state of Her2 by cPAcP may be a critical

interaction controlling androgen action in the absence of hormone

signals. Experimentally this has been demonstrated as forced

expression of PAcP is sufficient to suppress C-81 xenograft tumor

growth [64].

Model analysis suggested that translation interactions were more

fragile and transcription more robust in AI versus AD cells.

Globally, 16 of the 52 interactions that were more sensitive in C-81

involved translation while only 4 of 52 involved transcription.

Moreover, no translation mechanisms became more robust in AI

versus AD cells. The importance of translation in more aggressive

cancers (increasing androgen independence) may be due, in-part, to

synergies between the Akt and MAPK pathways. Simulations of

ERK and/or Akt knockouts showed an above-additive response

almost exclusively limited to translation upon the simultaneous

reinstitution of Akt and ERK. In-vivo studies of AIPC have

demonstrated positive synergies between the MAPK and Akt

pathways. Gao et al. observed above-additive tumor growth rates in

castrated and mock nude male mice upon the forced expression of

constitutively active Akt and B-RafV600E [65]. These experiments

suggest that cell proliferation may be regulated by a complex

integration of the MAPK and Akt signaling axes. Our robustness

analysis suggested that independent perturbations in TOR and

AKT may have little or no effect on AIPC. However, we observed

the possibility of an inverse relationship between TOR and ERK

activation. This suggests that if TOR or Akt were to be

independently targeted, AKT might be a more suitable therapeutic

target. Additionally, we observed that perturbations in Raf, MEK

and ERK had a similar effect on cyclin D but not PSA expression,

with ERK being more pronounced. Current therapeutics such as

trastuzumab or gefitinib, which target either Her2 or EGFR

respectively, have had little efficacy against hormone-refractory

prostate cancers [66,67]. Our results suggest that a possible factor in

their lack of effectiveness is that they fail to address synergy between

growth factor signaling, MAPK activation and the Akt signaling

axes. Our analysis also demonstrated that translation mechanisms

were generally more sensitive in increasingly androgen independent

models. The translation results suggest that the direct targeting of

the translation machinery may be useful for the treatment of AIPC.

Our robustness analysis identified eIF4E as a limiting reagent in the

expression of both cyclin D and PSA in C-81 clones. Soni et al.

demonstrated the effectiveness of directly targeting eIF4E in breast

cancer. Down-regulation of eIF4E resulted in decreased cyclin D

expression and decreased growth rate without the deleterious effect

of inhibitors such as rapamycin which act further upstream [68].

Previous modeling studies from our laboratory have also demon-

strated the importance of translation beyond cyclin D [69].

However, the current model has only a basic description of

translation initiation. Moreover, translation parameters were only

indirectly trained from the PSA mRNA and protein data. Thus,

while the initial robustness and sensitivity results are encouraging

more studies are needed.

Analysis of the ensemble of AI models suggested the Akt and

MAPK pathways synergistically enhanced cyclin D expression by

up-regulating translation. Cyclin D is expressed early in the cell

cycle and a point of convergence in the proliferative action of

multiple receptors [70]. Many studies have identified a direct

correlation between cyclin D regulation and prostate cancer, as

well as breast and non-small cell lung cancer [71–73]. Balk et al.

demonstrated that increased cyclin D expression in PTEN{={

LNCaP cells following DHT addition was largely because of

increased translation [74]. PTEN loss and presumably the

activation of Akt has been implicated with increased translation

and the resistance to therapeutics which target Her2 and EGFR

[75,76]. However, the underlying mechanism responsible for the

increased translation in the Balk et al. study was not solely AKT

dependent. Early translation activation was due to PI3K/Akt

signaling but TOR activation at later time points was Akt

independent. One key difference between the modeling and the

Balk et al. study was the binding of activated AR with the

regulatory subunit of PI3K. This interaction, which was not

included in the model, was at least partially responsible for TOR

activation and the eventual liberation of eIF4E. In addition to

direct AR binding, PI3K (and subsequently TOR) can be

activated through receptor adaptor complexes such as those

associated with Her2. In the model, PI3K was activated by

androgen (in the absence of growth factor) because of the down-

regulation of cPAcP expression by activated AR. Upregulated

PI3K then drove Akt dependent activation of TOR which led to

enhanced liberation of eIF4E from 4E-BP1. Thus, while the

initiating events driving TOR activation were different, the

subsequent up-regulation of cyclin D translation was similar. This

suggests that the model prediction of a complex synergy between

interacting signaling axes may be valid. It also suggests a falsifiable

hypothesis that cPAcP could be critical to enhanced translation

following androgen stimulation.

The role of mechanistic mathematical modeling in drug design

remains unclear. A common criticism of such techniques has been

the poorly characterized effect of model uncertainty. Model

uncertainty has two forms. Structural uncertainty is defined as

uncertainty in the biology, while parametric uncertainty is defined

as incomplete knowledge of parameter values. In this study,

parametric uncertainty was minimized by considering a family of

consistent models instead of a single best-fit but uncertain model.

While model ensembles often poorly constrain individual param-

eter values, they may robustly constrain model predictions [56].

Structural uncertainty was addressed by considering only

molecular interactions supported by experimental evidence.

However, the current model contained some abstracted pathways

and should be expanded to include additional biology. For

example, the analysis highlighted the importance of translation.

However, the current model contains a limited description of

initiation factor activation and the assembly of the 80S initiation

complex. A more detailed translation interaction network could

further refine which translation components were important in AI

versus AD cells. Another example is the mechanism by which AR

transcriptionally regulates the expression of target genes. In the

current model we ignored the role of transcriptional co-regulators

and assumed activated AR functioned alone. While this is a

reasonable first approximation, well known co-repressors and

activators [77] such as ARA70 [78] should be included. The

regulation and activity of these co-regulators may be different in

AI versus AD cells and could enhance the list of differentially

important targets. Additionally, a nuclear compartment and

enhanced cell cycle and cell death subnetworks should be added

to the model. These additional networks could be critical to

understanding cell proliferation and survival effects in AI versus

AD cells. For example, androgen and AR are known to regulate
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several components of the G1-phase of the cell cycle in prostate

cells, not just cyclin D [79]. Moreover, the model describes the

activation of Akt in the context of translation initiation, but not its

well know survival functions [80,81]. Lastly, given the importance

of EGFR and Her2 induced MAPK activation in the current study

and the therapeutic emphasis on receptor inhibition we plan to

include a more complete receptor signaling network. Other

receptors, IGFR and IL-6R have also been implicated in prostate

cancer [82–84]. Understanding the signaling associated with these

receptors and their downstream targets should be considered and

will provide a better representation of how intra- extra-cellular

communication drives cell fate decisions. Furthermore, the

application of advanced sampling techniques may allow for a

more exhaustive investigation of parameter space. For example,

multi-objective optimization ensemble techniques could be used to

balance conflicts in the training data [40]. Additionally, under-

standing the topological details of the cost function in an extended

parameter space could provide statistical information on kinetic

rates and initial conditions. Other techniques, for example the

calculation of the mutual information matrix, could also provide

insight into correlations between model interactions. Also,

computation of second order sensitivity coefficients would allow

the identification of possible synergies in the model. Thus, we

expect that deeper insight could be generated by extending the

network structure and through the application of advanced model

analysis tools.

Materials and Methods

Formulation and Solution of the Model Equations
The prostate model was formulated as a set of coupled Ordinary

Differential Equations (ODEs):

dx

dt
~S:r x,kð Þ x toð Þ~xo ð1Þ

The symbol S denotes the stoichiometric matrix (212|384). The

quantity x denotes the species concentration (212|1). The term

r x,pð Þ denotes the vector of reaction rates (384|1). Each row in S
described a species while each column described the stoichiometry

of network interactions. Thus, the (i,j) element of S, denoted by

sij , described how protein i was involved in rate j. If sijv0, then

protein i was consumed in rj . Conversely, if sijw0, protein i was

produced by rj . Lastly, if sij~0, protein i was not involved in rate

j.

We assumed mass-action kinetics for each interaction in the

network. The rate expression for protein-protein interaction or

catalytic reaction q:

X
j[ Rqf g

sjqxj?
X

p[ Pqf g
spqxp ð2Þ

was given by:

rq x,kq

� �
~kq P

j[ Rqf g
x

{sjq

j ð3Þ

The set Rq

� �
denotes reactants for reaction q. The quantity

Pq

� �
denotes the set of products for reaction q. The kq term

denotes the rate constant governing the qth interaction. Lastly,

sjq,spq denote stoichiometric coefficients (elements of the matrix

S). We treated every interaction in the model as non-negative. All

reversible interactions were split into two irreversible steps. The

mass-action formulation, while expanding the dimension of the

prostate model, regularized the mathematical structure. The

regular structure allowed automatic generation of the model

equations. In addition, an analytical Jacobian (A) and matrix of

partial derivatives of the mass balances with respect to the model

parameters (B) were also generated. Mass-action kinetics also

regularized the model parameters. Unknown model parameters

were one of only three types, association, dissociation or catalytic

rate constants. Thus, although mass-action kinetics increased the

number of parameters and species, they reduced the complexity

of model analysis. In this study, we did not consider intracellular

concentration gradients. However, we accounted for membrane

and cytosolic proteins by explicitly incorporating separate

membrane and cytosolic protein species. We did not consider a

separate nuclear compartment.

Simulation Protocol
An approximate steady-state was used as the starting point (t~0

hr) for all simulations presented in this study. For example, when

calculating the response of LNCaP to the addition of DHT, we

first ran the model to steady-state and then simulated the addition

of DHT. Although no individual cell is likely to be at steady-state

we assumed that steady-state was a reasonable approximation of

the population average behavior of LNCaP cells growing in the

exponential phase. The steady-state was estimated numerically by

repeatedly solving the model equations and estimating the

difference between two subsequent time points:

Ex tzDtð Þ{x tð ÞE2ƒe ð4Þ

The quantities x tð Þ and x tzDtð Þ denote the simulated concen-

tration vector at time t and tzDt, respectively. The quantity E:E2

denotes the L2 vector norm. In this study, we used Dt~50 hrs of

simulated time and e = 0.01 for all simulations.

Estimation of the Prostate Model Parameter Ensemble
An initial set of model parameters, denoted by p0, was chosen

by hand to replicate the training data. The training data consisted

of 14 time-series and steady-state data sets taken from literature

sources (Table S2). The initial parameter guess p0 was used to

generate an ensemble of parameters that maximized the likelihood

of describing the training data. The difference between the

measured and simulated value of species j at time or condition i,
denoted by x̂xi,j and x(pk)i,j respectively, was quantified by the

normalized mean squared error, g:

g pkð Þ~
1

N

X
i,j

(x̂xi,j{bjx pkð Þi,j)
2

ŝs2
i,j

, ð5Þ

where the sum was carried out over all species j and observations i.
The quantities N and ŝsi,j denote the total number of observations

and the measurement standard deviation of species j at time or

condition i, respectively. If no experimental error was reported, we

assumed a standard deviation equal to 10% of the reported

observation. In cases where the quantification of the stimulus or

observation was unclear an augmented error of 20%–100% was

applied to compensate for the added uncertainty. bj is a scaling

factor which is required when considering experimental data that

is accurate only to a multiplicative constant (assumed here to be

the case form immunobloting analysis). The scaling factor was

chosen to minimize the normalized squared error between a given
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experiment and species j [54]:

bj~

P
i

(x̂xi,jxi,j=ŝs2
i,j)P

i

(xi,j=ŝsi,j)
2
: ð6Þ

Because of the scaling factor, the concentration units on simulation

results were arbitrary (consistent with the arbitrary units on the

majority of the training data). All simulation outputs reported in

this study were scaled by the corresponding bj . There was

insufficient training data to properly constrain the 420 model

parameters. To account for parametric uncertainty, a monte-carlo

approach similar to Battogtokh et al. [52] was used to generate an

ensemble of parameters. Consider a set of model parameters pi.

Let the likelihood that model simulations with parameters pi

describe the training data be defined as:

w(pi):expf{g(pi)

a
g, ð7Þ

where g(pi) denotes the simulation error associated with parameter

set pi. The quantity a is a parameter used to tune the rate of

acceptance. Further let the acceptance probability, P(p
0

iz1jpi), of

a new parameter set, p
0

iz1, be
w(p

0

iz1)

w(pi)
if w(p

0

iz1)vw(pi) and 1

otherwise. P denotes the probability that p
0

iz1 will be accepted as

pi for consecutive monte-carlo steps. Parameter sets were generated

by applying a small additive random perturbation in log space:

log p
0

iz1~ log pizN 0,nð Þ ð8Þ

where N 0,nð Þ is a normally distributed random number with zero

mean and variance n. The perturbation was applied in log space to

account for the large variation in parameter scales and to ensure

positivity. Monte-carlo trajectories were generated starting from p0

where n~0.05 or 0.1 and a~1 or 0.5. The autocorrelation function

of each trajectory was calculated. The number of monte-carlo steps

between parameter sets which were added to the ensemble was

taken to be the number of steps after which the autocorrelation

function dropped to 5% of its initial value. This was done to ensure

independence between sets in the ensemble. To compensate for

noise in the autocorrelation function an exponential fit was applied.

The final ensemble contained 107 parameter sets, which produced

an ensemble g of 5.25.

Sensitivity Analysis of the Prostate Network
Overall State Sensitivity Coefficients (OSSC) were used to

estimate which structural elements of the prostate network were

sensitive [35]. OSSC values were determined by first calculating

the first-order sensitivity coefficients at time tk:

sij tkð Þ~
Lxi

Lpj

����
tk

ð9Þ

First-order sensitivity coefficients were computed by solving the

matrix differential equation:

dsj

dt
~A tð Þsjzbj tð Þ j~1,2, . . . ,P ð10Þ

subject to the initial condition sj(t0)~0. In Eqn. 10, j denotes the

parameter index, P denotes the number of parameters in the

model, A denotes the Jacobian matrix, and bj denotes the jth

column of the matrix of first-derivatives of the mass balances with

respect to the parameter values (denoted by B). An analytical

Jacobian and matrix of first-derivatives of the mass balances w.r.t

the parameters:

A~
Lfx

Lx

����
(x�,p�)

B~
Lfx

Lp

����
(x�,p�)

ð11Þ

were generated from the model equations. The quantity

fx~S:r x,pð Þ and x�,p�ð Þ denotes a point along the unperturbed

model solution. The sensitivity equations required that we solve

the model equations to evaluate the A and B matrices. Thus, we

formulated the sensitivity problem as an extended kinetic-

sensitivity system of equations [85]:

_xx

_ssj

� �
~

S:r x,pð Þ
A tð Þsjzbj tð Þ

� 	
j~1,2, . . . ,P ð12Þ

where _xx~dx=dt and _ssj~dsj=dt. We solved the kinetic-sensitivity

system for multiple parameters in a single calculation using the

LSODE routine of OCTAVE (www.octave.org). The first-order

sensitivity coefficients were then used to calculate the OSSC value

for parameter j:

Oj tð Þ~ pj

Ns

XNT

k~1

XNs

i~1

1

xi

Lxi

Lpj

����
tk

" #2
0
@

1
A

1=2

ð13Þ

The terms NT ,Ns denote the number of time points considered

and the state dimension of the model, respectively. To account for

parametric uncertainty, OSSC values were calculated over the

parameter ensemble. Parameters were ranked-ordered (1ƒhjƒ384)

based upon the magnitude of the OSSC value. Large values of hj

indicated fragile or important interactions in the prostate network

architecture. Conversely, small values of hj indicated robustness.

Each model in the ensemble was run to approximately steady

state. At steady-state, 10nM DHT was added and the first order

sensitivity coefficients were calculated for 100 seconds of simulated

time. OSSC values were then calculated and the rank ordering

determined. We collected interactions whose rank was at least one

standard deviation above the mean rank calculated over all

parameters. Highly ranked interactions were statistically signifi-

cantly different between LNCaP clones if the null hypothesis could

be rejected with 95% confidence via a t-test. To estimate

significance, we performed a two variable unequal variance

double tail t-test using the MATLAB (R) statistical toolbox (2007a,

The Mathworks, Natick, MA).

Robustness Analysis of Functional Protein Markers
Robustness coefficients of the form:

a i,j,to,tf

� �
~

ðtf

to

xi tð Þdt

� �{1 ðtf

to

x
(j)
i tð Þdt

� �
ð14Þ

were calculated to understand the regulatory connectedness of

functional protein markers in the LNCaP network. The robustness

coefficient a i,j,to,tf

� �
is the ratio of the integrated concentration of

a network output in the presence (numerator) and absence

(denominator) of structural or operational perturbation. Here t0

and tf denote the initial and final simulation time respectively.
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Simulations were taken of C-81 from approximate steady-state at

t0, 10nM of DHT was added at 1 hour and tf was taken to be

72 hours after DHT addition. The network output was taken to be

the network states. The quantity i denotes the index for a marker

or reference species while j denotes the perturbation index,

respectively. If a i,j,to,tf

� �
w1, then the perturbation increases the

output concentration. Conversely, if a i,j,to,tf

� �
%1 the perturba-

tion decreases the output concentration. Lastly, if a i,j,to,tf

� �
*1 the

perturbation does not influence the output concentration.

Calculation of Steady-State Synergy Coefficients
To understand the connectedness of subsystems in the prostate

network following ERK and/or Akt knockdowns we computed

synergy coefficients of the form:

Dj~
dxj,ErkzAkt{(dxj,Erkzdxj,Akt)

xj,total

ð15Þ

The quantity xj,total denotes the steady-state concentration (flux) of

species (interaction) j in wild-type C-81. The quantity dxj,Erk

(dxj,Akt) denotes the steady-state concentration (flux) of species

(interaction) j in the presence of an Akt (ERK) knock-out minus

the basal value of quantity j. The term dxj,ErkzAkt denotes the

steady-state concentration (flux) of species (interaction) j in wild-

type C-81. If Djw0, the quantity j has a positive synergy with Akt

and ERK. In other words, the steady-state concentration (flux) of

species (interaction) j in the wild-type was greater than the sum of

the individual contributions in single Akt or ERK knock-down-

outs. Conversely, if Djv0, the quantity j has a negative synergy

with Akt and ERK. Lastly, if Dj*0 then there is no connection

between quantity j and the Akt/ERK signaling axes.

Supporting Information

Table S1 Prostate model interactions and parameters for the C-

33, C-51, and C-81 LNCaP clones. The kinetics of binding and

catalytic interactions were assumed to follow mass-action rate laws.

The quantity kon denotes forward rate constants, koff denotes

backward rate constants, and kcat denotes catalytic rate constants.

All binding interactions were assumed to be reversible. The citations

listed were the primary source of information for the corresponding

interaction, and include either the exact interaction (i.e., from

preexisting model) or evidence from which the interaction was

inferred. Unless otherwise specified, concentration units were

arbitrary (A.U) as a result of arbitrary units on training data. Thus,

zero-order rate constants had units of A:Us¡1, first-order rate

constants had units of s¡1, and second-order rate constants had units

of (A:U)¡1s¡1 The mean and standard deviation over the parameter

ensemble are reported for each kinetic parameter. |
|: The expression

of the PAcP isoforms, PSA, and cyclin D was implemented using

the same translation/transcription heuristic, save any specific

transcription factors. ?: Her2 adaptor complex reactions were taken

to be similar those of EGFR (66). y: Inferred from collaboration

with Prosetta Cooperation (http://www.prosetta.com/). z: Inter-

nalized EGFR complexes were assumed to signal identically to

membrane-bound EGFR (30,67).

Found at: doi:10.1371/journal.pone.0008864.s001 (0.07 MB

XLS)

Table S2 Experimental training data used to estimate the

ensemble of prostate model parameters.

Found at: doi:10.1371/journal.pone.0008864.s002 (0.02 MB

PDF)

Table S3 Non-zero initial conditions estimated from the training

data for the C-33 LNCaP clone. The mean (m) and standard

deviation (s) calculated over the ensemble are shown.

Found at: doi:10.1371/journal.pone.0008864.s003 (0.03 MB

PDF)

Table S4 Interactions determined to be significantly fragile for

the C-33, C-51, and C-81 LNCaP clones. Overall state sensitivity

coefficients (OSSCs) were calculated over the parameter ensemble.

The OSSC values were ranked ordered. The mean rank and

standard deviation for interactions with rank greater than at least

one standard deviation above the overall mean rank are reported.

Found at: doi:10.1371/journal.pone.0008864.s004 (0.03 MB

PDF)

Table S5 Statistically significant sensitivity differences between

AI and AD LNCaP clones. Negative changes in the mean rank

denote interactions that were more sensitive in AI versus AD cells.

Found at: doi:10.1371/journal.pone.0008864.s005 (0.02 MB

PDF)
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