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Abstract

Bicuspid Aortic Valve (BAV) is a highly heritable congenital heart defect. The low frequency of BAV (1% of general
population) limits our ability to perform genome-wide association studies. We present the application of four a priori SNP
selection techniques, reducing the multiple-testing penalty by restricting analysis to SNPs relevant to BAV in a genome-wide
SNP dataset from a cohort of 68 BAV probands and 830 control subjects. Two knowledge-based approaches, CANDID and
STRING, were used to systematically identify BAV genes, and their SNPs, from the published literature, microarray expression
studies and a genome scan. We additionally tested Functionally Interpolating SNPs (fitSNPs) present on the array; the fourth
consisted of SNPs selected by Random Forests, a machine learning approach. These approaches reduced the multiple
testing penalty by lowering the fraction of the genome probed to 0.19% of the total, while increasing the likelihood of
studying SNPs within relevant BAV genes and pathways. Three loci were identified by CANDID, STRING, and fitSNPS. A
haplotype within the AXIN1-PDIA2 locus (p-value of 2.926610206) and a haplotype within the Endoglin gene (p-value of
5.881610204) were found to be strongly associated with BAV. The Random Forests approach identified a SNP on
chromosome 3 in association with BAV (p-value 5.061610206). The results presented here support an important role for
genetic variants in BAV and provide support for additional studies in well-powered cohorts. Further, these studies
demonstrate that leveraging existing expression and genomic data in the context of GWAS studies can identify biologically
relevant genes and pathways associated with a congenital heart defect.
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Introduction

The aortic valve, as formed during embryonic heart develop-

ment, is comprised of three cusps divided by three commissures.

Cusp fusion, or the failure of the cusps to separate during heart

development, can produce a valve with two cusps (bicuspid) or one

cusp (unicuspid) [1]. In a bicuspid valve, the two conjoined cusps

form a larger cusp that operates with the remaining, normal cusp

to perform the valve function [2]. While the prevalence of BAV is

approximately one percent of live births (13.7 per 1,000), one third

of the aortic valves replaced are found to be bicuspid at the time of

valve replacement [3]. Thoracic ascending aortic aneurysms

(TAA) are also found in patients with BAV, sometimes even in

pre-teen children.

Consistent with a strong genetic predisposition the heritability

estimates of BAV range from 0.75 to 0.89 [4]. Studies conducted

in 13 families with BAV suggest that BAV and TAA are

independent manifestations of a single underlying gene defect

with incomplete penetrance [5,6]. NOTCH1 mutations have been

found in sporadic cases of BAV [7,8]; however, a consistent role

for NOTCH1 gene variants in BAV has not been found [9].

Despite a high heritability, challenges remain in determining the

genetic cause of BAV. First, few multigenerational pedigrees

contain BAV as an isolated trait to enable gene identification by

traditional approaches. Second, large, well phenotyped BAV

cohorts are not readily available due to the relative rarity of BAV

in the general population. Third, it can be difficult to determine

non-invasively whether a thickened and calcified aortic valve is

bicuspid or tricuspid in adults; direct, surgical inspection is often

required to determine whether a BAV is present, which limits

subject recruitment. Finally, the phenotypic diversity observed

within BAV implies an assortment of developmental pathways

ultimately converging around a single, uniquely identifiable

phenotypic outcome: aortic valve formation and valve disease.

Due to the complexity of the developmental processes that

contribute to heart valve formation and valve disease, candidate

gene approaches are unlikely to identify the genetic determinants

of BAV. The application of a broader form of analysis is needed to

identify the complex genomic contributors to BAV in an unbiased

manner. Traditional genome-wide association study (GWAS)

approaches have identified genes that contribute to common

diseases including coronary artery disease [10,11]. GWAS studies
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have also proven particularly effective in identifying disease-

related genes for highly heritable disorders such as age-dependent

macular degeneration [12]. With the addition of haplotype-based

analyses, a wide spectrum of observed variant frequencies can be

useful with regard to analysis of both common, complex disorders

as well as highly heritable but relatively rare disorders (such as

BAV) [13,14]. While an unbiased approach offers significant

potential for discovery of single, potent, highly penetrant genetic

determinants of BAV, the multiple-testing load inherent to this

approach weakens our ability to detect important associations. To

control for random associations, generated p-values typically must

reach ‘‘genomic’’ levels [15], and adopting such stringent

standards is likely at the expense of weak but biologically plausible

associations, especially in settings with obligate limitations to

sample sizes.

These limitations have led to the development of two primary

strategies for applying gene network-based analysis to genome-

wide SNP datasets. The first, a knowledge-based approach,

leverages existing annotations, public expression data, previously

published associated genes or chromosomal regions, and any other

quantifiable information that has been the output of directed

study. These data are computationally combined into interaction

pathways that extend from the input genes, genomic regions, and

specific protein/protein interactions into the broader pathways

that these elements inhabit [16–18]. Thus, starting from lists of the

most differentially expressed genes within a trait, the multiple gene

partners, alternate transcripts, functionally similar genes, con-

served structural motifs or sequences, and any other quantifiable

aspect of a protein or gene region can be added, allowing for the

construction of a gene network relevant to the underlying disorder

in question. This final list of network genes forms a prioritized list

from which available probes located within these genes (or the

regulatory regions surrounding them) are selected for association

analysis [19]. A related approach, employed by tools such as

Endeavour [20], assumes a robustly defined set of ‘‘known genes’’

that make up a phenotypic signature, usually based on expression

data. Endeavour applies many annotation categories and a text-

based search to find genes with signatures similar to the training

set, returning a rated list of genes for future study that should

inform and extend the ‘‘known’’ training set. While this approach

is quite powerful, it presupposes a well-understood and robustly

described starting point in the form of a training set. The complex

genetic data, much of it poorly understood or contradictory, that

currently describes BAV implies the need for more inclusive initial

approaches that start from the various known genes but extend

from there, including while broadening what is known to also

include what is likely.

The second type of analysis, a machine learning approach,

leverages the ability of multiply partitioned datasets to select a

subset of SNPs within the overall set of available probes most likely

to be informative at defining the phenotype in question [21,22].

Here we describe the application of these two strategies to the

analysis of a genome-wide SNP dataset for BAV. Furthermore, we

characterize the effects of using differing techniques within these

strategies on the outputted association results. Specifically, we

examine STRING[16] and CANDID [17], competing knowledge-

based methods for forming genetic and protein interaction

networks. We also apply two other approaches to forming an ab

initio list of SNPs likely to have high information content: fitSNPs

and Random Forests. FitSNPs are a collection of variants gleaned

from exhaustive searches of public expression data and are highly

likely to be functionally relevant SNPs (but are not associated with

a specific disease or phenotype). Random Forests are included as

an unbiased probeset, selected by perceived information content of

the included SNPs relative to their capability to partition our

dataset relative to trait (e.g. BAV). We hypothesize that collections

of SNPs selected by multiple probe prioritization strategies within

haplotype blocks strongly associated with BAV will help identify

genes relevant to this disorder. The product of these studies offers

a comprehensive analysis of a limited cohort while still respecting

the rules of multiple testing.

Results

BAV Cohort
We collected DNA from 68 probands found to have BAV by

direct visualization at the time of aortic valve replacement or by

echocardiography. The average age of BAV Genetics Study

participants at the time of enrollment was 53 years (range 18 to

85), and the majority of subjects were men (54 of 66).

Echocardiography demonstrated normal aortic valve function in

18 subjects, moderate to severe aortic valve stenosis was detected

in 38 subjects, and three subjects had isolated severe aortic valve

regurgitation. We included six subjects that had coarctation of the

aorta (all repaired) and 19 who had TAA (17 repaired) in our

cohort since the BAV-associated aortic phenotypes are considered

to be independent manifestations of a single underlying gene

defect with incomplete penetrance (5). Genomic DNA from these

individuals was genotyped on the Illumina 370CNV array.

Additionally, genotypes for 823 control individuals were obtained

from Illumina iControlDB [23] and joined seven BAV-negative

familial controls present in our dataset for a total of 830 individuals

in the control cohort. After excluding the copy number probes

(which are not represented in the Illumina-supplied control

population), the dataset included 311,399 probes. The prevalence

of BAV in the general population would suggest that only ,1% of

the control cohort would have a BAV. There was no evidence of

significant population structure in the combined control/experi-

mental group [24].

Sources of Biological Knowledge for Our Initial Analysis
Several sources of information served as the basis for our

network analysis. First, we selected MeSH terms (including

OMIM headings) that characterize BAV and its associated

syndromes. Second, we identified genes differentially expressed

in the aorta of subjects with BAV compared with a normal

tricuspid aortic valve (TAV) from the Gene Expression Omnibus

(GEO) dataset GDS2922.[25] Analysis of these arrays was carried

out by both parametric (limma) and non-parametric (RankProd)

methods. These two approaches predominantly selected different

gene-sets relative to observed expression levels in experimental

(BAV, TAA) versus control (TAV, TAA) patients. Combining the

output from the parametric and non-parametric array analyses

resulted in a collection of 1,552 differentially expressed genes

(limma n = 903, RankProd n = 649) that broadly mirrored

previous findings from the datasets in question but were

necessarily more inclusive. Gene ontology analysis showed a

broad representation from across the functional spectrum with

specific ontologic classes, such as coagulation and inflammatory

response, metabolism, development, and cell communication (see

Table S1). Third, we included the most significantly altered genes

(n = 41) detected in the peripheral blood of patients with TAA

compared with normal individuals (GSE9106).[26] Finally, we

included chromosomal loci linked with BAV by microsatellite-

based study [9,27]. Through our primary analysis of microarray

data and the selection of all published and genomic loci we

constructed a knowledgebase for BAV to serve as a basis for the

construction of an overall BAV-related gene network.

BAV Genetics
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STRING and CANDID Generated Networks and fitSNPs
We combined the multiple sources of biological knowledge,

including the RankProd and limma analyses, to create parallel

interaction networks relevant to BAV using STRING [16] and

CANDID [17] (Figure 1). Table 1 describes the commonalities

and differences of the SNPs selected by these two programs.

STRING took the outputs of the limma and RankProd expression

analyses and created substantially different output networks,

reflecting the nature of the input, with RankProd ultimately

generating a gene list composed of 6,651 prioritized SNPs, and

limma 3,970 SNPs. An additional 694 probes were shared

between methods. CANDID, alternatively, produced highly

similar lists from the same limma and RankProd inputs, ultimately

differing at only 155 out of 13,769 selected SNPs.

Separately, we identified the 8,801 Functionally Interpolating

SNPs (fitSNPs) present on the Illumina 370CNV array. FitSNPs

were derived through extensive analysis of public array datasets

[28]. While not selected relative to specific disease or expression
outcome, fitSNPs represent a set of markers enriched for

functionally relevant variants (e.g. non-synonymous coding region

polymorphisms) from across the genome.

From the 370CNV array, 1532 probes were selected both by

CANDID (12% of all CANDID SNPs) and by STRING (15% of all

STRING SNPs). The fitSNPs overlapped CANDID at 554 probes

(4.4%) and STRING at 543 probes (6.2%). 97 SNPs were selected

by these three approaches (CANDID, STRING and fitSNPs). Full

comparisons between probes selected by CANDID, STRING,

Random Forests, and fitSNPs are shown in Tables 1 and 2.

We considered genes identified by more than one strategy to

have the greatest potential for a role in BAV. To test this

hypothesis we determined the association of each prioritized SNP

for differentiating case (BAV) from control status. When we

compared the top 100 SNPs (by p-value) from each strategy, three

chromosomal regions were selected by all three strategies: AXIN1-

PDIA2, ENG, and BAT2-BAT3.

AXIN1-PDIA2 Haplotype Is Associated with BAV
STRING, CANDID and FitSNPs identified a concentration of

SNPs in chromosome 16p13.3 within a region that includes AXIN1

and PDIA2. AXIN1 was selected by CANDID and STRING

because its expression in aorta from subjects with BAV compared

with TAV was significantly different by limma (adjusted p-value of

3.79610249). Four SNPs selected by all three approaches within this

region (Figure 2) showed associations with BAV that did not surpass

correction for multiple testing (Figures 2 and 3). There was

significant linkage disequilibrium observed in the locus suggesting a

haplotype block structure. Eleven haplotypes derived from nine

AXIN1-PDIA2 region SNPs (Figure 4) were identified in this

region. The observed block structure in our case-control cohort

recapitulates that observed by the relevant European HapMap data

[29]. The TTGGGGTAT haplotype showed the strongest
Figure 1. Schematic Representation of SNP Prioritization. The
311,399 SNPs present on the Illumina CNV370 (representing about
15,000 well annotated genes) are prioritized by three methods. The
‘‘knowledge-based’’ approach involves expression analysis and inclu-
sion of existing annotations, term extension by CANDID or STRING
network-based analysis, and ultimately leading to the output of a gene
list. Probes inside and within regulatory regions of these genes are then
selected for association analysis. Probe results for the STRING arm are
shown as an example: 8,801 SNPs representing approximately 815
prioritized genes. In parallel, SNPs are prioritized by Random Forest
analysis, which recursively partitions the data to reveal SNPs with
highest likelihood of successful association results. Finally, fitSNPs
(derived independently of this study) represented on the CNV370 array
are analyzed for association.
doi:10.1371/journal.pone.0008830.g001

Table 1. Prioritized Probe distribution by category.

Sub-Class CANDID STRING

limma only 94 2960

RankProd only 61 5200

limma/RankProd 12,405 641

Total SNPs 12560 8801

Random Forests 222 180

fitSNPs 554 543

STRING/CANDID 1397 1397

RF and fitSNP categories in italics represent shared probes from those
respective classes; STRING/CANDID row presents STRING probes in common
with CANDID and vice versa.
doi:10.1371/journal.pone.0008830.t001

Table 2. ab initio Probe distribution by category: Categories
in italics represent shared probes from those respective
classes.

Sub-Class fitSNPs Random Forests

Random Forests 123 6322

fitSNPs 8100 123

Prioritized 1097 402

doi:10.1371/journal.pone.0008830.t002
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association with BAV and surpassed the Bonferroni correction for

multiple testing (p-value 2.92661026, OR 3.978). Further narrow-

ing or widening of this window reduced the association of the locus,

strongly implying that variants within this regional block unit are

associated to the BAV phenotype.

Haplotype analysis was unable to discriminate whether the

variants in AXIN1 or PDIA2 were driving the association with BAV

in this gene-rich region. Indeed, SNPs observed within PDIA2 are

in high LD with SNPs in AXIN1 regulatory regions and vice-versa.

However, the three SNPs with the strongest individual association

with BAV are all non-synonymous polymorphisms of PDIA2: -

T286M (rs2685127), -K185E (rs419949) and –Q388R (rs400037);

of these, rs419949 lies outside the most strongly associated

haplotype. These results suggest that the co-occurrence of two of

these three PDIA2 protein-coding changes is associated with

increased odds of BAV. However, as the bulk of the haplotype

resides in AXIN1, a gene in a pathway relevant to heart valve

formation,[30] we cannot exclude a role for a primary genetic

variant located in either PDIA2, AXIN1, or both as contributing to

the observed association with BAV. However, there are currently no

additional known, non-synonymous coding SNPs located within this

region beyond those represented in the collected genotypes.

Endoglin (ENG) Haplotype Is Associated with BAV
SNPs within the gene endoglin (ENG) were prioritized for

analysis by STRING, CANDID, and FitSNPs. ENG was initially

selected for inclusion by RankProd analysis that found differential

expression in aortic aneurismal tissue from patients with BAV

compared with TAV (GDS2922). Haplotype analysis identified one

block including a conservative coding region variant (ENG-T343T,

rs3739817) associated with BAV (p-value 5.88610204, OR 2.79)

(Figure 5). ENG-T343T (rs3739817) appears to be the critical SNP

within the haplotype, as presence of the minor allele at this locus

segregates with BAV across the region. Though the predicted amino

acid change is synonymous (T/T), recent work suggests that even

conservative alterations may yield functionally unique outcomes

[31]. The possibility also exists for a novel, causative variation in

high LD with this haplotype/SNP not present in our analysis; no

known variants of this type are present within the region.

Additional Loci
The BAT2/3 locus is located at chromosome 6, and two

haplotypes in this region are each weakly associated with BAV

(Table S2). However, detailed analysis of this haplotype fails to

show a single, clear association with trait. Similarly, the remaining

repeated-hit loci at MYLK, LEF1, CSF1R, REXO4, CD44,

ZBTB16, and FBNL1, though containing associated SNPs, do not

return a single associated haplotype that spans the region of

interest, typically due to low probe counts, very large regions, or

low frequency of the putative associated haplotypes within our

population. While these loci may be significant in BAV, further

study is required to fully clarify the location and identity of

causative variant(s) that may be within these regions.

Random Forests Analysis
As a complementary strategy that is not dependent on existing

knowledge we performed a Random Forests analysis to select

SNPs from our genome-wide dataset with the greatest information

content. Starting with 267,196 SNPs Random Forests analysis

yielded an analysis group of 6,322 SNPs, approximately equal in

dimension to that used by the supervised approaches. Fewer than

five percent of the SNPs selected by Random Forests were also

selected by either CANDID, STRING or fitSNPs (Table 1).

Association analysis identified one SNP associated with BAV

(rs388647, OR 4.562, p = 0.03201 following correction for

multiple testing) located on chromosome 3 within the RefSeq

transcript zinc finger protein 385D (ZNF385D; NM_024697.1).

Low probe density in this region on the Illumina 370CNV array

(there are only two other probes located within 5 kb of the

associated SNP) prevents a more detailed haplotype analysis.

However, the associated SNP and its two nearest neighbors form a

stable haplotype that spans an exon (Figure 6).

Comparison of the Four Gene/SNP Selection Strategies
We compared the top SNPs selected by the four gene/SNP

selection strategies (Table S3). Each selection strategy picked a

different top SNP. CANDID selected the SNP with the strongest

BAV association (rs9930956).

Figure 2. Frequent Placement in Top 100 uncorrected p-Values sorted by chromosome; SNPs appearing two or more times
amongst the three categories. C = CANDID, S = STRING, F = fitSNP. Red = present in top 100, blue = not present in top 100. Remaining fields
are Gene symbol, Ensembl-51 consequence type, Odds Ratio, and unadjusted p-Value for each reported SNP.
doi:10.1371/journal.pone.0008830.g002
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Discussion

These results demonstrate that mining existing published

literature, expression, and genome scan data in a systematic

manner can identify biologically plausible genes and pathways that

have variants significantly associated with BAV, ultimately a

disease of early development. Because we describe a single cohort,

we consider the results to be hypothesis generating. The successful

identification of candidate SNPs/genes by our prioritization

analyses now provides motivation for the collection and testing

of additional cohorts for independent analysis.

Molecular pathways that regulate the cellular components of the

developing heart valve have been identified [32]. In particular,

cells derived from the cardiac neural crest are critical cellular

constituents of the developing aortic valve and the great vessels

[33]; defects within cardiac neural crest development have been

Figure 3. BAV Associated Haplotype Spanning PDIA2 and AXIN1. Data from three approaches and relevant genomic features extracted from
the Ensembl 54 database are depicted. At the top of the plot is an ideogram depicting a location on chromosome 16; the small red box delimits a
region between base pair 212416 and 407490, displayed immediately below the ideogram (track labeled ‘‘bp’’ which also indicates the 59 to 39
orientation of the plot). Annotated gene content is displayed on positive (denoted by ‘‘+’’) and negative (denoted by ‘‘2’’) strand. The four graphical
data-panes indicate RR cM/Mb: relative recombination rate in centimorgans per megabase as derived from HapMap build 36. STRING 2log(p),
CANDID 2log(p), and fitSNPs 2log(p): 2log10 uncorrected p-values observed in each of the three indicated schemes. All probes analyzed in the
region by each respective schema are represented by a peak. The region between the two tallest peaks in the STRING and CANDID plots delineates
the observed haplotype detailed in Figure 4.
doi:10.1371/journal.pone.0008830.g003
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suggested as underlying BAV [34]. Mutations in NOTCH1, a

signaling pathway component important for the cardiac valve

formation [32], have been found to cause complex congenital

heart defects including BAV [35] and have also been associated

with BAV in the context of aneurysm [36]. We did not find that

SNPs within NOTCH1 are associated with BAV in our cohort.

However, we did identify BAV-associated genes that lie within

networks that contribute to valve formation and include

NOTCH1. Taken together with previous published findings [8],

our results suggest that genetic derangement of pathways that

contribute to valve formation underlie formation of a BAV.

A locus containing AXIN1 and PDIA2 was retained by all

methods, and haplotype analysis revealed a strong association

with BAV (Figure 3). AXIN1 (AXis INhibitor 1) is a critical

member of the Wnt pathway, which is one signaling pathway that

regulates both heart valve formation [32] and cardiac neural

crest development [37]. In addition to the Wnt pathway, AXIN1

influences signaling by the transforming growth factor beta

(TGFb) family [38], which is also a key regulator in the cardiac

neural crest [39]. When the individual AXIN1-PDIA2 SNPs

were combined into a region-spanning locus, significant associ-

ation with trait is strong and consistent with the overall

independent findings (Figure 2 and Figure 3). The three most

associated SNPs are in medium to high linkage disequilibrium

with each other, and reconstructing haplotypes across this region

functions to segregate affected from unaffected individuals. The

presence of two Protein Disulfide Isomerase family A, member 2

(PDIA2) peptide modifying SNPs in the first two positions of this

haplotype (Figure 3) provides a compelling potential functional

mechanism. It is difficult to speculate the potential role for the

PDIA2 coding SNPs in BAV, as the role of PDIA2 in heart valve

formation is not known. It is worth noting that each of the

haplotypes containing one of these two shifts is at least

moderately significant relative to the trait. Further genotyping

is required to determine the relative contribution of AXIN1 and

PDIA2 variants to BAV.

Endoglin (ENG), as summarized in Figure 5, represents an

instance in which a minor allele resulting in a conservative peptide

shift is observed in the only haplotype associated with trait

(Figure 5). Recently, there has been an appreciation that

synonymous coding region polymorphisms can have a significant

effect through alterations of translational efficiency and the

secondary structure of the transcript [31]. In humans, ENG is

expressed in heart valves and the aorta [40] and its expression is

increased in endocardial cushion mesenchyme during valve

formation [41]. ENG is required for differentiation of neural crest

cells into the smooth muscle cells that populate the aorta [42], and

knockout mice heterozygous for ENG deletion show a tendency

towards aneurism formation [43]. The durable haplotype

association observed at this locus is particularly interesting because

defects in NOTCH signaling, which are associated with BAV

[7,8], have defective basement membrane around the early aorta

and show down-regulation of ENG [44]. The identification of a

haplotype of ENG, a gene known to be important in heart valve

formation, being associated with BAV illustrates the potential for

strategies centered on networks and systems biology to identify

Figure 4. Haplotype Analysis for PDIA2 and AXIN1. ‘‘|’’ indicates haplotype grouped with one above it. Numbers in parenthesis represent 95%
confidence interval. OR (A) and OR (U) abbreviate Odds Ratio Affected and Unaffected, respectively. Freq A, U, and P observed haplotype frequency
Affected, Unaffected, and Population (control and experimental, this study); PS = Peptide Shift, italics bases within haplotype signify presence of
peptide-shifting variant.
doi:10.1371/journal.pone.0008830.g004
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biologically important associations from large SNP datasets that

would likely have otherwise been overlooked by traditional GWAS

analysis.

SNP selection by Random Forest returned different markers

than the two knowledge-based strategies. It must be noted that

computational limitations ultimately affect how many forests could

be grown for our analysis, even in the context of our relatively

small population with several hundred thousand probes. The

modified RandomJungle approach [45] appears to deal specifi-

cally with this limitation, and we anticipate investigating its utility

in studies like those that we report here. We consider our

identification of a SNP in chromosome 3 associated with BAV to

be hypothesis generating pending replication in independent

cohorts because the SNP occurs in a relatively low-probe-density

region and the marginal significance of the null-model haplotype

weakens the likelihood of overall locus significance. While further

analysis is needed to establish the durability of this isolated

observation, the presence of a strong haplotype across a coding

region implies a potential functional outcome, the biological

impact of which remains uncertain.

Probe prioritization in our case offered at least an order of

magnitude of multiple-testing relief. In the case of the CANDID

probe collection (which employs the largest number of probes of

any set used in this study) the probe prioritization process reduced

the fraction of the genome analyzed to 0.19% of the total. This

directed specificity is not reflected in current, overly strict

correction methodology. Further complications emerge in the

apparent genetic heterogeneity underlying the singular phenotype

of BAV. While several apparently causative defects have been

identified in isolated families, the broader spectrum of BAV has

been difficult to characterize genetically [9,4,5]. We hypothesize

that any cohort of BAV individuals is likely to be a mixed

representation of various possible BAV-causing developmental

defects, further eroding the capability of small cohorts to describe

the condition fully at the genetic level. We describe a method for

prioritization of specific SNPs that both directly addressed these

potential issues and successfully identified biologically plausible

genomic loci associated with BAV. The identification of genes with

known biological roles in heart valve formation (AXIN1 and ENG)

and additionally within pathways and regulatory networks

Figure 5. Haplotype Analysis for ENG. ‘‘|’’ indicates haplotype grouped with one above it. Numbers in parenthesis represent 95% confidence
interval. OR (A) and OR (U) abbreviate Odds Ratio Affected and Unaffected, respectively. Freq A, U, and P observed haplotype frequency Affected,
Unaffected, and Population (control and experimental, this study); PS = Peptide Shift (in this case a conservative instance), italics bases within
haplotype signify presence of peptide-shifting variant.
doi:10.1371/journal.pone.0008830.g005
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previously associated with BAV in family-based studies demon-

strates the power of association testing that incorporates biological

knowledge. The findings presented here highlight the need for

collection and analysis of a large BAV cohort powered for a fully

unbiased analysis and showcases the power that gene-based and

network-based analyses can supply for analyzing complex but

heritable genetic systems.

Materials and Methods

Cohort
The Tufts Medical Center/Tufts University Institutional

Review Board approved all studies and study procedures followed

signed participant informed consent in accordance with the

principles expressed in the Declaration of Helsinki. Probands

were identified by the discovery of a bicuspid aortic valve at the

time of aortic valve replacement or defined by echocardiography,

agreed upon by two separate readers. The average age of BAV

Genetics Study participants at the time of study entry was 53

years (range 18 to 85), and the majority of subjects are men (54 of

66). Among the 66 subjects with a BAV, six also had coarctation

of the aorta (all repaired) and 19 were found to have an aneurysm

of the ascending aorta (17 repaired). Echocardiography demon-

strated normal valve function of the BAV in 18 subjects.

Moderate to severe aortic valve stenosis was detected in 38

subjects; three subjects had isolated severe aortic valve regurgi-

tation. Genomic DNA was genotyped on the Illumina 370CNV

array by deCode (Reykjavik, Iceland). Genotypes for 823 control

individuals (average age 43, range 30 to 88) were obtained from

Illumina iControlDB [23]. These individuals are genotyped on

the same platform as our experimental study was with the

exception of copy number probes present on the 370CNV array

variant that were not included in the control population study; all

non-overlapping probes were set to missing for the purposes of

this study. When these individuals were added to the handful of

familial cases and controls (a total of five cases (,7%) exhibit

family history of BAV) already in our population, 830 control

individuals were available for use in the analysis. Using the

software package Structure and the standard methodology

described by Pritchard et al. [24], we employed 25,000

independent simulations to model the number of potential sub-

populations (K) present in our case/control cohort. The smallest

value of K that appeared to describe the cohort was 3. Values of K

from 0 to 8 were analyzed for their consistency. These analyses

returned no evidence of significant allele frequency divergence at

any value of K within the control and experimental groups when

considered singly or as a whole.

Power to Detect Associations
Using the Genetic Power Calculator for discrete traits [46], we

determined that, with our cohort dimensions and a 1%

population prevalence of BAV, power to detect at a significant

association in our cohort would reach 80% at observed odds

ratios greater than 2. Odds ratios of 4 or greater (as observed in

the AXIN1 haplotype, Figure 4) reach similar power with 53

individuals. By comparison, the various BAV sub-phenotypes

present in our cohort each represent fewer than 18 individuals,

far fewer than are required to reach any reasonable power

threshold; these sub-phenotypes were therefore excluded from

further analyses.

DNA
Collection of DNA from subjects with a BAV, and some of their

family members, began February 2006. Cases were identified at

the time of aortic valve replacement by direct surgical observation

or from an echocardiogram performed for evaluation of the aortic

valve. Blood is collected in PaxGene DNA tubes (Qiagen) and the

DNA is purified using a dedicated purification kit. The

concentration of DNA in each sample is measured using the

PicoGreen assay (Invitrogen).

Figure 6. Haplotype Analysis for ZNF385D. ‘‘|’’ indicates haplotype grouped with one above it. Numbers in parenthesis represent 95%
confidence interval. OR (A) and OR (U) abbreviate Odds Ratio Affected and Unaffected, respectively. Freq A, U, and P observed haplotype frequency
Affected, Unaffected, and Population (control and experimental, this study); PS = Peptide Shift (in this case a conservative instance), italics bases
within haplotype signify presence of peptide-shifting variant.
doi:10.1371/journal.pone.0008830.g006
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Gene, Interaction Network, and SNP Selection
1) Generation of the initial phenotype descriptor. Using Cytoscape’s

Agilent Literature Search plug-in [47], we employed a list of

twenty broadly topical MeSH keywords to describe each of the

major categories and outcomes of BAV and BAV-associated

syndromes (the complete list is available in Supplemental

Methods). Additionally, we added various gene-specific descrip-

tors, such as ‘‘NOTCH,’’ to ensure full coverage of previously

described BAV genetic profiles. We also included information

garnered from microsatellite analysis of BAV individuals, which

had identified several discrete regions of the genome thought to be

involved in the development of BAV [27]. These core terms

produced a basic protein interaction network consisting of 124

proteins (and genomic locations). 2) Addition of prioritized genes: We

analyzed GDS2922 and GSE9106 separately using limma [48]

and RankProd [49] applying default settings within the statistical

analysis program R [50]. 3) STRING and CANDID analysis: To

integrate and extend the RankProd and limma generated gene lists

with the initial phenotype descriptor network we employed

STRING and CANDID.
STRING and CANDID network integration. The

intention of using dual approaches being to capture both

broadly modified genes between classes as well as those genes

that vary within classes while maintaining an overall differential

expression level between the two groups. With regard to STRING,

networks were formed with a maximum of 4 additional inter-

member nodes, a ‘‘medium’’ confidence score of 0.4, no more

than 50 interactors shown, an edge scaling of 80%, and all Active

Prediction Methods selected. CANDID allows for more nuanced

subscoring of various components. All components were weighted

equally, with the exception of ‘‘Conservation,’’ which was given

the lesser weight of 2 relative to the rest of the entries. Tissue codes

44 (heart) and 53 (cardiac myocytes) were employed.

In all cases, output of proteins and their interactors were

converted into genomic regions of origin by employing the UCSC

Genome Table Browser, employing Ensembl Gene codes (ENSG)

to capture various potential transcripts that may arise from a single

‘‘gene.’’ Additionally, a buffer region of 5 kb was added to the

beginning and end of each expression region to allow for upstream

or downstream control elements potentially present. These regions

in hand, the intersection of CNV370 probes falling within the

various regions were calculated. The number of SNPs corre-

sponding to each class of prioritization with relative overlap

between classes is available in Table 1.

Random Forests
Carried out using the R package randomForests [51] with the

following non-default settings: 10,000 trees, 5,000 iterations, and

importance = TRUE. Input data comprised all SNPs with a non-

zero variance. Total input SNPs numbered 267,196 yielding 6322

‘‘important’’ SNPs for further analysis.
Association and locus analysis. These analyses were

carried out using plink v1.06 [52]; baseline settings were

employed for inclusion of probes and quality control.

(genotyping rate$80%, pruning of probes based on missingness

(GENO$1) and low frequency (MAF#0) as well as the removal of

heterozygous haploid genotypes (4545 found and removed from

analysis in this dataset). Total genotyping rate across all individuals

(66 cases, 830 controls) was 0.98, and after all pruning the initial

probe number (from which all described priority and GWAS

probes were drawn) was 311,399. Primary analysis of all priority

sets (as well as GWAS) was conducted using the same set of

covariates and phenotype definitions for each set. Full plink

settings for each run were ‘‘—logistic –adjust –qq-plot –sex’’ with

the requisite additional commands for selecting input and output

files. Logistic analysis is indicated for the discrete disease trait

(BAV/no-BAV) and the covariate adjustment is included for

gender and, ultimately, for returned p-values relative to number of

tests performed. Lack of deep phenotype information for control

population limits the ability to create more extensive covariate

controls in this population.

Supporting Information

Table S1 Frequency of major gene ontology classes present in

the combined prioritized gene lists returned by CANDID and

STRING. Frequency counts and fractional percentage relative to

total number of observations. Pathway members lacking more

specific annotations return the generic ‘‘biological_process’’

heading.

Found at: doi:10.1371/journal.pone.0008830.s001 (0.04 MB

PDF)

Table S2 Haplotype Analysis for BAT2/3. ‘‘|’’ indicates

haplotype grouped with one above it. Numbers in parenthesis

represent 95% confidence interval. OR (A), OR (U) Odds Ratio

Affected and Unaffected, respectively. Freq A, U, and P observed

haplotype frequency Affected, Unaffected, and Population (control

and experimental, this study); PS = Peptide Shift (in this case a

conservative instance), italics bases within haplotype signify

presence of peptide-shifting variant.

Found at: doi:10.1371/journal.pone.0008830.s002 (0.04 MB

PDF)

Table S3 Lowest observed significant corrected p-Values by

prioritization category. Lowest corrected p-Value observed at SNP

is bolded; NP = Not Present in group.

Found at: doi:10.1371/journal.pone.0008830.s003 (0.04 MB

PDF)
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