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Abstract

Background: Understanding the residue covariations between multiple positions in protein families is very crucial and can be
helpful for designing protein engineering experiments. These simultaneous changes or residue coevolution allow protein to
maintain its overall structural-functional integrity while enabling it to acquire specific functional modifications. Despite the
significant efforts in the field there is still controversy in terms of the preferable locations of coevolved residues on different
regions of protein molecules, the strength of coevolutionary signal and role of coevolution in functional diversification.

Methodology: In this paper we study the scale and nature of residue coevolution in maintaining the overall functionality
and structural integrity of proteins. We employed a large scale study to investigate the structural and functional aspects of
coevolved residues. We found that the networks representing the coevolutionary residue connections within our dataset
are in general of ‘small-world’ type as they have clustering coefficient values higher than random networks and also show
smaller mean shortest path lengths similar and/or lower than random and regular networks. We also found that altogether
11% of functionally important sites are coevolved with any other sites. Active sites are found more frequently to coevolve
with any other sites (15%) compared to protein (11%) and ligand (9%) binding sites. Metal binding and active sites are also
found to be more frequently coevolved with other metal binding and active sites, respectively. Analysis of the coupling
between coevolutionary processes and the spatial distribution of coevolved sites reveals that a high fraction of coevolved
sites are located close to each other. Moreover, ,80% of charge compensatory substitutions within coevolved sites are
found at very close spatial proximity (, = 5Å), pointing to the possible preservation of salt bridges in evolution.

Conclusion: Our findings show that a noticeable fraction of functionally important sites undergo coevolution and also point
towards compensatory substitutions as a probable coevolutionary mechanism within spatially proximal coevolved
functional sites.
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Introduction

According to the neutral theory of evolution, the functionality of

protein with disadvantageous amino acid substitution can be

restored by another amino acid substitution which compensates

the first one to sustain the fitness [1]. Such compensatory sub-

stitutions together with other factors arising due to common

functional, structural and folding constraints lead to covariation

between different positions in a protein family [2]. Other positions

might not coevolve because they are neutral or under positive

selection. Compensatory amino acid substitutions have been

described in previous works in terms of their locations in structure,

physico-chemical properties [3–8] and relation to the diseases

[5,9]. It has been found that interacting residues have tendency to

coevolve [4,5,10–17] and charge compensatory substitutions

might make substantial contribution to the residue coevolution

[3–5,10,18]. Although the coevolution is difficult to detect and is

rather weak in many cases, the correlated mutations have had

comparative success in predicting protein secondary and tertiary

structures and in some cases protein interaction partners [19–21].

Interestingly, it has been proposed that coupled amino acid

changes will mostly occur in the same lineage or on the same

branch of the phylogenetic tree [4,5,22] due to the strong positive

selection pressure to mutate another site to compensate the

original mutation. Such lineage specific changes might be

important for functional specificity where overall functional

constraint remains the same while small tuning of the residue

interaction network is required to maintain the new specific

functional characteristics. It was shown that residues which form

many coevolutionary connections with other residues are more

conserved in evolution and are involved in functionally important

interactions or conformational changes [17,23,24]. It is a subject

of extensive study of how coevolutionary processes are related to

functional diversification within protein families. Directed evolu-

tion experiments, for example, tried to address this question from

the practical point of view of designing sequences with certain

functional properties by introducing many cumulative compensa-

tory changes [25,26].

Despite the significant efforts in this field there is still

controversy in terms of, the strength of coevolutionary signal,
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the role of coevolution in functional diversification and affect of

structural environment on coevolution. Indeed, coevolution is

difficult to detect due to the variable nature of compensatory

mutations, the strong dependence of covariations on evolutionary

distances, number of sequences in the alignment and residue

environment. Moreover, the coevolutionary signal must be separat-

ed from the background resulting from various correlations between

the non-coevolving residues. The lack of consistency in detecting

coevolutionary signal stems from the fact that many methods barring

a few [27–29] employed so far did not explicitly account for the

phylogenetic signal coming from correlations due to phylogenetic

relationships between species represented in a given protein family.

Previous studies focused on analyzing coevolution with respect

to particular features and processes, for example, disease

associated mutations and compensated pathogenic deviations

[6,9], mechanisms of charge compensation [4] and interacting

residue coevolution in mammalian proteomes [5]. In this paper we

try to fill this gap and study the scale and nature of residue

coevolution in maintaining the overall functionality and structural

integrity of proteins. Information theory based approaches are

widely used to estimate the covariation between sites in protein

families [12,15,28–34]. In the present analysis we use a new, rapid

and effective method, MIp, to estimate residue coevolution which

is based on information theory and accurately estimates the

expected levels of background coming from random and

phylogenetic signals [29]. It has been shown, for example, that

MIp can identify higher number of contacting residues compared

to other coevolution detecting methods [29]. We employed a large

scale dataset of protein families extracted from a well curated

Conserved Domain Database (CDD) [35] to study the evolution-

ary, structural and functional aspects of coevolved residues.

We found that the networks representing the coevolutionary

residue connections within our dataset are in general of ‘small-

world’ type; they have clustering coefficient values higher than

random networks and also show much lower mean shortest path

values compared to random and regular networks. We also found

that altogether 11% of functionally important sites are coevolved

with any other sites. Active sites are found more frequently to

coevolve with any other sites (15%) compared to protein (11%)

and ligand (9%) binding sites. Metal binding and active sites are

also found to be more frequently coevolved with other metal

binding and active sites, respectively. Supporting the previous

findings [15,16,28,29] our analysis of the coupling between

coevolutionary processes and the spatial distribution of coevolved

sites also shows that a high fraction of coevolved sites are located

close to each other. Moreover, ,80% of charge compensatory

substitutions are found at very close spatial proximity (, = 5Å),

pointing to the possible preservation of salt bridges in evolution.

Results

Coevolutionary network of protein sites
Altogether we identified 39527 coevolved site pairs from 803

family alignments. Figure 1 shows the mean shortest path lengths

plotted versus the average clustering coefficients of the coevolved

networks for each family (red diamonds) and for the corresponding

random and regular networks generated from equivalent number

of nodes and edges in each family [36]. Table 1 shows the means

and standard errors of clustering coefficients and shortest path

lengths calculated by averaging over all 244 families/networks

with average degree (k) equal or more than 2. It is clear from

Figure 1 and Table 1 that unlike random and regular networks,

coevolutionary networks have high clustering coefficients and low

mean shortest path lengths. Random networks are characterized

by low clustering coefficients and small shortest path lengths while

regular networks usually have larger clustering coefficients and

high shortest path lengths [36–40]. Hence, we can conclude that

the protein coevolutionary networks, in general, are of a ‘small-

world’ type. Small-world network is a type of ‘graph’ in which

most nodes (in our case coevolved protein sites) are not neighbors

of one another, but most nodes can be reached from every other

by a small number of steps [36–40].

Functional sites and their coevolutionary networks
To examine the coevolution of functionally important sites

(FIS), we calculated the fraction of coevolved sites that are

involved in important molecular functions such as catalysis,

protein, ligand or metal binding, and post translational modifica-

tions (Tables 2 and 3). We found that altogether 11% of FIS (430

out of 3989) are coevolved with any other sites. Active sites are

found more frequently to coevolve with any other sites (15%)

compared to protein (11%) and ligand (9%) binding sites (Table 2).

Metal binding and active sites are also found to be more frequently

coevolved with other metal binding and active sites, respectively

(Table 3). Close examination of these coevolved functional sites

reveals that vast majority of coevolved FIS are located at relatively

small distances of less than 10Å (Figure 2).

After examining the network properties of functionally impor-

tant coevolved sites we found that overall functional sites have

lower tendency to form coevolutionary clusters compared to all

coevolved sites as suggested by their lower average clustering

coefficients values (0.19 compared to 0.49 for all coevolved sites,

Table 4). Within the functional sites, metal binding sites have the

highest tendency to form coevolutionary clusters while ligand

binding sites have lowest tendency (the difference is statistically

significant, t-test p-value is less than 0.02). Active and protein

binding sites have intermediate propensity towards forming

coevolutionary clusters (Table 4). Figure 3 provides examples of

highly connected coevolved metal binding sites from ferritin-like

diiron-carboxylate protein domain family, CDD code: CD00657)

and moderately connected coevolved active and protein binding

sites from Glutamyl-tRNA synthetase(GluRS)/Glutaminyl-tRNA

synthetase (CDD code: CD00418) and YjgF_YER057c_UK114_

family (CDD code: CD00448), respectively.

Structural features of coevolved sites
We addressed the question of how a pair of coupled residues

evolves and manifests in compensatory substitutions which are

typically apparent from the analysis of spatial distances between

coevolved sites. We observed that a high fraction of coevolved sites

prefers spatial proximity, namely 53% of coevolved pairs are

within 10Å distance from each other while 80% resides within 20Å

distance from each other (shown by blue bars in Figure 4). We also

compared distance distributions for the datasets of less and more

than 125 sequences (see Methods) with the distance distribution of

randomly selected non-coevolved site pairs. We found that there is

a statistically significant difference (p-value%0.01) between mean

spatial distances of the non-coevolved sites and coevolved sites

from these datasets (Figure S1 and Table S1). To decipher the

specific mechanisms of such distance dependence we analyzed the

amino acid content of coevolved site pairs at the substitution quads

(see Methods) extracted from each pair of protein sequences within

the multiple sequence alignment. We especially focused on charge

compensatory quads where the fitness of opposite charge

interactions is generally preserved by compensating the impact

of substitutions at the interacting residues during the course of

evolution. Charge compensatory substitutions among the co-

evolved sites were investigated by calculating the frequency of

Coevolved Sites in Proteins
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charge compensatory substitution quads for each pair of coevolved

alignment columns. Figure 4 shows the fraction of various charge

substitution quads within the coevolved sites with respect to their

spatial distances. We observed that ,80% of charge compensatory

substitutions are found at very close spatial proximity of less than

5Å. It indicates that these substitutions might be maintained in

evolution to preserve the salt bridges. Similarly, we also found that

the spatial distance distribution of charge compensatory substitu-

tions is significantly different (p-value%0.01) than that of non-

coevolved columns pairs (Figure S2).

To detect subtle stereo-chemical variations which lead to

coevolution of sites, we compared physico-chemical properties of

amino acids at each coevolved site pairs. Correlation coefficients of

physico-chemical properties of residues between two coevolved sites/

aligned columns were calculated. The higher the correlation

coefficient, the larger is the similarity of physico-chemical properties

between two coevolves sites. The histogram of values of correlation

coefficients is presented in Figure S3. As can be seen from this figure,

coevolved sites have more similar physico-chemical properties

compared non-coevolved sites. Systematic categorization of co-

evolved residue pairs into conservative and non-conservative types

(see Methods for definitions) also reveals that coevolved pairs formed

by similar volume amino acids (conservative and neutral coupling)

are more prevalent (Figure S4) than non-conservative coupling

(parings of amino acids that have large difference in volume).

Opposite charged residues have a higher preference to coevolve

although charge-neutral couplings (charge: non-charge pairings) are

most prevalent in coevolved residue pairs (Figure S4). This is

consistent with our previous observation on charge compensatory

quads that oppositely charged residues can be preferred more at

closer distances probably to maintain the salt bridges.

Figure 1. ‘Small-world’ characteristics of coevolved networks. Shortest paths and clustering coefficients are calculated and plotted for each
family/network that has average degree (k) equal or more than 2.
doi:10.1371/journal.pone.0008591.g001

Table 1. Network properties.

Network Mean clustering coefficient Mean shortest path

Coevolved 0.49 (60.01) 2.74 (60.07)

Random 0.09 (60.00) 3.78 (60.08)

Regular 0.32 (60.01) 11.30 (60.56)

doi:10.1371/journal.pone.0008591.t001

Coevolved Sites in Proteins
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We also examined different structural properties such as solvent

accessibility, secondary structures, and hydrogen bonding patterns

of coevolved sites (Figure 5). We found that there is a statistically

significant bias of coevolved sites to be either both buried or both

accessible compared to non-coevolved sites (chi-square contingen-

cy test p-value%0.01). At the same time we observed a certain

tendency of both coevolved sites to be both in the coil secondary

structure assignments (p-value%0.01). Similar patterns are

observed for the datasets with less and more than 125 sequences

in the alignments (Figure S5).

Examples of coevolved sites
Figure 6 provides examples of coevolved sites projected on the

3D structures of the representative members of protein families

from our dataset. Figure 6A shows two examples where coevolved

sites of CAP family of transcription factors (CDD code: CD00038;

PDB code: 1RGS) and hedgehog/intein domains (CDD code:

CD00081; PDB code: 1DQ3) are projected on their representative

protein structures, respectively. Coevolutionary network is shown

where nodes represent the coevolved sites while an edge is drawn

between two sites which coevolve. In these two examples, none of

the coevolved site pairs are located more than 10Å apart from

each other. Similarly, Figure 6B shows an example of phospho-

glycerate kinase family (CDD code: CD00318; PDB code: 1QPG)

where a significant fraction (36%) of the coevolved sites are located

more than 20Å and less than 40Å apart from each other. Figure 6C

shows an example of coevolutionary connections from phenylal-

anine ammonia-lyase (PAL) and histidine ammonia-lyase (HAL)

domain family (CDD code: cd00332; PDB code: 1GK2) where

coevolved sites are located far away (.40Å) from each other.

Discussion

The new mass of evidence points to the importance of

coevolution in shaping the protein function. Protein function is

determined by interactions with other cell components and by

residue-residue interactions. Residue interactions important for

the protein functional integrity are conserved in evolution. At the

same time proteins change their function in evolution and

therefore some functional sites are under positive selection to

change in order to accommodate new functional specificities.

Certain variability coupled together with the strong functional

constraints and the involvement in the network of interactions

makes functional sites an ideal target for coevolutionary processes.

Indeed, it has been shown previously that many coevolved

positions are located at or near functionally important sites

[16,24] and pathogenic missense mutations can be compensated

by another mutation to restore the fitness [6,9]. Moreover,

recently we showed that coevolutionary processes are directly

related to functional diversification within protein families and the

sites determining functional specificity often coevolve [17].

In accordance with the hypothesis outlined in the previous

paragraph that noticeable number of functionally important sites

might undergo coevolution, we observe that 15% of all active sites

coevolve with any other sites and 22% of these coevolutionary

relationships include pairs between two active sites. Protein and

ligand binding sites are shown to coevolve with other sites in about

11% and 9% of the cases and coevolve exclusively with each other

(protein binding sites coevolve with protein binding sites and

ligand binding site coevolve with ligand binding site) in 21% and

9% of the cases respectively. After examining the properties of

Table 2. Coevolution of functionally important sites (FIS).

Number of
families Category of sites

Number of
FIS

Number of
all coevolved site pairs Category of sites

Number of
coevolved FIS

197 All 3989 5405 All 430 (11%)

Active 795 Active 116 (15%)

Protein binding 1498 Protein binding 169 (11%)

Ligand binding 1369 Ligand binding 118 (9%)

Metal binding 171 Metal binding 14 (8%)

Post-translational modification 43 Post-translational modification 3 (7%)

Miscellaneous 113 Miscellaneous 10 (9%)

doi:10.1371/journal.pone.0008591.t002

Table 3. Functional coupling of coevolved sites.

FIS
Total coevolved
pairs % of coevolved site pairs

Active
site

Protein
binding site

Ligand
binding site

Metal
binding site

Post-translational
modification site

Miscellaneous
site

Non Functional
site

Active site 345 22.00 0.87 0.29 0.58 0.00 0.58 76.00

Protein binding site 285 1.05 21.40 1.05 0.00 0.00 0.35 76.14

Ligand binding site 189 0.53 1.59 8.47 0.53 0.00 0.00 88.89

Metal binding site 42 4.76 0.00 2.38 33.33 0.00 0.00 59.52

Post-translational
modification site

3 0.00 0.00 0.00 0.00 0.00 0.00 100.00

Miscellaneous site 12 16.67 8.33 0.00 0.00 0.00 8.33 66.67

doi:10.1371/journal.pone.0008591.t003

Coevolved Sites in Proteins
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coevolutionary networks, we found that it has ‘‘small-world’’

properties and is characterized by high clustering coefficient and

low mean shortest path length. Furthermore, we found that on

average sites coevolve with about three other sites while functional

sites in particular coevolve with about 1.5 sites. These findings

point to multiple coevolutionary events between multiple residues

in proteins which make it different from the coevolution between,

for example, hydrogen bonded base pairs in RNA [16]. In

addition, coevolved functional sites with the exception of metal

binding sites form less dense and more disjoint (low clustering

coefficient with low mean shortest path) networks compared to all

coevolved sites. The less dense network can be explained by the

presence of multiple patches and clusters of spatially separated

binding and active sites. On the contrary, metal binding sites form

quite dense coevolutionary networks which are consistent with

their tendency to form a lot of hydrogen bonding, stacking and

hydrophobic interactions between each other to provide the ion

coordination and contribute to both stability and functionality of

the protein.

To decipher the mechanisms of coevolution between functional

sites we looked whether their coevolution was coupled with the

spatial proximity and found that this is indeed the case. Vast

majority of coevolved functional sites are within close to proximity

to each other, especially metal binding and active site residues.

This observation points to the compensatory substitutions as a

probable coevolutionary mechanism within these spatially prox-

imal functional sites. Interestingly, more than 20% of protein

binding sites exhibit long distance coevolution between each other

(on distances larger than 20 Å) which might be caused by allostery,

intramolecular dynamics or common constraints imposed by the

binding partner. We also performed an analysis of all coevolved

ion pairs in our dataset and it was not surprising to see charge

compensations and their dependence on the spatial distance. What

was surprising is to see that almost 80% of charge compensatory

quads are located at very short distance from each other of less

than 5Å (this is not the case for non-charge compensatory quads).

This observation implies a strong compensatory component in the

coevolution between charged residues forming salt bridges. The

strong tendency of correlated ionic interactions to be spatially

coupled has been observed previously in the study involving the

double replacements of interacting positions (DRIP) [5]. In our

work we addressed this question from a completely different angle.

We first identified the coevolved sites/quads on the large scale set

of protein domains using the state of art coevolutionary detection

methods and subsequently analyzed them in terms of the distances

and physico-chemical properties. Even though the fraction of

charge compensatory substitutions among all coevolved pairs is

rather small, we argue that they might make an important

contribution in the functional diversification as electrostatic

interactions play essential role in specific binding and residue

interactions.

Methods

Dataset
We collected protein domain alignments from version 2.13 of

the Conserved Domain Database (CDD), the most current version

Figure 2. Spatial distribution of coevolved functionally important sites. Frequencies of coevolved functionally important site pairs are
plotted versus the spatial distances between them. Bars represent frequencies of coevolved connection within each functional category.
doi:10.1371/journal.pone.0008591.g002

Table 4. Network properties of coevolved sites.

Sites
Average clustering
coefficient

Mean shortest
path

Average
degree

All sites 0.49(60.01) 2.74(60.07) 3.31(60.04)

All functional sites 0.19(60.04) 1.41(60.04) 1.55(60.08)

Active sites 0.12(60.05) 1.51(60.06) 1.75(60.17)

Ligand binding sites 0.05(60.04) 1.32(60.06) 1.29(60.05)

Protein binding sites 0.18(60.06) 1.39(60.06) 1.44(60.09)

Metal binding sites 0.32(60.19) 1.41(60.12) 2.00(60.45)

doi:10.1371/journal.pone.0008591.t004

Coevolved Sites in Proteins
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Figure 4. Charge compensatory substitutions within the coevolved sites. Frequency of charge compensatory substitutions was calculated
by counting the number of charge compensatory substitution quads (see Methods for details) for each pair of coevolved alignment columns.
Frequency of charge compensatory substitutions (Y axis) is plotted against the spatial distances (X axis) between coevolved residue pairs.
doi:10.1371/journal.pone.0008591.g004

Figure 3. Examples of coevolved functional sites. Coevolved (panel A, marked in red spheres) and non-coevolved (panel A, marked in blue
sticks) active sites are projected onto the structure of a representative member (PDB code: 1EUQ) from Glutamyl-tRNA synthetase(GluRS)/Glutaminyl-
tRNA synthetase (GlnRS) catalytic domain family (CDD code: CD00418). Here an edge connects two coevolved residues (red circles). Coevolved metal
binding sites (panel B, marked in red spheres) are projected onto the 3D structure of a representative member (PDB code: 1LKO) from ferritin-like
diiron-carboxylate protein domain family (CDD code: CD00657). Coevolved (panel C, marked in red spheres) and non-coevolved (panel C, marked in
blue sticks) protein binding sites are projected onto the structure of a representative member (PDB code: 1JD1) from YjgF_YER057c_UK114_family
(CDD code: CD00448). Protein structural and network representations were created using the PyMol [47] and Cytoscape [48] program.
doi:10.1371/journal.pone.0008591.g003

Coevolved Sites in Proteins
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of which is available at http://www.ncbi.nlm.nih.gov/Structure/

cdd/cdd.shtml. CDD multiple alignments have been manually

curated to reconcile sequence alignments with protein three-

dimensional structures and structure-structure superposition [35].

803 CDD domain alignments were selected which have at least

one structure entry and more than 25 domain family members.

We also excluded small CDD families with alignments of less than

50 residues long. A list of CDD domain families used in this study

is provided in Table S2.

Previous studies [27–29,32] suggested that ‘random MI’ signal

might arise if the input alignments do not contain enough number

of sequences which may in turn lead to false predictions of

coevolved sites. To verify whether the main conclusions in the

paper hold true for the families with smaller number of sequences

we generated the datasets with less than 125 sequences in the

alignments (622 alignments) and the dataset with more than 125

sequences in the alignments (181 alignments). We compared the

distance distributions and structural properties for these datasets as

well as whole dataset with the distributions of randomly selected

non-coevolved site pairs. Random non-coevolved sites were

identified using 1000 independent randomization cycles. It should

be mentioned that the number of families with experimentally

annotated functionally important sites (FIS) is quite limited; in our

study we used 197 CDD families with at least one known FIS and

at least one pair of coevolved sites. We found that in this dataset

only 11% of FIS (430 out of 3989) are coevolved with any other

sites. Filtering out the CDD families with less than 125 sequences

drastically reduces the number of coevolved site pairs and

coevolved FIS per family and makes the analysis of family

coevolutionary networks impractical.

Identification of coevolved sites
Mutual Information is a widely used measure to estimate the

covariation between sites in protein families. However, its

usefulness has been limited by factors like its relative inability to

handle positions with higher entropy, alignments with lower

number of sequences and filtering the background phylogenetic

signal arising due to the phylogenetic relationships between the

organisms represented in the family [12,27–29,32,41].

In this analysis we used a rapid and effective method to estimate

coevolutionary connection between two sites of a protein family

[29]. This method (MIp) is based on information theory that

accurately estimates the expected levels of background coming

from random and phylogenetic signals. Removal of the phyloge-

netic and random background noise allows to identify substantially

more significant coevolving positions in protein families and it has

been shown that MIp can identify higher number of contacting

residues compared to other methods of detecting coevolution [29].

Altogether we identified 39527 coevolved site pairs from the 803

family alignments with MIp Z-score cutoff of 4.0 or higher.

Figure 5. Percentage of sites with given structural properties is shown. Structural properties such as solvent accessibility (panel A), type of
secondary structures (panel B) and hydrogen bonds (panel C) were calculated for coevolved sites. Solvent accessibility (Buried: Bur; Accessible: Acc)
was measured using the PSA program from JOY package [44]. Within the coevolved site pairs, if both residues are buried or accessible, they are
shown as ‘Bur-Bur’ or ‘Acc-Acc’, respectively. Secondary structure [helix (H), strand (E) and coil (C)] distribution for coevolved residue pairs is shown in
panel B. Hydrogen bonding patterns were estimated using the HBOND programs from the JOY package. ‘HBDY-HBDY’ and ‘HBDX-HBDX’ indicate
cases where both coevolved residues are involved or not involved in hydrogen bonding correspondingly. ‘HBDX-HBDY/HBDY-HBDX’ indicates cases
where at least one residue is involved in hydrogen bonding. Values in the parenthesis show mean and standard error of estimated from the
distribution of structural property values for randomly selected non-coevolved residue pairs (5 randomizations were performed).
doi:10.1371/journal.pone.0008591.g005

Coevolved Sites in Proteins
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Calculation of network parameters
We analyzed the properties of networks for each family where

nodes were represented by residue sites and edges by coevolu-

tionary connections between them.

The clustering coefficient Ci for a position (node) i in the

coevolutionary graph is calculated as the ratio of the number of

edges between immediate neighbors of node i and the maximum

possible number of edges which could exist between the neighbors.

Ci~2ci= ki ki{1ð Þð Þ

where ki is the degree of node i. The mean clustering coefficient

was calculated by averaging the clustering coefficients (Ci) for all

nodes in the network. The mean shortest path length Lcoev for a

coevolved network was calculated using Johnson’s algorithm [42]

as the average of shortest paths among all unique pairs of nodes.

The average clustering coefficients and mean shortest path lengths

for random and regular networks were calculated according to the

following formulae [36,37,39]

Random Networks : Cran~ k=Nð Þ; Lran* lnN=ln kð Þ:

Regular networks : Creg~ 3 k{2ð Þð Þ= 4 k{1ð Þð Þ;

Lreg~ N Nzk{2ð Þð Þ= 2k N{1ð Þð Þ:

where N is the number of nodes and k is the number of edges. For the

network analysis, we excluded families for which average degree (k) is

less than 2 so that Creg could be defined and ended up with 244 families.

Different categories of coevolved sites
A total of 3989 functional sites were extracted from 197 CDD

multiple alignments (subset of the 803 alignment dataset which

had functional site annotations; Table S3) that have been

categorized into six functional categories using protein structures,

literature, and experimental data annotations available for each

CDD domain [35,43]. These sites cover a broad range of

molecular functional categories, including 795 active sites, 1369

ligand binding sites, 1498 protein–protein binding sites, 171

metal binding sites, 41 post-translational modification sites, and

113 sites with miscellaneous functions.

To analyze how the change in one protein site is compensated

in evolution by changing another site in a homologous protein, we

used compensatory substitution quads. Each quad represents

instances of simultaneous variations in two positions from two

sequences and can be illustrated on the example of charge

compensatory substitutions. Charge compensatory substitution

quad can be explained using the following example.

Column i Column j

Seq1 A zð Þ B {ð Þ
Seq2 C {ð Þ D zð Þ

Figure 6. Examples of coevolved sites. Panel A shows two examples where coevolved sites of CAP family of transcription factors (CDD code:
cd00038; PDB code: 1RGS) and hedgehog/intein domains (CDD code: cd00081; PDB code: 1DQ3) are projected on their representative protein
structures. Panel B shows an example of phosphoglycerate kinase family (CDD code: cd00318; PDB code: 1QPG) while panel C shows an example of
coevolutionary connections from phenylalanine ammonia-lyase (PAL) and histidine ammonia-lyase (HAL) domain family (CDD code: cd00332; PDB
code: 1GK2). Network representations were created using PyMol [47] and Cytoscape [48] program.
doi:10.1371/journal.pone.0008591.g006
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A and D are positively charged while B and C are negatively

charged residues. A charge compensatory substitution can be seen

when the overall charge is maintained by compensating the impact of

mutation of A to C (positive to negative charge) by the simultaneous

mutation of B to D (negative to positive charge). This evolutionary

phenomenon is called charge compensatory substitution. Similarly, in

charge non-compensatory substitution quad, four charged residues do

not get coupled in a compensatory manner. All other substitution

quads involving either charged or non-charged residues were cate-

gorized as ‘‘neutral’’. Occurrence of charge compensatory substitu-

tions was investigated by calculating the frequency of charge

compensatory substitution quads for each pair of coevolved alignment

columns.

Structural and physico-chemical properties of coevolved
sites

Spatial distances between two protein residues were calculated

utilizing the nearest protein atom coordinates supplied in the

individual PDB [44] file. Structural properties such as solvent

accessibility, secondary structures, and hydrogen bonds were

computed from the protein structure using the JOY package [45].

Solvent accessibility was measured using the PSA program from

JOY package and residues that have accessible surface area less than

7% were treated as solvent buried or inaccessible. Similarly,

secondary structures (helix, strand and coil) and hydrogen bonding

patterns were estimated using the SSTRUC and HBOND programs

from the JOY package, respectively. Physico-chemical properties

(such as hydrophobicity, polarity, charge etc) were obtained from the

UMBC AAIndex database [46] (Table S4) and were utilized to

distinguish similarity between two coevolved sites.

All amino acids were also categorized into two groups based

on their volume and charge following the scheme described

previously [3]. Covariations between residues which differ from

each other by not more than volume of a methyl group (,30Å) are

called ‘conservative coupling’ whereas residue pairs with volume

difference of more than one or two methyl groups are categorized

as neutral coupling. Larger volume deviations are marked as ‘non-

conservative coupling’ (Table S5). Similarly, pairing between two

oppositely charged residues is termed as ‘non-conservative’ while a

‘conservative coupling’ is constituted by two similarly charged

residues. Likewise, coevolved residue pairs where one residue is

charged while the other is not are termed as ‘neutral coupling’.

Supporting Information

Figure S1 Spatial distribution of coevolved and non-coevolved

sites. Frequencies of coevolved and non-coevolved site pairs are

plotted versus the spatial distances between them. Distance

distribution of coevolved sites from the whole dataset (803

alignments; panel a), ,125Seq dataset (622 alignments; panel b)

and . = 125Seq datasets (181 alignments; panel c) is compared

against randomly selected non-coevolved site pairs.

Found at: doi:10.1371/journal.pone.0008591.s001 (0.07 MB

DOC)

Figure S2 Frequency of charge compensatory substitutions (Y

axis) of coevolved and non-coevolved sites are plotted against the

spatial distances (X axis) between coevolved and non-coevolved

residue pairs, respectively.

Found at: doi:10.1371/journal.pone.0008591.s002 (0.05 MB

DOC)

Figure S3 Similarity in physico-chemical properties within

coevolved residues. Correlation coefficients (X axis) were calculated

between two coevolved sites utilizing matrices (values normalized

from 0 to 1) of 13 non redundant physico-chemical properties (such

as hydrophobicity, polarity, charge etc) obtained from the UMBC

AAIndex database. Non-coevolved pairs were selected by randomly

picking two sites from a pool of non-coevolving sites within each

protein family. Histogram corresponding to the coevolved sites is

shifted toward larger positive values compared to the histogram of

correlation coefficients calculated for randomly selected non-

coevolved sites (p-value,1024) indicating that coevolved sites have

more similar physico-chemical properties compared non-coevolved

sites.

Found at: doi:10.1371/journal.pone.0008591.s003 (0.10 MB

DOC)

Figure S4 Conservative and non-conservative coevolved residue

pairs. Residue pairs were categorized according to volume (a) and

charge (b) of amino acids. Covariations between residue pairs

differing not more than volume of a methyl group (,30Å) are

termed as ‘conservative coupling’ where residue pairs with volume

difference of more than one or two methyl groups are categorized

as neutral coupling. Larger volume deviations are marked as ‘non-

conservative coupling’ (please see Table S5 for details). Similarly,

pairing between two oppositely charged residues is termed as ‘non-

conservative’ while charge a ‘conservative coupling’ is constituted

by two similarly charged residues. Coevolved residue pairs where

one residue is charged while the other is not are termed as ‘neutral

coupling’. Frequencies (normalized by the number of all coevolved

residue pairs) of conservative, non-conservative, and neutral

residue pairs were plotted with respect to the spatial distances (X

axis) between the coevolved residue pairs.

Found at: doi:10.1371/journal.pone.0008591.s004 (0.26 MB

DOC)

Figure S5 Structural properties such as solvent accessibility

(panel a), type of secondary structures (panel b) and hydrogen

bonds (panel c) for the coevolved sites were compared with that of

randomly selected non-coevolved site pairs.

Found at: doi:10.1371/journal.pone.0008591.s005 (0.18 MB

DOC)

Table S1 Mean distances for randomly selected non-coevolved

site pairs are provided within parenthesis. Significance of the test

was determined with respect to the mean distances of randomly

selected non-coevolved pairs (1000 randomization cycles).

Found at: doi:10.1371/journal.pone.0008591.s006 (0.03 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0008591.s007 (0.03 MB

TXT)

Table S3

Found at: doi:10.1371/journal.pone.0008591.s008 (0.01 MB

TXT)

Table S4

Found at: doi:10.1371/journal.pone.0008591.s009 (0.03 MB

DOC)

Table S5

Found at: doi:10.1371/journal.pone.0008591.s010 (0.03 MB

DOC)
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