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Abstract

Purpose: Pharmaco-resistant temporal lobe epilepsy (TLE) is often treated with surgical intervention at some point. As
epilepsy surgery is considered a last resort by most physicians, a long history of epileptic seizures prior to surgery is not
uncommon. Little is known about the effects of ongoing TLE on neural functioning. A better understanding of these effects
might influence the moment of surgical intervention. Functional connectivity (interaction between spatially distributed
brain areas) and network structure (integration and segregation of information processing) are thought to be essential for
optimal brain functioning. We report on the impact of TLE duration on temporal lobe functional connectivity and network
characteristics.

Methods: Functional connectivity of the temporal lobe at the time of surgery was assessed by means of interictal
electrocorticography (ECoG) recordings of 27 TLE patients by using the phase lag index (PLI). Graphs (abstract network
representations) were reconstructed from the PLI matrix and characterized by the clustering coefficient C (local clustering),
the path length L (overall network interconnectedness), and the ‘‘small world index’’ S (network configuration).

Results: Functional connectivity (average PLI), clustering coefficients, and the small world index were negatively correlated
with TLE duration in the broad frequency band (0.5–48 Hz).

Discussion: Temporal lobe functional connectivity is lower in patients with longer TLE history, and longer TLE duration is
correlated with more random network configuration. Our findings suggest that the neural networks of TLE patients become
more pathological over time, possibly due to temporal lobe changes associated with long-standing lesional epilepsy.
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Introduction

Epilepsy surgery is often a more effective way to treat temporal

lobe epilepsy (TLE) than anti-epileptic drugs (AEDs) [1,2], but it is

considered a last resort by many physicians. This reluctance can

be explained by a failure of the surgical procedure to alleviate

epileptic seizures in a considerable number of cases and by the risk

of postoperative cognitive and visual deficits. Another reason for a

delay in surgery is that TLE is often characterized by periods of

remission with relative seizure freedom [3]. As a result, a history of

epileptic seizures of 10 to 20 years prior to surgical intervention is

not uncommon [4].

As most patients in whom surgery is considered suffer from TLE

for a period of at least several years, it is important to understand

how this ongoing disease interferes with brain functioning. If a

prolonged disease course has a negative impact on brain

functioning in TLE patients, this would support the importance

of early surgical intervention. However, relatively little is known

about the natural history of TLE. It is often preceded by an initial

precipitating injury, of which a complex febrile seizure is the most

common [5]. Hereafter, a latent period tends to occur, followed by

recurrent, spontaneous seizures, indicating that TLE might be a

progressive disease [6]. When looking at structural damage related

to epileptic seizures, progressive volume loss of the hippocampus,

amygdala and the entorhinal cortex has been described as a

consequence of ongoing TLE [4]. A correlation between the

number of brain structures with epileptogenic characteristics and

epilepsy duration has been described in TLE patients [7]. It is not

known how functional neural networks change during disease

progression, and what the impact of changes is on seizure initiation
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and propagation. However, a contralateral increase of functional

connectivity for TLE patients has been described [8].

In modern neuroscience, the brain is increasingly seen as a

complex network of dynamical systems with interactions between

local and further remote brain regions. A way to explore the

interactions between brain regions is to look at functional

interactions, also called functional connectivity. Functional

connectivity refers to the statistical interdependencies that exist

between neurophysiological time series [9]. Electrocorticography

[10] and depth electrode [11–13] studies have shown that network

synchronization in the temporal lobe increases during a seizure

when compared to the interictal and postictal states. Several

studies indicate that a predisposing state exists prior to a seizure,

which is characterized by desynchronization or hypersynchroniza-

tion in different surrounding brain areas [14–16]. The changing

synchronization patterns may be explained by the impact of brain

disease on the spatial network configuration of the brain. These

changes can be studied using a ‘graph’ theory approach [9]. A

‘small world’ network is thought to be the optimal network

configuration for brain functioning [17]. In such a small world

network, local integration is high, while the overall integrity of the

network is also maintained (see figure 1). Social networks, the

Internet, and the healthy brain are examples of networks that

show these characteristic small world features [9]. It is suggested

that changes in network characteristics occur in epilepsy patients,

leading to a pathological, more random structure in the interictal

state, which is temporarily reversed during a seizure [10–

12,18,19]. These changes in configuration may lead to disturbed

higher brain functions and further lower the brain’s threshold for

epileptic seizures (for a review see [20]).

A better understanding of the effects of ongoing TLE on neural

functioning might influence the timing of surgical intervention.

Functional connectivity and neural network analysis have shown

to be a promising tool in studying epilepsy and brain tumor

patients. Changes in network characteristics and functional

connectivity have been associated with both epilepsy and brain

lesions [10,15,19,21]. We therefore consider that changes in

functional connectivity and network configuration may be a

marker of possible progression of TLE. We hypothesize that

functional interactions in the brain are correlated to temporal lobe

epilepsy duration. We expect to demonstrate a correlation

between TLE duration and changes in network characteristics of

the temporal lobe. We expect less functional connectivity and a

more random configuration of the temporal neural networks as

TLE duration increases.

Methods

Patients and Data Selection
All pharmaco-resistant TLE patients who underwent temporal

lobe surgery and intraoperative ECoG recordings at the VU

University Medical Center in Amsterdam between October 2003

and September 2005 were eligible for inclusion in this study. The

VU University Medical Center is a tertiary referral centre for

epilepsy surgery as part of the nationwide Dutch Collaborative

Epilepsy Surgery Program.

Intra-operative neocortical registrations were performed using

465 subdural electrode grids (interelectrode distance 1 cm; see

figure 2) and recorded with a Brainlab H digital EEG system

(OSG, Rumst, Belgium). Sample frequency was 500 Hz. The grid

was placed directly on the lateral temporal cortex, covering T1-

Figure 1. Three network types. Three network types based on the model of Watts and Strogatz, 1998. In an ordered network the points are
connected to their nearest neighbours (left) but there are no long-distance connections. In a random network (right), there is no local clustering. In a
small-world network (middle), some local connections are rewired to long distance connections, resulting in high clustering combined with a short
path length.
doi:10.1371/journal.pone.0008081.g001

Figure 2. Intra-cranial corticography recording. Picture of a grid,
placed directly on the cortex for intra-cranial recording.
doi:10.1371/journal.pone.0008081.g002
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T3. The grid position was documented during the procedure on

schematic representations of the brain. For every patient, five

artefact-free epochs of 4096 samples (8,19 s) were selected off-line

by careful visual inspection (ED, CJS). All selected epochs were

recorded while patients were in an interictal state (as determined

by the ECoG recording) and before resection of the lesion had

taken place.

Patients were sedated with propofol during surgery. Due to the

retrospective nature of this study, there was no standardized

protocol to control the amount of anaesthesia while recording

ECoG. As the level of sedation might influence the ECoG, the

burst suppression ratio (BSR) of the recordings was calculated and

used as a covariate in the analysis (See Figure S1 for an example of

used ECoG data). The BSR is the sum of all the regions showing at

least 0.5 seconds of suppression, divided by the total length of the

epochs (40.95 s). Suppression was defined as a region with very

low ECoG activity, using 5 microV as threshold value [22].

Ethics Statement
The data were obtained for clinical purposes with patient

consent for all performed procedures. As a retrospective study this

work was exempt from ethical approval. Data were analyzed

anonymously. All clinical investigations were conducted according

to the Declaration of Helsinki.

Functional Connectivity
Selected epochs were converted to ASCII files for further

analysis with DIGEEGXP software, developed in our department

(CJS). Five selected epochs per patient were filtered in the broad

frequency band (0,5–48 Hz). The phase lag index (PLI) was used

to calculate functional connectivity of the selected epochs [23].

The PLI measures the asymmetry of the distribution of

instantaneous phase differences between different EEG signals.

The PLI rules out volume conduction as a confounding factor,

since the presence of a consistent, nonzero phase lag between two

time series cannot be explained by volume conduction alone. The

PLI is therefore less effected by common sources, while performing

at least as well as the synchronization likelihood (SL) [24] in

detecting true synchronization. The PLI ranges between 0 and 1.

A PLI of more than 0 indicates phase locking to a certain extent,

whereas a PLI value of 0 indicates no coupling or coupling with a

phase difference centered around 06p radians. For a detailed

description of PLI calculation, see Stam [23]. The PLI was

calculated between all channels, resulting in a 20 by 20 channel

matrix. The overall (whole grid) PLI was computed by averaging

all PLI values. To visualize functional connectivity, we projected

the PLI scores per channel over a schematic grid representation,

showing the average synchronization of the channel with the other

channels of the grid (see figure 3).

Graph Analysis
We hypothesize that network topology, and not just average

strength of synchronization as indicated by PLI, is correlated with

epilepsy duration in our study population. A graph is a basic

topographical representation of a network that consists of nodes

(‘vertices’) and connections between these nodes (‘edges’) [17].

Graphs are characterized by a clustering coefficient C and a

characteristic path length L. The clustering coefficient C, which is

the likelihood that neighbors of a vertex will also be connected, is a

measure for the tendency of network elements to form local

clusters. The characteristic path length L is the average of the

shortest distance between pairs of vertices counted as a number of

edges. The path length L indicates how well network elements are

integrated or interconnected [17].

To compute the clustering coefficient C and the characteristic

path length L from the PLI of the ECoG data, we used the

methods described by [25]. The first step in applying graph

theoretical analysis to synchronization matrices is to convert the

N6N PLI matrix into a binary graph, with N as the number of

channels used. A binary graph is a network that consists of vertices

and edges (undirected connections between elements). The PLI

matrix can be converted to an unweighted graph by considering a

threshold T. If the PLI between a pair of channels i and j exceeds

T, an edge is said to exist between i and j; otherwise no edge exists

between i and j.

Differences between the patients in average PLI can influence C

and L when it is computed for a threshold T, because a lower PLI

trivially results in less edges. To control for the influence of the

number of edges, we applied several fixed values of k (k = 3, k = 4,

k = 5), where k denotes the average number of edges per vertex. By

using this method, graphs in both groups are guaranteed to have

the same number of edges. We followed the suggestion of [17] for

the minimal k value for a network with size N (here 20), such that a

random network generated by using this k will still be fully

connected: N$k$Ln(N). In the current study, this was true for

k$3. K values between 3 and 5 have been used in previous studies

with a similar network size [25,26].

Once the PLI matrix has been converted to a graph, the next

step is to characterize the graph in terms of its clustering coefficient

C and characteristic path length L. The path length L was

calculated as ‘harmonic mean’ distance between pairs as described

by [27], making it possible to deal with vertices that are not

connected. The values of C and L for every k were compared to

1000 random surrogate matrices, generated as described by [28],

by calculating the ratio between the C and L of the patient and the

surrogate data (referred to as C-s and L-s). To analyze the small

Figure 3. Visualisation of the functional connectivity pattern
over the temporal lobe. A grid of 4x5 electrodes is placed directly on
the temporal lobe and the registered area is schematically documented.
5 Epochs of representative ECoG recordings are selected per patient.
The PLI values are calculated based on these recordings, resulting in a
matrix with synchronization values for all possible electrode combina-
tions. The figure shows a mean PLI value for each grid electrode based
on this synchronization matrix, representing the average synchroniza-
tion with the other channels.
doi:10.1371/journal.pone.0008081.g003

Long-Term TLE Neural Networks

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e8081



world characteristics of the network we used the measure of small

world index S [29], which is defined as S = (C/C-s)/(L/L-s). A

network can be defined as a small world network if C/,C-s.& 1

and L/,L-s. ,1, which means that any value of S greater than 1

is account for small world network.

Statistical Analysis
All statistical analyses were performed using SPSS15.0 for

Windows (SPSS Inc., Chicago, USA).

Possible correlations between age, age of epilepsy onset and

epilepsy duration were analyzed by means of Pearson’s correlation

coefficients.

Analysis of the correlation between epilepsy duration and the

type of lesion or type of epilepsy was done using independent t-

tests (MTS versus tumor; partial versus generalized seizures) and

one-way ANOVA (differentiated for multiple types of lesions and

seizures).

In order to analyze correlations with seizure frequency, BSR,

PLI and network variables, non-parametric tests were used,

because these variables were not normally distributed. Correla-

tions between PLI and network characteristics and epilepsy

duration, age, age of epilepsy onset, seizure frequency, and BSR,

were analyzed by means of Kendall’s Tau correlation coefficients.

Possible effects of gender, seizure type (partial or generalized),

nature of the lesion (tumor, vascular or mesial temporal sclerosis),

and AEDs (monotherapy or polytherapy) on PLI and network

characteristics were analysed by means of Mann-Whitney

nonparametric U-tests.

Since multiple correlations were analyzed, a Bonferroni

correction was performed.

Results

Patient Characteristics
The files of a total of 27 TLE patients (mean age 40 years, 41%

male) were analyzed (for patient characteristics, see table 1 and 2).

Surgical outcome after one year was documented according to the

modified Engel scale [30]. Three patients showed artefacts in the

ECoG recordings, which occurred in one channel (one patient) or

two channels (two patients). These artefacts were caused by bad

Table 1. Clinical data.

Patient Gender Age History of epilepsy (yrs) Seizure type Path Outcome (one year)

1 F 36 22 Partial simple and complex DNET IA

2 M 41 5 Partial simple and complex MTS IB

3 F 35 3 Sec. generalized; partial complex LGG IA

4 M 49 42 Partial complex MTS IA

5 M 41 0 Partial simple and complex LGG IB

6 M 21 3 Generalized; partial complex DNET IA

7 M 18 12 Partial complex MTS ID

8 M 57 3 Partial complex AVM IA

9 F 68 32 Partial complex MTS IA

10 F 48 15 Partial complex Unknown IA

11 F 17 16 Generalized MTS IA*

12 M 38 36 Partial complex MTS IA

13 F 20 3 Partial simple MTS IA

14 F 37 30 Partial complex MTS IA

15 F 35 25 Generalized; partial complex LGG IA

16 F 52 50 Generalized; partial complex MTS IA

17 F 25 24 Sec. generalized; partial simple and complex MTS IIA

18 M 67 20 Generalized; absence, partial complex HAEM IID

19 F 42 15 Generalized, partial complex, partial simple LGG IA

20 M 50 4 Absence HAEM IA

21 M 33 21 (Sec.) generalized; partial complex MTS IIB

22 F 50 25 Sec. generalized; partial complex MTS IIB

23 F 41 4 Partial simple and complex HAEM IA

24 F 28 8 Sec. generalized; partial simple MTS IB

25 F 42 28 Generalized; partial complex MTS IID

26 M 41 25 Partial complex Unknown IB

27 F 43 15 Sec. generalized; partial simple and complex MTS IA

Abbreviations: F = female; M = Male; yrs = years; Path = pathology; DNET = Dysembryoplastic Neuroepithelial Tumor; MTS = Mesiotemporal sclerosis; LGG = Low-Grade
Glioma; AVM = Arteriovenous malformation; HAEM = Cavernous Haemangioma; Unknown = tumor of unknown pathology; Outcome (one year) = Clinical outcome one
year after surgery according to a standardized scale of epilepsy burden (Engel et al, 1993); IA = seizure free; IB = non-disabling partial seizures; IC = some disabling
seizures; ID = generalized seizures only when AED is stopped; IIA = First seizure free, now rare seizures IIB = rare disabling seizures; IIC = More then rare disabling seizures
since surgery; IID = nocturnal seizures only.
* = Data were only available at 6 months after surgery.
doi:10.1371/journal.pone.0008081.t001
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contacts between the grid and the temporal brain surface. The

artefact channels were excluded from further analyses in these

patients.

Four correlation coefficients were calculated regarding epilepsy

duration and its correlation with other patient characteristics (age,

age of epilepsy onset, BSR, seizure frequency). A Bonferroni

correction for multiple analysis was performed, determining that

significant correlations were found only when p,0.013 level was

reached.

Functional Connectivity
The overall PLI was significantly correlated with the history of

epilepsy: PLI was lower when epilepsy duration was longer

(Kendall’s Tau = 20.389; p = 0.005) (see Figure 4). Correlations

with PLI are shown in table 3. We found a significant correlation

between the PLI and BSR, indicating that a higher level of

sedation was correlated with increased PLI. Also, higher PLI was

correlated with a higher age of onset. No correlation was found

between seizure frequency and PLI. The significance level was set

at p,0.013 for correlations of patient characteristics (epilepsy

duration, age of onset, BSR, seizure frequency) with PLI, because

four correlations were calculated. The correlations between

epilepsy duration and BSR with PLI, remained significant after

the Bonferroni correction.

Group comparisons were made to analyze possible correlations

between gender, lesion type or single versus multiple AED use and

PLI. Mann-Whitney U Test showed a significantly lower PLI in

patients using multiple AEDs (M = 0.159) when compared to

single AED use (M = 0.207). No correlation was found between

lesion type or gender and PLI. The PLI difference for single versus

multiple AED use remained significant after Bonferroni correction

(p,0.025 as two comparisons were calculated).

Graph Analysis
The clustering coefficient C and small world index S were

correlated with history of epilepsy for an average degree k = 3

(Kendall’s Tau (C) = 20.346; p = 0.013 and Kendall’s tau

(S) = 20.360; p = 0.009 respectively) (see figure 5). The correlation

of epilepsy duration with the small world index S remained

significant after Bonferroni correction, determining correlations to

be significant when p,0.013 was reached. The clustering

coefficient C showed a correlation with epilepsy duration at a

significance level of p = 0.013, which was the same as the cut-off

point for significance after Bonferroni correction. An example of a

network distribution over the ECoG grid is shown in figure 6.

When using an average degree k = 4, clustering coefficient and

small world index tended to be correlated to epilepsy duration

(Kendall’s tau (C) = 20.236; p = 0.090 and Kendall’s tau

(S) = 20.226; p = 0.103 respectively), but did not reach the

significance level (p,0.013). No group differences were found

regarding graph analysis when using k = 5.

There were no significant correlations between gender, age of

epilepsy onset, AED use, or BSR with respect to clustering

coefficient C, path length L, and small world index S for the used

Table 2. Patient characteristics.

Category Subcategory Result (6SD) Correlation with epilepsy duration

Age 40613 .

Gender Male 41% .

Female 59%

Type of lesion MTS 56% .

Tumour 37%

Unknown 7%

History of epilepsy (years) 18613 Not applicable

Seizure frequency (per year) 6366718 20.378 (p = 0.009)

Age of onset (years) 22616 20.589 (p = 0.001)

Type of epilepsy Partial 56% .

Generalized 44%

Antiepileptic drug use Monotherapy 33% .

Polytherapy 67%

BSR 0.1560.13 20.307 (p = 0.030)*

Several characteristics of the patient population. Seizure frequency is reported as an extrapolation of the patient’s medical record, e.g. one seizure per week was
reported as 52 seizures per year. Correlations with epilepsy duration were given if significant.
* = The correlation between BSR and epilepsy duration was no longer significant after Bonferroni correction.
doi:10.1371/journal.pone.0008081.t002

Figure 4. Correlation between epilepsy duration and function-
al connectivity. The Phase Lag Index (PLI) value is given as a function
of epilepsy duration of each patient, showing a decreased PLI with
longer epilepsy duration.
doi:10.1371/journal.pone.0008081.g004
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values of k. However, a correlation was found between seizure

frequency and clustering coefficient C and between seizure

frequency and small world index S for k = 3: higher seizure

frequency was associated with higher local clustering and a higher

small world index of the network. These correlations were still

found to be significant after Bonferroni correction (significant

correlation when p,0.013). There were no correlations between

seizure frequency and local clustering, path length, and small

world index for k = 4 and k = 5.

Several interactions between patient characteristics were ana-

lyzed, as mentioned in the methods section (table 2). A significant

negative correlation was found between epilepsy duration and age

of epilepsy onset (Pearson correlation = 20.589; p = 0.001),

indicating that patients with a longer epilepsy duration were

younger at epilepsy onset. We also found a negative correlation

between epilepsy duration and seizure frequency (Kendall’s Tau

= 20.378; p = 0.009). This indicates that patients with a longer

history of epilepsy had a lower seizure frequency. Epilepsy duration

tended to be negatively correlated with the BSR (Kendall’s Tau

= 20.307; p = 0.030), indicating a lower sedation level during

ECoG recordings in patients with a longer epilepsy duration.

However, the significance level for this interaction was no longer

reached after Bonferroni correction. No other interactions were

found between the patient characteristics.

Discussion

Functional Connectivity
This study indicates that broad-band functional connectivity

recorded intra-operatively over the temporal neocortex is lower in

patients with a longer history of TLE. The association between

pathology and lower functional connectivity is in line with other

studies. Correlations between functional connectivity loss and

pathological states such as epilepsy, brain tumors, and schizo-

phrenia have been described previously [15,21,31]. Bartolomei

and others found a correlation between duration of epilepsy and

the number of cortical structures with epileptogenic characteristics

by analyzing intracerebral EEG recordings of TLE patients [7]. A

correlation has been reported between brain tumors and

decreased broad-band functional connectivity [21]. It is hypoth-

esized that pre-ictal hypersynchronized epileptogenic zones may

be surrounded by isolating zones of hyposynchronization [15].

Ponten and others found that synchronization increases during a

seizure in TLE patients [11]. Based on these studies, it is

hypothesized that epileptogenic zones might be identified by their

synchronization pattern. Synchronization analysis may therefore

be useful as a method to functionally map the temporal cortex of

TLE patients, hereby locating specific sites that participate in the

initiation and propagation of seizures [32,33]. Furthermore,

analyzing synchronization patterns might be a way to locate

epileptic foci in TLE patients who are selected for epilepsy surgery.

Ortega and colleagues have suggested that seizures might arise

from specific regions that have synchronization patterns which are

highly differentiated from patterns in the rest of the temporal

cortex [32,34].

Network Properties
This study shows that patients with a longer TLE duration have

less small world network properties in the temporal cortex,

suggesting that a less optimal functional network configuration

occurs in the course of TLE. This study is the first to show an

association between changes in neural network characteristics and

the duration of TLE.

The correlation between increased network randomization and

increased TLE duration is found to be most pronounced when

using a high threshold for the number of edges (k = 3). The choice

of a threshold is somewhat arbitrary, but also provides information

about the connections that change over time. We speculate that in

this study, more random networks in patients with a longer

epilepsy duration reflect a randomization of the strongest local

connections. This randomization results in a less optimal local

network configuration, which might reflect a higher vulnerability

for seizures.

Morgan and Soltesz [35] found that the incorporation of a small

number of highly interconnected granule cell hubs into a rat

dentate gyrus model greatly increases network activity. In their

model, this resulted in a hyperexcitable, potentially seizure-prone

circuit.

Several other model studies describe the potential importance of

network randomization regarding the vulnerability to seizures.

Netoff and co-workers found in a hippocampal slice model that

seizures could be induced by changing the proportion of local

versus long-distance connections [36]. As the neural network

configuration was transformed into a more random network,

seizure-like behavior was more likely to arise. Srinivas and others

observed hippocampal rat neurons in vitro which were injured

with an exposure to glutamate [37]. The neural network became

hypersynchronous and fired bursts at high frequency after this

injury, which they interpreted as induced epileptic activity. The

network properties showed that the clustering coefficient decreased

after injury: the network became more random as epileptic activity

developed. Percha and others found that in a model of mesial

TLE, epileptogenesis is characterized by structural changes in the

neural network topology and axonal sprouting [18]. They showed

in a two-dimensional model that an abrupt transition from an

unordered local state to an ordered state of global coherence

occurs when the network configuration changes from a small-

world network to a more random network configuration. The

Table 3. Correlations with functional connectivity and network characteristics.

Category PLI C/Cs (k = 3) L/Ls (k = 3) S (k = 3)

Age of onset 0.390 (p = 0.005) . . .

History of epilepsy 20.389 (p = 0.005) 20.346 (p = 0.013) . 20.360 (p = 0.009)

Seizure frequency . 0.376 (p = 0.009) . 0.412 (p = 0.004)

Antiepileptic drug use U = 17 (p,0.001) . . .

BSR 0.551 (p,0.001) . . .

All significant correlations with PLI and network characteristics. Antiepileptic drug use is shown as a Mann-Whitney U test value, reflecting a significantly lower PLI in
monotherapy versus polytherapy. All other values represent correlation coefficients with corresponding p-values.
doi:10.1371/journal.pone.0008081.t003
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authors speculated that a seizure arises as brain pathology causes

the transition to a more random network beyond a critical point.

But what causes this randomization? The lesions in TLE

patients result in cell loss, which might cause a reduction of the

number of connected edges [38], as has been described in brain

tumor patients [19]. Apart from cell loss, mossy fiber sprouting is a

hallmark of seizure-induced sclerosis in TLE. Dyhrfjeld-Johnsen

and others used a model with cell loss and sprouting to simulate

network changes in TLE patients [39]. The value of L/

Lrandom = 1,19 found in the Dyhrfjeld-Johnsen study at baseline

(without a sclerotic process) was the same as the average path

length found in our study. When looking at progression of

sclerosis, we see that one of their simulation models, based on

mossy fiber sprouting, also has a pattern similar to ours. In this

model, L/Lrandom remains stable while C/Crandom becomes more

random with increasing sclerosis. Mossy fiber sprouting might

therefore explain our findings of a more random network with

increased epilepsy duration.

Previous clinical studies have already shown a correlation

between dynamic functional network properties and TLE.

Wendling and others found that the interaction of local

interneuron connections in TLE patients is involved in the

interictal to ictal state transition [14,35]. Ponten and co-workers

analyzed the network configuration of mesial TLE patients based

on the synchronization likelihood [11]. They compared network

topography before, during, and after a seizure. A more randomly

organized network was present in the interictal state, which moved

towards a more ordered configuration during seizures. Most

changes occurred in the C/C-s ratio. Schindler and colleagues

found a similar result in their analysis of EEG recordings of 100

epilepsy patients [12]. Their study showed an increase of C/C-s

ratio and L/L-s ratio during seizure onset, and a decrease of these

parameters during seizure end. Kramer and others also found a

changing clustering coefficient and small world index at seizure

onset [10]. Our study suggests that a long history of seizures (which

induces shifts in network topology) may be related to functional

changes in interictal local clustering and small world properties.

An unexplained phenomena in TLE is its course, which is often

characterized by a seizure-free latency period after initial onset,

eventually ended by recurrence of seizures. Because of this course,

it is suggested that TLE should be seen as a progressive disease.

Bernasconi and others found progressive volume loss of the

hippocampus, the amygdala, and the entorhinal cortex in TLE

Figure 5. Correlation between epilepsy duration and network
characteristics. The clustering coefficient C and average shortest path
length L were calculated for each patient and compared to 1000
random networks, resulting in a ratio C/Cs and L/Ls. Network
characteristics were plotted into a graph as a function of epilepsy
duration, showing a decrease of C/Cs (5A) and no change of L/Ls (5B),
resulting in a decrease of the small world index S (5C). The shown
results represent the network characteristics for an average number of
connections k = 3.
doi:10.1371/journal.pone.0008081.g005

Figure 6. Network representation on the ECoG grid. Network
representation of patient 13 for an average number of connections
k = 3. The characteristics of this network are: C/Cs = 2.12, L/Ls = 1.07 and
S = 1.98. Note that some edges are printed bold. These edges represent
connections between three so-called ‘hub’ vertices (vertices with a
relative high number of connections), which increase the small world
properties of the network in two ways. Firstly, the edges mark a local
cluster, which increases the network characteristic C/Cs. Secondly, this
particular cluster also increases the global integration of the network as
almost all connected vertices in the network can be reached through
these hubs, resulting in a lower L/Ls.
doi:10.1371/journal.pone.0008081.g006
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patients, which is the structural manifestation of progression [4].

The possible emergence of an epileptogenic network during the

silent period of TLE has been described [40]. There seems to be a

randomness threshold, beyond which a network is prone to

seizure-like behaviour. Neural networks of TLE patients may

become more random during the latency period, allowing this

threshold to be crossed and thus resulting in seizures recurrence

[41,42]. Our findings support the hypothesis of such a transition,

changing the network configuration over time to a more random

state which is more prone to seizures.

Furthermore, the recurrence of a single seizure might lower the

threshold for new seizures to occur in TLE patients [6,43]. From

this perspective, it might be hypothesized that not only structural

changes due to the lesion alter the functional network configura-

tion, but the seizures do as well. We speculate that lesion and

seizures affect the local neural networks in such a way that they

become more prone to seizures, which might play an important

role in the recurrence of epilepsy after a latency period in TLE

patients.

Age of epilepsy onset, AED use, and level of anaesthesia during

surgery must be considered as possible confounders in this study

regarding functional connectivity, as these factors were correlated

with both epilepsy duration and functional connectivity. However,

the found correlation remained a significant result after Bonferroni

correction, indicating that the result was robust and was not

explained by multiple testing. Age of onset was not correlated with

network characteristics (C, L, and S). Likewise, AED use and level

of anaesthesia during surgery were related to synchronization, but

not to network configuration measures. These findings show that

network characteristics, although based on functional connectivity,

measure different functional properties. Lesion volumes were not

available and were therefore not included in our analysis.

In our study, we have found a correlation between higher

seizure frequency and a higher clustering coefficient and small

world index. We also found, however, a higher seizure frequency

to be correlated with the history of epilepsy. This could be

expected because data were collected in the clinical setting of an

epilepsy surgery program. Surgery is preferred as the epilepsy

burden (of which seizure frequency is an important factor)

becomes subjectively unacceptable; surgical intervention might

therefore be evaluated earlier in the disease course when patients

suffer from seizures more frequently. Seizure frequency must be

considered as possible confounder in this study. However, a

Bonferroni correction was performed and our results regarding

small world index remained significant, whereas the local

clustering reached a p-value that was the same as the cut-off

point for significance. We have found our results to be evidence of

a robust correlation between epilepsy duration and these network

characteristics. Apart from that, seizure frequency is reported as

an extrapolation of the number of seizures patients suffered from

at time of surgery, which does not truly represent the total number

of seizures patients have had. Due to the retrospective nature of

this study, we were not able to trace the absolute total number of

seizures that patients had suffered from. Future research should

point out whether the number of seizures prior to surgery is of

influence on network characteristics.

Recently, a correlation has been shown between small world

network topology and cognitive functioning [44]. Moreover,

changed network characteristics in brain tumour patients may

be responsible for cognitive decline [45]. Cognitive deficits are also

an important quality of life limiting factor in temporal lobe

epilepsy patients [46]. The correlation between disturbed

functional networks and lesional epilepsy should therefore be

subject of future studies.

Conclusion
In the present study we have shown that there is both a decrease

in connectivity of functional networks in the temporal lobe and

that those same networks are more random in TLE patients

having a long history of epilepsy. In particular we speculate that

the functional neural networks of TLE patients become more

random due to the influence of ongoing seizures on the structure of

the network, irrespective of the presence of a structural lesion.

Therefore our findings suggest that, as far as neural network

functioning is concerned, surgical intervention might be more

effective if performed earlier on in the course of TLE. Further

investigations should address the course of epilepsy in TLE

patients from the perspective of plasticity of network characteristics

that accompany this process.

Supporting Information

Figure S1 Epoch of ECoG data. Example of one epoch (8.19

seconds; sample rate 500 Hz) ECoG data, filtered in the broad

frequency band 0.5–48 Hz. The intervals with low amplitude were

interpreted as burst suppression periods when lasting more then

0.5 seconds.

Found at: doi:10.1371/journal.pone.0008081.s001 (4.48 MB TIF)
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