
BFAST: An Alignment Tool for Large Scale Genome
Resequencing
Nils Homer1,2, Barry Merriman2*, Stanley F. Nelson2

1 Department of Computer Science, University of California Los Angeles, Los Angeles, California, United States of America, 2 Department of Human Genetics, David Geffen

School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America

Abstract

Background: The new generation of massively parallel DNA sequencers, combined with the challenge of whole human
genome resequencing, result in the need for rapid and accurate alignment of billions of short DNA sequence reads to a
large reference genome. Speed is obviously of great importance, but equally important is maintaining alignment accuracy
of short reads, in the 25–100 base range, in the presence of errors and true biological variation.

Methodology: We introduce a new algorithm specifically optimized for this task, as well as a freely available
implementation, BFAST, which can align data produced by any of current sequencing platforms, allows for user-
customizable levels of speed and accuracy, supports paired end data, and provides for efficient parallel and multi-threaded
computation on a computer cluster. The new method is based on creating flexible, efficient whole genome indexes to
rapidly map reads to candidate alignment locations, with arbitrary multiple independent indexes allowed to achieve
robustness against read errors and sequence variants. The final local alignment uses a Smith-Waterman method, with gaps
to support the detection of small indels.

Conclusions: We compare BFAST to a selection of large-scale alignment tools - BLAT, MAQ, SHRiMP, and SOAP - in terms of
both speed and accuracy, using simulated and real-world datasets. We show BFAST can achieve substantially greater
sensitivity of alignment in the context of errors and true variants, especially insertions and deletions, and minimize false
mappings, while maintaining adequate speed compared to other current methods. We show BFAST can align the amount of
data needed to fully resequence a human genome, one billion reads, with high sensitivity and accuracy, on a modest
computer cluster in less than 24 hours. BFAST is available at http://bfast.sourceforge.net.

Citation: Homer N, Merriman B, Nelson SF (2009) BFAST: An Alignment Tool for Large Scale Genome Resequencing. PLoS ONE 4(11): e7767. doi:10.1371/
journal.pone.0007767

Editor: Chad Creighton, Baylor College of Medicine, United States of America

Received September 2, 2009; Accepted October 14, 2009; Published November 11, 2009

Copyright: � 2009 Homer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was partially supported by University of California Systemwide Biotechnology Research and Education Program GREAT Training Grant
2007-10 (to NH), the NIH Neuroscience Microarray Consortium (U24NS052108), a supplement to a grant from the NIMH (R01 MH071852) and the Dani Saleh Brain
Tumor Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: barrym@ucla.edu

Introduction

Recently developed massively parallel ‘‘next-generation’’ se-

quencing technologies have begun to replace the previously

dominant Sanger sequencing technology [1–3] for large-scale

sequencing projects. Technologies like Illumina’s Genome Ana-

lyzer [4], Roche’s 454 [5,6], and ABI’s SOLiD [6] are able to

generate billions of bases of total sequence in a matter of days.

These technologies generate relatively short reads, typically from a

few tens to a few hundred bases in length, with a general inverse

relation between the total number of reads and the read length. In

the context of whole human genome resequencing, on the order of

a billion short reads are required to accurately resequence an

individual genome, and this creates an unprecedented alignment

problem of aligning this many reads to the reference human

genome on a practical timescale of days. Using established

dynamic programming algorithms [7] to align reads to the entire

human genome is grossly impractical, since the computational cost

is proportional to the target size. To reduce the cost resulting from

a large alignment target, many algorithms have been developed

that rapidly reduce the size of the search target for aligning a given

read. This is typically performed by passing it through an index of

the reference genome [8–14], or by indexing the reads and

searching the reference genome [15,16]. Using an indexing

approach, all the algorithms reduce the time complexity by

trading off accuracy and completeness of the search for candidate

alignment locations (CALs) to which local alignment is performed.

In aggregate, these algorithms are either limited in performance

time or accuracy, and can lead to the inability to detect the

biologically relevant variants (predominantly single base mis-

matches, and insertions or deletions of 3 bases or greater), and

with some algorithms imposing a limit on the length of the read

that can be considered (see Supplemental Materials S1).

To address the general speed and accuracy limitations,

especially in the context of short reads with potential errors,

single base variants and insertion/deletions, of the currently

described alignment tools, we developed a new algorithm and

associated software tool called BFAST (for BLAT-like Fast

Accurate Search Tool). BFAST can align giga-scale short read

sets with comparable or better speed compared to existing

PLoS ONE | www.plosone.org 1 November 2009 | Volume 4 | Issue 11 | e7767

methods, while maintaining higher sensitivity and accuracy for

deletions/insertions. While our algorithm is meant to facilitate

practical human whole-genome resequencing, it is not restricted to

this task and should prove useful for many problems that involve

aligning massive numbers of short reads to a reference genome.

Here we describe the basic approach and demonstrate BFAST

robustness to detect an insertion or deletion, relative to other

methods in the real world context of sequence errors and

polymorphisms. BFAST also has the ability to be customized for

given time or sensitivity requirements, since we are able to a priori

measure the theoretical sensitivity against mismatches and variants

before performing alignment based on the underlying choice of

genomic indexes.

Results

General Design of BFAST
BFAST is a powerful and complete means to perform billions of

short sequence alignments within the context of large genomes in a

highly sensitive and tunable manner. BFAST performs alignment

in two steps. First, using multiple indexes of the reference genome,

BFAST identifies candidate alignment locations (CALs) for each

read. Next, the reads at each CAL are further aligned using

gapped local alignment to identify the best match. These processes

are supported for direct sequence reads (the typical output of

platforms based on sequencing-by-synthesis, such as the Illumina,

454 or Helico sequencers) as well as reads in two base color

encoded form, which is the primary output of the ligation-based

ABI SOLiD platform. The first step can be substantially tuned for

various levels of sensitivity, accuracy, and speed based on the users

goals and the error properties of the data. The second step allows

for full completion of alignment - i.e. considers all possibilities

including SNPs, insertions, deletions, as well as color errors (the

latter is relevant for ABI SOLiD data) [7,17]. Gapped local

alignment is considerably more computationally expensive than

ungapped alignment, especially for ABI SOLiD color space data,

but improves our ability to find SNPs, insertions, deletions, and

compensate for color errors simultaneously. In addition, allowing

for fully gapped local alignment makes BFAST suitable for data

that contains indels as a common error mode (for example, in the

454 or Helicos platforms). Additionally, these indexes are

expensive to store in main memory (RAM), and therefore should

be fully utilized by generating as many lookups per read as

possible, providing sensitivity to errors and variants. What makes

BFAST unique is that prior methods neglect one of followings

areas that are inherent and key to the highly sensitive and

relatively fast lookup process enabled within the design principles

of BFAST: 1) use of multiple indexes, 2) full use of indexes when

loaded into RAM, or 3) perform fully gapped local alignment (see

Supplemental Materials S1).

The novel contribution of BFAST is the CAL search step,

where we tabulate a list of CALs for each read with the goal to

include the true (or correct) location within the CALs. BFAST uses

multiple indexes of the reference to increase sensitivity of

alignment. Each index is a space-efficient suffix array of the

reference genome (see Figure 1). An index is defined by a spaced

seed (or mask), a string of 0s and 1s that start and end with a 1,

that define the bases in the read considered during the lookup in

the index (see Table 1 for a complete example optimized for the

human genome). We refer to the number of ones in the mask as

the key size (k), and the total number of ones and zeros as the key

width (w). The number of CALs returned depends on the key size

as well as the complexity and repetiveness of the target genome,

with longer key sizes making the lookup more unique (on average)

but generating fewer lookups resulting in reduced sensitivity

(Figure 2). The number of matching CALs from the global search

for various length k-mer keys from the Human reference genome,

including the forward and reverse complementary sequence

(,6?109 keys), indicates that for the non-repetitive part of the

genome, a key size of k = 18–22 is sufficient for obtaining a unique

lookup the majority of the time, but that a key size of 14 or lower

would rarely return a unique CAL (Figure 2). Conversely, a key

size of 50 would primarily return a single CAL. Since we are able

to apply a mask at every offset from the start of the read, we try to

minimize the key size (and key width) to generate more lookups.

Therefore, we choose a large enough key size such that the lookup

is unique but small enough such that multiple lookups can be

produced. The repetitive portion of the genome has a large

number of CALs as expected and indicated at the tail populations

in the histograms with 102–107 locations (i.e. Alu elements).

Therefore, for the human genome we prefer k = 18 for short reads

(40 bp,) and k = 22 for longer reads (#40 bp) to balance

sensitivity and the uniqueness of the lookup. Shorter keys are

useful for shorter reads as the number of offsets possible is greater

and improves sensitivity. BFAST implements a hash into the index

to reduce the lookup time (see Figure 1) that consists of indexing

the first j bases (the hash width) of the reference indexes with j#k.

The hash width is always shorter than the key size.

For the human genome and 50 bp reads, we typically use ten

indexes with key size 22 with variable key widths, and a hash width

of 14. The ten masks for the indexes are chosen using a simple

greedy algorithm to maximize sensitivity gain from each additional

mask (see Supplemental Materials S1 for more details). Other

methods to find optimal spaced-seeds are available[18–20]. For

50 bp Illumina data from a human genome, ten indexes and their

associated masks were optimized for sensitivity (Table 1). The

RAM required to load each index for the human genome serially

is approximately 17Gb, and the practical total computer RAM

requirement for optimal performance is 24Gb, which is readily

feasible with current computer hardware. BFAST also has the

ability to split an index into 4n pieces (this number is chosen for

efficiency), although the lookup phase of the alignment takes

somewhat longer because each read will undergo a lookup attempt

for each partial index. In this mode, BFAST for the human

genome can run well on computers with as little as 4Gb of RAM.

Since the key width of an index (w) here is less than the read

length, we are able to apply the mask at all possible starting

positions offset from the beginning of the read to increase the

number of lookups performed per read and thus further improve

sensitivity. Additionally, to reduce the running time of BFAST at a

small reduction in sensitivity, we impose two upper limits during

the search. The first requires that a single lookup be ignored if it

returns more than K CALs (we use K = 8 for the human genome).

The second requires that a read be ignored if the list of CALs for a

read grows beyond length M (M = 1280 for the ten indexes with

the human genome presented here). The number of CALs can be

reduced, which improves performance time but decreases

sensitivity. Further discussion of appropriate settings of K and M

can be found in the Supplemental Materials S1 (see Figure S4).

Within BFAST, paired-end or mate-pair data are aligned

independently for each end while retaining the paired-end or

mate-pair annotation, which provides flexibility in downstream

analyses and permits us to assess the performance of the short read

alignment.

In the Supplemental Materials S1, we examine the design

choices leading to conception of BFAST, including its basis on

BLAT[10]. We also detail the motivation for the parameters

mentioned above when aligning to the human genome

BFAST

PLoS ONE | www.plosone.org 2 November 2009 | Volume 4 | Issue 11 | e7767

Figure 1. Algorithmic steps and underlying data structure used by BFAST. BFAST has three sequential steps: create indexes of the
reference, find CALs (candidate alignment locations) using the indexes, and perform gapped local alignment. Gapped local alignment is performed
on all possible CALs in order to identify the best possible alignment. Thus, a highly sensitive and comprehensive search step is followed by an
integrated local alignment to maintain high sensitivity and high accuracy. The indexes can be reused on new sets of reads when the reference
remains the same. In Panels A–D we detail the underlying data structure and storage format used to represent and access an index. Panel A
represents an example genome (shaded region) to be indexed and a list of all suffixes of the genome with length greater than 10. The shaded regions
are the only portions that must actually be stored in RAM: the genome sequence, the ordering of the suffix list, and the entries of the k-mer hash
lookup. Panel B shows a mask with a key-size of 4 and width 11 to be indexed (10100000011), with a list of all suffixes ordered by the 4-mer keys
defined by the mask that are possible from the target sequence. The vertical shaded region in Panel B gives the original ordering of the suffixes, or
alternatively their start positions in the genome. A 2-mer hash table is shown in Panel C and is used to rapidly lookup 4-mer entries in the index with
the key based on the 2-mer prefix of the 4-mer word. This hash, or an index into the index, returns a range (order start and order end) over the
ordered suffix list in Panel B. Panel D shows the possible lookups for a 13-base read using the index defined in Panels A, B, and C. There is an
error in the seventh position shown in red. Using the index, three different 4-mers can be defined by sliding the mask along the read. To lookup a
given 4-mer, such as ATAG, the hash table is first consulted to find that the prefix AT extends from entry 2 to entry 3 in the index. Since this is not a
unique range (i.e. the start and end are equal), the index is bisected using the range from the hash lookup, until all positions with ATAG are located.
The read error (or mutation) interferes with alignment in that only one of the three 4-mers are found in this created index, but still yields the proper
location for this read in the genome, further indexes would make reads with more errors/mutations mappable correctly. In practice longer keys are
used.
doi:10.1371/journal.pone.0007767.g001

BFAST

PLoS ONE | www.plosone.org 3 November 2009 | Volume 4 | Issue 11 | e7767

reference. Finally, in the Supplemental Materials S1, we

examine the ability of BFAST to be tuned trading off time for

sensitivity. In practice we prefer sensitivity to speed, since it is

our goal for whole-genome human resequencing to discover

variants in the presence of errors.

Performance Results
In order to assess the performance of BFAST, we compare

BFAST to other available software for the ability to correctly map

short reads in the context of different numbers and types of base

differences from the consensus human genome such that the use of

BFAST for variant discovery in the human genome is apparent

and can be reasonably inferred. For this, both simulated and real

world datasets are used. In all comparisons, we evaluate the ability

of a method to sensitively and accurately find the correct candidate

alignment location (CAL) for a given read during the global

alignment step. Within BFAST, the CAL is followed by a gapped

Smith-Waterman local alignment for each CAL returned, and

subsequent assessment of the best alignment to the consensus

genome of all possible CALs. In this approach, BFAST sacrifices

some speed in the CAL identification process in exchange for

completeness and results in gapped local alignment being

performed on all CALs. Most other methods do not perform

gapped local alignment (bowtie, and SOAP), or only in

exceptional circumstances with paired end data (MAQ). These

methods sacrifice completeness for speed, which may be desirable

under some scenarios, but will also lessen the ability to identify true

variants. We note that in our simulations we do not require that

the errors, SNPs, or indels be identified correctly or even found by

other methods, but instead require only that the read is placed

within 10 bases of the true location. Thus we are only evaluating

the methods on their ability to find a correct CAL during the

genome-wide global alignment, and not their ability to finish this

with correct variant detection. We take this approach for two

reasons: first, unlike BFAST, many of the aligners do not perform

the full gapped alignment that would be necessary to properly

identify indels, and yet we still wish to compare their performance

properties to the extent possible. Second, in the context of a

resequencing project, variant detection is ultimately a process in

which alignment is only the first phase, and which could employ

diverse analytical methodologies, such as local reassembly, to

return final variant calls. Thus it is most critical to properly

position the reads, via a correct CAL, but it is not fundamentally

critical for the aligner to fully detect the variant within the read,

although it certainly is a useful capacity and obviously can help in

finding the approximate location. We also note as well that it is not

our intent here to perform a comprehensive comparison of

aligners, or to exhaustively compare all available methods to the

many possible modes (index choices) of BFAST, but instead to use

a representative sample of other reported methods to put the

performance of BFAST in context, and to illustrate the key areas

where BFAST provides a compelling advantage in the search for

variants in the context of the human genome.

BFAST was compared under various models of errors and

insertion/deletions to other alignment tools to determine if there

were observable improvements in alignment in the simulated

datasets (Figure 3). We evaluated BFAST, along with BLAT [10],

bowtie[13], BWA[14], MAQ[16], SHRiMP[15], and SOAP[11],

using various simulated datasets in order to demonstrate practical

and beneficial features that are unique to BFAST. We used the

same settings for these algorithms across the evaluations. Each

method handles reads that map to different locations differently.

For instance, reads with are equally mapped to multiple locations

in MAQ are given a quality mapping score of zero and are here

considered ‘unmapped’. In BFAST, up to 384 CALs are

considered and are sorted out by gapped local alignment. If a

read maps best to a given location relative to the other CALs, it is

considered ‘mapped’ and may thus inflate the error rate if indeed

mismapped. If a read is equally mapped to two alternative

locations in the genome for BFAST after local alignment it is

considered ‘unmapped’. This permits a more direct comparison of

the global search in the context of false mapping rates. To evaluate

the sensitivity and accuracy of the various alignment algorithms,

we simulated from the human genome various 50 base-pair read

classes. Each read class contained reads with a fixed number of

introduced random errors relative to the consensus genome

sequence. Both single base differences (dominantly from errors of

the machines) and various length insertions or deletions were

considered separately or together in order to obtain accuracy

statistics to compare with theoretical accuracy (Figure 3). Further,

since the distribution of the simulated read classes is not necessarily

representative of real data from massively parallel sequencers, we

also evaluated the performance and running times of alignment

Table 1. Index sets used by the four modes of BFAST for 50 base pair reads from the human genome.

Mask Key size (k) and key width (w) 1 2 3 4

M1=111111111111111111 (k = 22, w = 22) M M M M

M2=1111101110111010100101011011111 (k = 22, w = 31) M S

M3=1011110101101001011000011010001111111 (k = 22, w = 37) M S

M4=10111001101001100100111101010001011111 (k = 22, w = 38) M S

M5=11111011011101111011111111 (k = 22, w = 26) M

M6=111111100101001000101111101110111 (k = 22, w = 33) M

M7=11110101110010100010101101010111111 (k = 22, w = 35) M

M8=111101101011011001100000101101001011101 (k = 22, w = 39) M

M9=1111011010001000110101100101100110100111 (k = 22, w = 40) M

M10=1111010010110110101110010110111011 (k = 22, w = 34) M

The masks sets for each of the four BFAST modes: accurate, moderate accuracy, moderate speed, and fast are listed under the columns 1, 2, 3, and 4 respectively
optimized for 50 base pair reads from the human genome. We prefer to use the accurate setting when aligning to the human genome. The masks used in the main
indexes are listed as M, and the masks used in the secondary indexes are listed as S. The key-sizes and key-widths are indicated next to each mask.
doi:10.1371/journal.pone.0007767.t001

BFAST

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7767

algorithms on four real-world datasets from two different

sequencing platforms: Illumina and ABI SOLiD (see Supplemen-

tal Materials S1 and Table 2) generated within the UCLA DNA

Microarray Facility. In these comparisons, BLAT, bowtie, and

SOAP are not possible to include for the ABI SOLiD data since

these software do not support alignment in color space. A simple

implementation of a mapping quality filter is implemented when

possible to remove low quality mappings that could artificially

inflate sensitivity (see Supplemental Materials S1). More stringent

post-alignment filters can be used to reduce the false-mapping

rates of all methods further, but will result in some decrease in

sensitivity. Further, some methods have more sophisticated post-

alignment filters, which are not considered here. For the most part

these additional filters will remove aligned data lessening sensitivity

but improving accuracy. Because both sensitivity and false

mapping rates are calculated on the datasets, the methods can

be directly compared in terms of the fraction of reads mapped at a

given error rate.

We first consider the relative sensitivity and accuracy of read

mapping with variable numbers of mismatches to consensus

(Figure 3A and 3B). The ability to map reads with no errors is

relatively trivial and differs between methods due mainly to the

upper limit on the number CALs generated before a read is

ignored as well as the stringency of post-alignment filters. As

Figure 2. Distribution of short sequence CALs to the human genome at various k-mer keys. For varying key sizes, k, the number of lookup
locations for each k-mer key from the Human reference genome was calculated, forward and reverse complementary sequence included (,6?109

keys). The figures show the computed percentage of keys that have a given number of genomic locations, the equivalent of CALs for index lookup.
doi:10.1371/journal.pone.0007767.g002

BFAST

PLoS ONE | www.plosone.org 5 November 2009 | Volume 4 | Issue 11 | e7767

Figure 3. Evaluation of alignment algorithms from simulated 50 base pair reads. 10,000 50 bp reads each fitting to different read classes
were aligned using indicated algorithms back to the human genome. Sensitivity is defined as the percent of all reads that were mapped correctly and
is plotted on the y-axis in panels A, C, and E. The percentage of reads that are mapped to an incorrect location are plotted on the y axis in panels B, D,
and F. The x-axis of panels A and B maps the number of sequence differences in the reads relative to the consensus genome. The x-axis plots the
length of a contiguous deletion in panels C and D, and the length of a contiguous insertion in panels E and F. The alignment method is indicated as
colored lines per the key within the first figure panel.
doi:10.1371/journal.pone.0007767.g003

BFAST

PLoS ONE | www.plosone.org 6 November 2009 | Volume 4 | Issue 11 | e7767

expected from the design of the algorithm, BFAST has

substantially better sensitivity than the other methods when

considering combinations of single base errors. The relative

improvement in sensitivity of BFAST is demonstrated for the

mapping of 50 bp reads with 3 or more mismatches to the

consensus genome. For instance, BFAST is able to align 50 mer

reads with 5 errors to the human genome with 80% sensitivity and

under 1% mismapping rate without the use of paired end data far

exceeding other implemented mapping algorithms. The dominant

error mode for the most massively parallel sequencers is single base

miscalls. Thus, BFAST permits a larger fraction of reads with

errors to be correctly aligned. Further, in some biological contexts,

even in the absence of machine errors, BFAST would improve

correct variant detection (such as highly polymorphic locations of

the human genome like at the HLA locus).

To further highlight particular areas of performance improve-

ment sought in the design of BFAST, we aligned 50-mer reads

with randomly inserted variable lengths of deletions (Figure 3C,

3D) and insertions (Figure 3E, 3F). With up to 10 base deletions up

to 80% of the reads are accurately placed by BFAST with under at

3% mismapping rate. The mismapping rate and sensitivity with 10

base deletions is better than the other methods. With up to 10 base

insertions, about 90% of the reads are correctly placed with

BFAST with under a 1% mismapping rate. Again under these

conditions, BFAST is superior to other mapping tools. Each

method could be further tuned to improve aspects of the alignment

process, but we note that under the single conditions shown here

that BFAST has equivalent or better sensitivity and mismapping

rates relative to other methods over a range of single base

differences and indel sizes. Thus, in the practical implementation

for variant calling a single implementation of BFAST suffices to

identify virtually all variant classes and be robust against machine

read errors. Both BLAT and SHRiMP were able to sensitively

map small insertions and deletions in 50 bp reads as accurately as

BFAST, but dropped in sensitivity after the insertion or deletion

reached a given length (Figure 3C and 3E). BWA’s sensitivity was

comparable to BFAST when mapping up to a 2 bp deletion but

declined gradually afterwards. Furthermore, BWA was able to

sensitively align a 3 bp insertion comparable to BFAST, but

suffered on average a 20% decrease in power compared to BFAST

on insertions longer than 3 bp with a higher mismapping rate.

Both Bowtie and SOAP, due to their ungapped alignment

processes, were able to map only a negligible amount of reads

with an insertion or deletion. It is interesting to note that MAQ

typically finds indels by performing gapped local alignment on

paired end data. This requires that one end is mapped with

confidence and the other end is not mapped with confidence but

with the latter end instead placed within a specified distance away

from the former end corresponding to the expected insert size

distribution. This is a reasonable approach when paired end data

are available and we wish to trade off completeness for speed, but

does result in decreased ability to detect insertions and deletions.

This could be mediated by always performing gapped local

alignment similar to that implemented within BFAST. Further,

performing multiple iterative rounds of global and local alignment,

and perhaps even local reassembly, will benefit the overall

alignment sensitivity and accuracy of all methods; however, this

is not evaluated here. We also observed for ABI SOLiD color

space data that BWA does not find longer insertions or deletions as

it does for Illumina data (results not shown), which limits it

usefulness when searching for indels on the ABI SOLiD platform.

BFAST and some alignment tools have been implemented to

align two base encoded reads generated on the ABI SOLiD

platform. Since both BWA and MAQ use color quality scores to

aid in local alignment, we give simulated color errors a color

quality of 20, and 30 otherwise. The mapping of color space reads

were evaluated in a different manner as a single true base

difference from the genome results in two color errors and a

typical machine error results in a single color error. We thus create

random read sets with a single SNP and 0–5 color errors

(Figure 4A,4B) to demonstrate the ability of BFAST to identify the

correct location even in the context of multiple machine errors.

Over 80% of reads with up to 4 color errors and a SNP are

correctly mapped with a mismapping rate of under 5%. At higher

error rates BFAST identified the correct location for twice as many

reads as the closest other algorithm implemented in MAQ. All

methods performed well with no errors. For comparisons sake a

read with 2 SNPs and one color space errors would be equivalent

to 4 color errors in Figure 4A. Thus, BFAST sensitively aligns

color space data even in the context of multiple variants with a low

false mapping rate.

Ten base insertions and deletions are most sensitively detected

by BFAST as well as demonstrated in figure 4C–F under a variety

of color space errors. In the case of three color errors (the

equivalent of 6% error), BFAST is able to align 87.5% of reads

with one SNP, 66.2% of reads with one SNP and a 10 bp deletion,

Table 2. Timing results of alignment algorithms on four different real-world datasets.

Illumina
10.9 M 36 bp
reads

Illumina
10.9 M 36 bp
reads

Illumina 3.5 M
55 bp reads

Illumina 3.5 M
55 bp reads

ABI SOLiD
1 M 25 bp
read

ABI SOLiD
1 M 25 bp
read

ABI SOLiD
1 M 50 bp
read

ABI SOLiD 1 M
50 bp read

Time (s) % mapped Time (s) % mapped Time (s) % mapped Time (s) % mapped

BFAST 43,775 32.1 47,474 69.6 9,590 66 42,856 72.5

BLAT* 68,758 24.3 6,735,069 77.4 NA NA NA NA

Bowtie 2,270 13.1 857 55.7 NA NA NA NA

BWA 7,682 16 4,883 59.3 21,179 74.7 845 47.8

MAQ 8,607 28.7 126,541 73.6 7,602 63.6 6,680 68.1

SHRiMP* 186,764 14.9 324,380 83.3 2,977 2.4 32,644 70.4

SOAP 11,938 13.3 131,248 62.4 NA NA NA NA

For four different real-world datasets sequenced on an Illumina GA1 sequencer, Illumina GAII and an ABI SOLiD sequencer, the run time and the fraction of reads
mapped were tallied. Settings for each method are detailed in methods. We extrapolated these values for those methods denoted with an asterisk (*) (see Supplemental
Materials S1).
doi:10.1371/journal.pone.0007767.t002

BFAST

PLoS ONE | www.plosone.org 7 November 2009 | Volume 4 | Issue 11 | e7767

Figure 4. Evaluation of alignment algorithms from simulated 50 base pair color space reads. 10,000 50 base color space reads were
simulated from the human genome in different read classes to assess sensitivity and accuracy of BFAST. Sensitivity is defined as the percent of all
reads that were mapped correctly and is plotted on the y axis in panels A, C, and E. The percentage of reads that are mapped to an incorrect location
are plotted on the y axis in panels B, D, and F. The X axis of all panels plots the number of color differences in the reads relative to the consensus
genome for a variety of models. Panels A and B plot mapping of reads with a single SNP in addition to the color errors. Panels C and D plot mapping
of reads with a single 10 bp deletion in addition to the color errors and single SNP. Panels E and F plot mapping of reads with a single 10 bp insertion
in addition to the color errors and single SNP. The alignment method is indicated as colored lines per the key within the first figure panel.
doi:10.1371/journal.pone.0007767.g004

BFAST

PLoS ONE | www.plosone.org 8 November 2009 | Volume 4 | Issue 11 | e7767

and 43.0% of reads with one SNP and a 10 bp insertion. Under

settings that permit the higher fraction of correct placement of

reads with BFAST, the false mapping rate is also lower than other

methods, with the exception being the case of insertions, where

SHRiMP has a lower false mapping rate (with much decreased

sensitivity). While more stringent mapping quality filters can

reduce these false-mapping rates, these filters would reduce the

sensitivity of each of the other methods.

In Table 2 we evaluated the performance or running times of

these algorithms on four real-world datasets from two different

sequencing platforms: 10.9 million 36 bp reads from an Illumina

1G sequencer, 3.5 million 55 bp reads from an Illumina GAII

sequence, 1 million 25 bp reads from an ABI SOLiD Sequencer,

and 1 million 50 bp reads from an ABI SOLiD sequencer. The

first Illumina dataset sequenced various PCR fragments from the

human genome, the second Illumina dataset sequenced random

fragments from a normal human genome, and the two ABI Solid

datasets sequenced human genomic DNA.

Based largely on the more comprehensive look up strategies and

implementation of gapped local alignment, BFAST has one of the

slowest running times compared to other methods. This is mainly

due to the specific settings used to maximize sensitivity to variants

and errors within BFAST, as well as the time spent loading the 10

genomic indexes, which is included in the running time of BFAST.

For larger scale datasets such as a whole-genome shotgun

resequencing, we are able to partition the billions of reads such

that the search and align times dominate relative to the loading

times. Thus, BFAST does not scale linearly with these reported

times. Although the running times of BFAST are slower in the

majority of cases compared to other methods, when considering

the need for sensitivity and accuracy of the alignment process in

the context of whole-genome resequencing (see simulations above),

BFAST has attractive advantages including the ability to be

implemented in a parallel computational environment.

Discussion

We have created a new sequence alignment tool that is

specifically designed to meet the challenges of practical whole

human genome resequencing using short read data (25–100 bases).

BFAST has been implemented completely for the handling of

large datasets from the ABI SOLiD color space reads as well as

direct sequence reads possible with other platforms. The estimated

scale of the problem–aligning a billion reads per day on a

moderate computer cluster–obviously demands extremely fast

alignment algorithms, but more importantly demands high

accuracy of the alignments (i.e. obtaining the true alignment of a

read, among the many various candidates). This is fundamental

because the purpose of resequencing is to locate the variants,

including insertions and deletions, relative to a reference genome,

and to distinguish real genomic variants from inevitable

sequencing errors. Thus, it is critical to find the true alignments

of reads that do not match perfectly to the reference, so that

sequencing errors can be filtered out via multiple coverage, and so

that real variants will not go undetected due to systematic under-

mapping of reads with the variant. In practice, then, a suitable

method must be accurate to meet this challenge and still perform

its operations under realistic computer hardware configurations

and in reasonable time, and this was the underlying design goal of

BFAST.

At a practical level, the BFAST performance tests presented

here demonstrate various modes of accuracy of alignment for both

simulated data and real-world datasets from both the Illumina and

ABI SOLiD sequencing platforms. We demonstrate that BFAST is

able to substantially increase the number of reads correctly placed

in the genome when containing short insertions and deletions and

various numbers of errors while maintaining a lower false

alignment rate than any other alignment tools. We are able to

map sensitively reads that have up to 10% of the bases in the reads

being errors, as well as, reads that contain insertions and deletions

up to 10 base pairs with modest error rates. This is critical for

identifying indels within the genome of interest, and for optimizing

independent alignments of paired end reads to identify structural

variants. We demonstrate that BFAST is relatively robust to a

wide range of errors. Under key conditions, BFAST is improves

the likelihood of correct genomic placement of individual reads

over a wide variety of scenarios.

While BFAST is highly sensitive with the use of 10 indexes, as

shown here, if the sensitivity were not satisfactory for a given

purpose, to the addition of additional genomic indexes would

improve the sensitivity with a modest increase in the computa-

tional time. This relative error or variant tolerance of BFAST is

highly relevant to two scenarios. First, efforts are being extended to

sequence new genomes of species for which a closely related

species genomic sequence currently exists. The alignment of the

generated short read data must be aligned accurately to use the

prior genome scaffold in the presence of unknown base differences.

Second, the implementation of new and perhaps more error prone

sequencing methods that may generate even larger amounts of

data than current methods but with a higher error rate. BFAST

will be able to more effectively align these poorer quality reads and

render new technologies more useful.

The comparison of BFAST to other methods here–MAQ,

BWA, Bowtie, SHRiMP, SOAP and BLAT–is not meant to be an

exhaustive comparison to all other available programs, nor is it

meant to imply that these particular methods cannot provide

satisfactory results for large scale resequencing alignment prob-

lems. Rather, it is simply to provide a practical context for judging

the speed and accuracy of BFAST demonstrate that any method

used to align short reads should be assessed for its sensitivity and

accuracy in the presence of multiple variants. The examples shown

here illustrate that there can be a substantial decreases in accuracy

of mapping for certain types of variants, such as small indels, or

higher numbers of mismatches, which may be biologically

important. Given the complexity of the possible settings, these

methods comparison are always incomplete. For instance, we do

not evaluate scenarios that would allow the evaluation of certain

heuristic choices of the other methods, deferring to the design

principle of completeness as motivation for this omission. We note

that for many biologically relevant mutation classes that the

accuracy of placement by BFAST with 10 genomic indexes is 80–

90% thus there is little to be gained by iterative or heuristic

processes.

Because BFAST uses multiple gapped indexes, BFAST is able to

sensitively identify potential alignment positions. Only reads with

under 384 CALs are subsequently evaluated by the powerful

gapped local alignment algorithm, which distinguishes reads with

identical mapping to multiple locations versus reads with a best

matched location. By enforcing an upper limit on the number of

CALs, BFAST could potentially ignore reads that map to multiple

locations but could be placed within the human genome. Thus, in

the interests of higher sensitivity alignments, a key area of potential

improvement would be to improve the CAL search step with

specialized indexes, such that the correct location is within a more

limited set of CALs relative to the current implementation of

BFAST.

Any method that underperforms in sensitivity compared to

BFAST would need to reduce the false mapping rate to show

BFAST

PLoS ONE | www.plosone.org 9 November 2009 | Volume 4 | Issue 11 | e7767

improvement over BFAST beyond performance. This new

method would need to improve the CAL search step, as the

gapped local alignment is optimal, such that for some read the new

method includes the correct location in its set of CALs when

BFAST does not. This correct location would then be identified by

the powerful gapped local alignment. This requires the new

method to have greater sensitivity, when the opposite was

assumed. As BFAST is tunable for any level of sensitivity, we

are able to sensitively map reads as well as controlling for false

positives.

The choice of alignment tool for each biologist should be

tailored to the goals of the sequencing project. While under the

specified parameters, the other methods can be somewhat faster

for some datasets and slower for others; the fraction of data

mapped was typically less than that achieved using BFAST. We

note that BFAST does not have default speed or accuracy

parameters per se but rather allows the design of index sets with a

broad range of speed/accuracy trade offs. The software distribu-

tion includes an extensive family of pre-optimized index set masks

from which subsets can be selected given any desired accuracy, as

specified in the Supplemental Materials S1 (Table S3–S6). Our

experience with aligning short read data (25–100 base-pair reads)

has revealed that a major problem is that level of accuracy actually

being achieved is not known in advance, i.e. what variants will be

missed or underrepresented by the alignment process. We stress

the need to assess accuracy for short read alignment as part of any

such resequencing effort. If the alignment method is not able to

sensitively align, then some categories of mutations will be

completely missed.

We offer the BFAST program as a new tool in the available for

processing massively parallel sequence data. The BFAST program

is freely available at http://bfast.sourceforge.net, and is fully

intended for use in production-level whole human genome

resequencing efforts, such as are now underway in our own lab.

For this reason, we have taken care with the implementation to

make it portable, documented, independent of the sequencing

platform, and targeted to run efficiently on a cluster. In practice,

BFAST can align 1 billion Illumina 55 base-pair reads in 24 hour

period on a cluster containing 156 computer computational cores,

with suitable amounts of RAM, which makes these alignments

practical from a computer hardware point of view. In particular,

20-node cluster with each node consisting of a dual quad core

CPU with 24Gb RAM would suffice. We note that the

benchmarks reported here ignored multi-threaded computation,

and parallel computation, both of which BFAST supports, which

in practice proportionately reduces the number of independent

nodes required, when multi-CPU nodes and multi-core CPUs are

available, as is widely the case. Further, BFAST is implemented in

such a fashion that large-scale alignments can be successfully

performed in computation clusters where only a fraction (,20%)

of the nodes have the higher RAM needed for efficient indexed

lookup (16Gb-24Gb), while the majority of nodes need only have

4Gb of RAM for the local alignments phase of the computations.

From the balanced timing profiles (see Supplemental Materials

S1: Figure S12), it is not easy to make the overall process

substantially faster because the indexed lookup, local alignment,

and result curation/file handling all take comparable time. Thus,

even if the indexed lookup were made infinitely fast, the overall

running time would be reduced modestly. Therefore, dramatic

overall speed improvements seem unlikely without specialized

hardware accelerators or tiered algorithmic approaches. However,

improvements in indexed lookup speed can be translated directly

into accuracy improvement, by searching relative to a large

number of indexes without increasing the overall running time. This

will indeed become viable as bigger dynamic memory capacity

becomes possible. There is, however, a limit to the strategy of

bigger indexes, in that by being resistant to all possible variants by

use of a much bigger index, will require longer key sizes in order to

limit spurious CALs. For shorter reads, this will begin to reduce

the accuracy of any one index, at which point this strategy loses its

effectiveness. The optimal parameters will need to be adjusted

over time as sequencing technologies produce longer and cleaner

reads.

While BFAST was designed to support the resequencing of

human genomes with short reads, it is in fact a completely general

sequence alignment tool that should perform well in aligning any

number of reads, of any length, to any target genome. Because it

supports a flexible and fast indexed lookup methodology, and

permits this as a user configurable feature, it should be possible to

configure BFAST to work well for many large-scale resequencing

problems. Even in the limit of long reads, say 100–1000 bases,

where high accuracy is easily achieved with a single index, the

speed-optimized indexing employed by BFAST will still provide

near-optimal lookup performance.

Methods

Simulated Variant Classes
Simulation strategy. To better reflect the real alignment

problems of interest, simulated reads are derived from the human

genome (NCBI Build 36.1), rather than constructing an artificial

random genome to permit the assessment of the sensitivity and

accuracy of alignment of short reads that contain variants

including errors, single base mismatches, insertions, and

deletions as well as combinations. As single base mismatches are

an error mode common to all technologies, we investigate high

mismatch rates, as well as mismatches in combination with

insertions or deletions, as might occur in reads that contain both a

real variant and errors, which occurs frequently in practice. We

evaluate the different variant states separately in order to obtain

accuracy measures for each type of event, as they differ in the

degree of alignment difficulty. We examine both the true positive

rate, or the sensitivity, to assess what fraction of reads can be

located back to their appropriate location, and we assess the

mismapping rate, which is determined as the fraction of all reads

that are mapped to the genome that are mapped to an incorrect

location. Ideally, a method will maximize true positives and

minimize mismapping. For these comparisons, we do not require

that the exact edits (mismatches, insertions, and deletions)

introduced in a simulated read be observed, but rather that the

read be placed approximately in the correct location since some

methods can align a read with an indel to the approximate

location, but never call or specify the indel since they perform

ungapped alignments. We tally the results in this manner so as to

perform a more reasonable comparison between the core

alignment aspects in the context of the whole human genome of

other methods.

We simulated reads from the human genome by creating sets of

reads with a fixed number of variants. To produce a synthetic

dataset, we randomly choose an L letter long substring from the

human genome. Each selected string was randomly altered to

contain a specified number of mismatches, insertions or deletions,

to produce a final read for the variant class of reads.

We generated 10,000 reads for each variant class. This number

of reads was sufficient to obtain robust performance statistics.

In total, 187 different variant-specific nucleotide datasets were

created:

BFAST

PLoS ONE | www.plosone.org 10 November 2009 | Volume 4 | Issue 11 | e7767

1. Reads with exactly x mismatches (0#x#10).

2. Reads with one contiguous x letter insertion (1#x#10) and y

mismatches (0#y#5).

3. Reads with one contiguous x letter deletion (1#x#10) and y

mismatches (0#y#5).

Similarly, we also generated 10,000 50 bp variant classes in ABI

SOLiD color space:

1. Reads with one SNP and x color errors (0#x#5).

2. Reads with one SNP, a 10 bp deletion, and x color errors

(0#x#5).

3. Reads with one SNP, a 10 bp insertion, and x color errors

(0#x#5).

The mismatches, and insertion or deletion break points, and

color errors (ABI SOLiD data only) were uniformly distributed

within the reads. For the nucleotide data, the high number of

mismatches, and for the color space data, the high number of color

errors, are meant to represent reads confounded by the impact of

sequencing errors on both SNP and indel detection. This is

especially important for ABI SOLiD color space data due to its

higher error rate, which is corrected only after successful genomic

alignment. Additionally, the high number of mismatches (for

nucleotide data) considered might correspond to a read from a

variant dense region, where several single base variants are further

confounded by several read errors. Since BWA and MAQ rely on

the color qualities for ABI SOLiD data to detect errors, we give

color errors a color quality of 20, and 30 otherwise. The simulated

datasets are available at http://bfast.sourceforge.net.

We call a read correctly aligned if the read was aligned uniquely

within 10 bases of the original location. If two alignments were

found with the same best score, the read was not called correctly

aligned. In our simulations we do not require that the errors,

SNPs, or indels be placed correctly or even found by other

methods, but instead require that the read is placed within 10

bases of the true location, thus assessing global alignment rather

than local alignment.

We evaluated each algorithm using one compute node, with two

dual-core AMD64 processors at 2.0GHz and with 32GB of RAM.

Each algorithm was run as a single process, and thus does not take

advantage of any multi-threading or parallel processing capabil-

ities of the algorithms, including those of BFAST. This comparison

is done only to evaluate the relative speeds of the various

algorithms under comparable hardware architecture, since many

processors typically would be used in practice, which is the

practical solution implemented with BFAST in practice. The

precise settings for each algorithm, including BFAST, are

described in the Supplemental Materials S1: Section Algorithm

Settings for Simulations.

Illumina Datasets
For demonstration purposes, we used a 10.9 million 36 base

read data set from the human genome. In total, 33 different

regions with known mutations across 5 genes were PCR amplified

individually and pooled. Amplicon sizes ranged from 191 bp to

762 bp. After purifying each amplicon with QIAGEN PCR

Purification Kit, the amplicons were pooled in one tube to create

an equal mixture of all products. The sequencing library from the

genomic fragments was prepared using manufacturer provided

genomic library preparation protocol version 2.3 (Illumina, La

Jolla, CA). Specifically, this dataset consisted of sequence from

PCR products known to contain 13 mismatches, as well as 6 small

insertions and 6 small deletions, and sequenced at a depth of

coverage generally exceeding 1000-fold. We also analyze 3.5

million 55 base paired-end reads of human genomic sequence

from our Illumina GAII sequencer. Libraries were generated

from genomic DNA. We then selected only the first end of the

pair, giving us 3.5 million 55 base pair single-end reads for

alignment.

ABI SOLiD Datasets
One million reads from two different runs of in house generated

ABI SOLiD sequencer data was used for all comparisons, as this is

a sufficient dataset to offer reasonable comparison. Both datasets

consisted of sequences from human genomic DNA, generated by

using standard 25 base and 50 base manufacturer supplied

protocols.

Support for Paired-End Data
BFAST supports paired-end data by finding CALs for each end

separately. Before local alignment, the user has the option to

mirror CALs for one end using the other by specifying an

estimated paired-end insert length. The paired-end insert length

can be inferred by examining paired-end reads for which each end

has only one CAL. The option to mirror (or rescue) one end of the

read can help either to improve accuracy or to use one end of the

pair as anchor for the other. Each CAL for each end is then locally

aligned independently. The criteria to choose the best pair of

alignments for the ends are then dictated by the user, and can be

based on best-combined score, uniqueness, as well as other post-

alignment filtering criteria. Further details on paired-end support

can be found in the Supplemental Materials S1.

Support for ABI SOLiD Color Space
To support ABI SOLiD color space reads[21,22], we first

convert the reference sequence to color space such that each

genomic read offset is artificially started with an A base to mimic

the process of decoding within the SOLiD system which always

generates an A terminal base in the ligated oligo in library

creation. CALs are identified in color space, under the assumption

that errors are more common than variants, and therefore more

color errors will occur than variants encoded in color space. After

finding CALs for each read, we use a modified local alignment

algorithm previously described for color space reads by Homer

et al.[17] and Rumble et al. [23]. This local alignment algorithm

searches the space of all possible color errors, nucleotide

mismatches, insertions and deletions. In this process, BFAST is

able to use the entire color string for alignment.

Supporting Information

Supplemental Materials S1 Supplemental Materials S1

Found at: doi:10.1371/journal.pone.0007767.s001 (1.45 MB

DOC)

Acknowledgments

We would like to thank Jim Kent for creating and distributing the BLAT

program, which was both a motivation for this work, and was also the basis

for our practical large-scale alignment pipeline for the past 18 months. We

also thank members of the Nelson Lab: Zugen Chen, Hane Lee, Bret

Harry, Jordan Mendler, Brian O’Connor and Michael J. Clark for input

and computational infrastructure support.

Author Contributions

Conceived and designed the experiments: NH BM SFN. Performed the

experiments: NH. Analyzed the data: NH. Wrote the paper: NH BM SFN.

BFAST

PLoS ONE | www.plosone.org 11 November 2009 | Volume 4 | Issue 11 | e7767

References

1. Holt RA, Jones SJ (2008) The new paradigm of flow cell sequencing. Genome

Res 18: 839–846.
2. Hutchison CA, 3rd (2007) DNA sequencing: bench to bedside and beyond.

Nucleic Acids Res 35: 6227–6237.
3. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-

terminating inhibitors. Proc Natl Acad Sci U S A 74: 5463–5467.

4. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:
545–552.

5. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, et al. (2005) Genome
sequencing in microfabricated high-density picolitre reactors. Nature 437:

376–380.

6. Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, et al. (2008)
Rapid whole-genome mutational profiling using next-generation sequencing

technologies. Genome Res 18: 1638–1642.
7. Smith TF, Waterman MS (1981) Identification of common molecular

subsequences. J Mol Biol 147: 195–197.
8. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped

BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Res 25: 3389–3402.
9. Cox A (Unpublished 2007) ELAND: Efficient Local Alignment of Nucleotide

Data. .
10. Kent WJ (2002) BLAT–the BLAST-like alignment tool. Genome Res 12:

656–664.

11. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide
alignment program. Bioinformatics 24: 713–714.

12. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large
DNA databases. Genome Res 11: 1725–1729.

13. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol

10: R25.

14. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-

Wheeler transform. Bioinformatics 25: 1754–1760.

15. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2008) SHRiMP -

Short Reading Mapping Package. .

16. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Res 18: 1851–1858.

17. Homer N, Merriman B, Nelson S (2009) Local alignment of two-base encoded

DNA sequence. BMC Bioinformatics 10: 175.

18. Ilie L, Ilie S (2007) Multiple spaced seeds for homology search. Bioinformatics

23: 2969–2977.

19. Ma B, Tromp J, Li M (2002) PatternHunter: faster and more sensitive homology

search. Bioinformatics 18: 440–445.

20. Sun Y, Buhler J (2005) Designing multiple simultaneous seeds for DNA

similarity search. J Comput Biol 12: 847–861.

21. (2008) Applied Biosystems Incorporated: Principles of Di-Base Sequencing and

the Advantages of Color Space Analysis in the SOLiD System.

22. (2008) Applied Biosystems Incorporated: A Theoretical Understanding of 2 Base

Color Codes and Its Application to Annotation, Error Detection, and Error

Correction.

23. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2009) SHRiMP:

Accurate Mapping of Short Color-space Reads. PLoS Comput Biol 5:

e1000386.

BFAST

PLoS ONE | www.plosone.org 12 November 2009 | Volume 4 | Issue 11 | e7767

