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Abstract

Background: BtubA and BtubB are two tubulin-like genes found in the bacterium Prosthecobacter. Our work and a previous
crystal structure suggest that BtubB corresponds to a2tubulin and BtubA to b2tubulin. A 1:1 mixture of the two proteins
assembles into tubulin-like protofilaments, which further aggregate into pairs and bundles. The proteins also form a BtubA/
B heterodimer, which appears to be a repeating subunit in the protofilament.

Methodology/Principal Findings: We have designed point mutations to disrupt the longitudinal interfaces bonding
subunits into protofilaments. The mutants are in two classes, within dimers and between dimers. We have characterized one
mutant of each class for BtubA and BtubB. When mixed 1:1 with a wild type partner, none of the mutants were capable of
assembly. An excess of between-dimer mutants could depolymerize preformed wild type polymers, while within-dimer
mutants had no activity.

Conclusions: An essential first step in assembly of BtubA + BtubB is formation of a heterodimer. An excess of between-
dimer mutants depolymerize wild type BtubA/B by sequestering the partner wild type subunit into inactive dimers. Within-
dimer mutants cannot form dimers and have no activity.
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Introduction

Almost all bacteria and archaea have a tubulin homolog FtsZ,

which is the major cytoskeletal protein in cytokinesis. Bacterial

genes closer to eukaryotic tubulins have been found in Prostheco-

bacter and a few closely related species [1,2]. They were named

BtubA and Btub B, and showed a closer similarity to a and b
tubulin (,35% sequence identity) than to other tubulins or FtsZ

[1]. Prosthecobacter species, which also possess FtsZ [2], probably

acquired the tubulin genes by a horizontal gene transfer [1,3,4];

their function in the host bacteria is currently unknown.

In a previous study [3] we expressed the BtubA and BtubB

proteins and showed that they assembled into protofilaments as a

1:1 mixture. The protofilaments did not form microtubules but

instead associated into pairs and bundles that were a few dozen

protofilaments thick. Schlieper et al [4] reported similar polymers,

and obtained an x-ray crystal structure showing a BtubA/B

heterodimer. Although these authors were reluctant to identify

which Btub was equivalent to a and b tubulin, we suggest that

BtubA corresponds to b tubulin, and BtubB to a tubulin. One

justification is that the T7/synergy loop of BtubA closely matches

the sequence of b tubulin, including the residue E254, which is K in

a tubulin. This loop in BtubB is quite aberrant. Also, the

heterodimer in the crystal structure has BtubA at the plus end,

the position of b tubulin in the tubulin dimer. Extending this

interpretation, the protofilament is thought to form by stacking

dimers longitudinally, producing a filament with alternating BtubA

and BtubB, with BtubA at the plus end of the protofilament (Fig. 1a).

BtubA/B offers an important advantage for biochemical studies,

relative to eukaryotic tubulins, because the proteins can be easily

expressed in Escherichia coli, and site directed mutants of these

proteins can be prepared for in vitro studies. We decided to

undertake a mutational approach to characterize the subunit

interfaces that form the protofilament. There are two distinctly

different interfaces – the one within the dimer, and the one

between dimers (Fig. 1b). To study the functions of these interfaces

we designed mutations that would disrupt them and determined

how the mutations affected assembly and GTP hydrolysis.

Results and Discussion

Differential assembly activity of within-dimer and
between-dimer mutants

We used the crystal structure of the BtubA/B heterodimer [4],

and a previous analysis of subunit contacts in the tubulin

protofilament [5], to identify surface amino acids that appeared

to be important for longitudinal contacts in the BtubA/B

protofilament. We then mutated these amino acids, changing the
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charge as well as the size of the original amino acid, with the goal

of disrupting the interface. We discovered four mutants that were

unable to form protofilaments, one each on the top and bottom

interface of BtubA and BtubB (Fig. 1b). The locations of these

mutants on the crystal structure are shown in Fig. 1c. Two of these

mutants are at the interface within the BtubA/B heterodimer, and

two are at the interface between heterodimers.

We used light scattering to assay for assembly. The first

experiment examined the between-dimer mutant on the bottom of

BtubB (Fig. 2). Fig. 2a (red curve) shows assembly of a 1:1 mixture

of wild type BtubA and BtubB. This particular experiment showed

a pronounced lag and relatively slow assembly following addition

of GTP. In all later experiments the lag is much shorter and

assembly more rapid. In this first experiment the GTP was added

immediately after mixing BtubA and BtubB, while for later

experiments the mixed subunits were allowed to incubate for two

min before adding GTP. The pronounced lag shown in Fig. 2 may

be due to time needed to form heterodimers. We kept this result

for presentation to illustrate the complex kinetics, which we have

not yet analyzed in detail. A mixture of wild type BtubB plus

BtubA-D249K gave no assembly (Fig. 2a, blue curve).

We then tested whether the mutant BtubA-D249K could

disrupt pre-formed wild type protofilaments. We first assembled a

mixture of 5 mM each wild type BtubA and BtubB, and when it

reached a plateau of light scattering we added BtubA-D249K.

Fig. 2b shows that 2.5 mM BtubB-D249K caused partial

disassembly of 5 mM wild type polymers, and 10 mM mutant

BtubB caused much more extensive disassembly.

The other between-dimer mutant, V179K on top of BtubA,

gave very similar results. When mixed 1:1 with wild type BtubB it

gave no assembly at all (Fig. 3). When BtubA-V179K was added to

pre-formed wild type polymers, it caused their disassembly. Thus

each of the between-dimer mutants caused disassembly when

added to wild type polymers.

We then repeated these experiments with mutants located at the

interface within the heterodimer. Each of the within-dimer

mutants failed to assemble when mixed with a wild type partner

(Fig. 4a,b black curves). This is similar to the between-dimer

mutants. However, in contrast to the between-dimer mutants,

each of these within-dimer mutants completely failed to disassem-

ble pre-formed wild type polymers. E258K showed a slow increase

in light scattering, which we have not investigated.

Effect of the mutations on GTP hydrolysis
Assembly of BtubAB requires GTP, and the GTP is hydrolyzed

by the polymers [3,4]. We assayed each of the mutants, paired

with a wild type or mutant partner, for GTPase activity. We first

found that the mixture of wild type BtubA plus BtubB gave a

much lower rate of hydrolysis than we reported in our previous

study, 0.117 GTP min21 Btub21, vs 1.37 previously. We have

obtained this lower value in several repeated assays, and we

conclude that our previous value may have been affected by

contaminating GTPases. We note also that Schlieper et al [4]

found that 10 mM BtubA/B assembled rapidly in 500 mM GTP

and then disassembled after about 8,000 s as the GTP was

hydrolyzed. This suggests a hydrolysis rate of 0.375 GTP min21

Btub21, closer to our present low value than our previously

reported rate. Individual BtubA and BtubB subunits gave rates of

0.01–0.02 GTP min21 Btub21, which are near the limit of

detection and presumably negligible.

Figure 1. Assembly pathway and location of point mutations in BtubA/B. (a) The proposed assembly pathway in which BtubA and B first
assemble into heterodimers, and the heterodimers then further assemble into protofilaments. (b) Two classes of protofilament interface mutants are
indicated. One disrupts the interface between dimers, and the other within dimers. The four mutants tested experimentally are indicated. (c) BtubA
and BtubB are shown separately in ribbon diagram, and the mutated amino acids are shown in green spacefill. GDP in BtubA is in yellow spacefill. The
figures were created in PyMol (DeLano Scientific) from the PDB file 2BTQ [4].
doi:10.1371/journal.pone.0007253.g001
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We used two assays to measure GTP hydrolysis. We generally

prefer the coupled-regeneration assay [6] for its simplicity and

reproducibility, but turbidity produced by polymers interfered

with measurements of wild type BtubA/B. For this we used the

malachite green assay [7]. The two assays gave similar results for

wild type BtubA and BtubB separately (Table 1).

The Btub mutants mostly had a GTPase of 0.07–0.09 GTP

min21 Btub21 when paired with a wild type or mutant partner.

This is less than the pair of wild type BtubA/B, but above the

negligible rate of single subunits. This suggests that GTP

hydrolysis is stimulated by interaction of monomers capable of

forming either within- or between-dimer interfaces, but is

increased further when protofilaments can be formed. It is

surprising that mutants capable only of forming dimers had

GTPase activity, because the synergy loop of the BtubB is so

aberrant.

GMPCPP is a non- or slowly hydrolysable GTP analog that

supports assembly of tubulin and FtsZ. A light scattering assay (not

shown) indicated that it also supported assembly of BtubA/B. We

attempted to measure its hydrolysis rate but it was too low to be

significant in our assay (Table 1). As a control we measured the

rate of hydrolysis of GMPCPP by FtsZ. The value obtained, 0.08

GMPCPP min21 FtsZ21, is 50–70 times slower than hydrolysis of

GTP at room temperature. This is substantially slower than the 3–

10 X rate reduction previously reported [8]. The previous

measurement was made in a buffer at pH 6.5, no potassium,

and was noisy and near the limit of detection. The present

measurement was made in the more physiological buffer at

pH 7.7, 350 mM KAc, and the data are much more reliable.

Dimer formation assayed by sedimentation equilibrium
We studied the oligomerization of BtubA/B by sedimentation

equilibrium, as described in Methods. These experiments were

initially done in the absence of GTP, which prevents assembly of

protofilaments but may permit assembly of the dimer. Sedimen-

tation of BtubA or BtubB alone gave monomers of the expected

molecular weight, with no evidence of dimerization. The data

from multiple runs using different ratios of BtubA and BtubB were

fit reasonably well by a model assuming an equilibrium between

monomer and dimer, and the global fit was used to deduce a KD

for dimerization. As shown in Table 2 the wild type protein and

the mixture of between-dimer mutants (BtubA-V179K + BtubB-

D249K) gave similar KD’s of 7.3 and 3.2 mM. The mixture of

within-dimer mutants (A E258K + B N100E) gave a KD of 61 mM,

suggesting that dimerization is eliminated by blocking the within-

dimer interface.

We next used our between-dimer mutants to test whether GTP

would affect dimer formation. Instead of GTP we used the slowly

hydrolysable analog GMPCPP. The rate of hydrolysis of

GMPCPP (0.002–0.003 per min per BtubB, Table 1) would give

less than 0.5 mM GMPCPP hydrolyzed by 8 mM BtubA/B in

24 hours. For this experiment we used a simpler data analysis,

which treated the mixture as a homogeneous species and estimated

a single molecular weight. For a mixture of 8 mM each BtubA-

V179K + BtubB-D249K, with no added nucleotide, the estimated

average molecular weight was 84 kDa, vs 102 kDa expected for

the dimer (protein plus his-tag). This suggests that most of the

protein exists as a dimer, as expected for the KD of 3.2 mM. When

Figure 2. Between-dimer mutant BtubB-D249K fails to assem-
ble and disassembles wild type polymers. (a) Assembly of 5 mM
each wild type BtubA plus BtubB is shown by the red curve. The time of
GTP addition is indicated. The blue curve shows that wild type BtubA
plus BtubB-D249K gave no assembly. (b) polymers were first assembled
to steady state from 5 mM each wild type BtubA and BtubB. At the
arrows BtubB-D249K was added to 2.5 mM or 10 mM, causing
disassembly.
doi:10.1371/journal.pone.0007253.g002

Figure 3. Between-dimer mutant BtubA-V179K. The red line
shows assembly of wild type BtubA/B (5 mM each). The black line shows
that BtubA-V179K plus wild type BtubB does not assemble. The blue
line shows that addition of 5 mM BtubA-V179K to the 5 mM preformed
BtubA/B protofilaments caused their disassembly.
doi:10.1371/journal.pone.0007253.g003

BtubA/B Heterodimers
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GMPCPP was added to 16, 32 and 64 mM the estimated

molecular weights were 87, 91 and 87 kDa. We conclude that

GMPCPP has only a minimal effect on the formation of the dimer.

Schlieper et al [4] also used analytical ultracentrifugation to

examine the oligomerization of a mixture of BtubA/B. They

concluded that dimers were formed, but their dimerization

appears to be weaker than what we found. The difference may

be due to the different buffers used in the two studies (e.g., the

buffer of Schlieper et al had no Mg, whereas ours had 5 mM Mg).

We have not attempted to dissect how buffer conditions might

affect dimerization, but note that we used the same buffer for

sedimentation, GTPase and all assembly experiments.

The 3-7 mM KD for dimer formation is almost an order of

magnitude weaker than the 0.5 mM critical concentration. The

mechanism of cooperative assembly that produced the critical

concentration is not known, and it is not at all clear how the dimer

might fit into the mechanism for cooperativity.

A search for lateral mutations
In addition to the analysis of mutations that would block the

longitudinal protofilament interfaces, we tested a number of

mutations on the sides of the subunits, hoping to find ones that

might block the association of protofilaments into bundles. The

following mutations were made and proteins were successfully

expressed and purified: BtubA: S61R, P41R, D283H, E289K and

BtubB: E38K, D57H, N217K, R291G. None of these mutations

affected assembly of protofilaments or their bundling, as assayed

by electron microscopy. In addition we identified the sequence

283DRSKFEELG291 (P. dejongeii, AY186779) in BtubA, as

corresponding to the M loop that mediates tubulin’s lateral bonds

[5], and replaced it with the corresponding M loop from b tubulin

(Sus scrofa, NM001113696) 277GSQQYRALT285. This also had

no effect on assembly or bundle formation.

Figure 4. Within-dimer mutants fail to assemble but have no
effect on pre-assembled wild type polymers. (a) Within-dimer
mutant BtubB-N100E did not assemble when mixed with wild type
BtubA (black line). When added to pre-assembled wild type polymer (all
subunits at 5 mM) it did not cause any disassembly (blue line). (b)
Within-dimer mutant BtubA-E258K behaved the same as BtubB-N100 in
both assays.
doi:10.1371/journal.pone.0007253.g004

Table 1. GTPase activity

Wild type BtubA/B GTPase (GTP min21 Btub21)

BtubA + BtubB .117 mal

BtubA .017 rgn

BtubA .014 mal

BtubB .004 rgn

BtubB .013 mal

Mutations between dimers

A-V179K + B-wt .072 rgn

A-wt + B-D249K .077 rgn

A-V179K + B-D249K .079 rgn

Mutations within dimers

A-E258K + B-wt .088 rgn

A-E258K + B-N100E .098 rgn

Hydrolysis of GMPCPP

A-wt + B-wt .003 mal

A-V179K + B-D249K .002 mal

E. coli FtsZ .080 mal

GTPase activities marked rgn were assayed by the GTP regeneration, coupled
NADH assay. Those marked mal were assayed with malachite green. The
malachite green reactions were measured at room temperature (23uC); the
regeneration reactions were at ,29uC, the temperature in the
spectrophotometer chamber). Rates are given per Btub for single subunits, and
per BtubB for the 1:1 mixtures.
doi:10.1371/journal.pone.0007253.t001

Table 2. Sedimentation equilibrium

BtubA BtubB KD (dimerization)

wt wt 7.3 mM

V179K D249K 3.2 mM

E258K N100E 61 mM

The sedimentation equilibrium curves were fit to a model assuming an
equilibrium of monomer and dimer. The best fit KD for dimerization is shown.
doi:10.1371/journal.pone.0007253.t002
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How between-dimer interface mutants disassemble wild
type protofilaments

Both within- and between-dimer mutants were unable to

assemble, as expected for mutations that disable a protofilament

interface. However, they had very different effects on disassembly

of pre-assembled wild type polymers. Between-dimer mutants

caused them to disassemble, while within-dimer mutants had no

effect. This can be explained by the hypothesis that subunits must

assemble into dimers before they can assemble into protofilaments.

In an assembly mixture of wild type BtubA/B, polymers will be

in steady state exchange with dimers. The dimers will be in a

separate equilibrium with monomers. In this monomer-dimer

pool, BtubA and BtubB will each be maintained at the critical

concentration of ,0.5 mM (as determined in [3]) (Fig. 5). When an

excess of between-dimer mutant BtubB is added, it will exchange

with the wild type BtubB in the monomer/dimer pool and form

dimers with the wild type BtubA. Because the mutant BtubB is in

large excess over the 0.5 mM pool of monomer/dimer BtubA,

most of the BtubA will be sequestered into dimers that cannot

assemble. As the pool of active wild type dimers drops below the

critical concentration, protofilaments will disassemble. As more

dimers are released, the wild type BtubA will continue to be

sequestered by the mutant BtubB. The disassembly is driven not

by direct interaction of the mutant BtubB with protofilaments, but

by its sequestering wild type BtubA into inactive mutant dimers.

The within-dimer BtubB mutant, in contrast, cannot form a

dimer with wild type BtubA. It remains as a monomeric subunit

that is inactive for assembly and cannot sequester wild type BtubA.

It is therefore unable to disassemble preformed wild type polymer

(Fig. 5).

Implications for a2b tubulin
The btubA and btubB genes were likely acquired by Prosthecobacter

by horizontal gene transfer of a2 and b2tubulin from a

eukaryotic host [1,3,4]. Both genes would apparently have been

transferred at once, which suggests that the host species had a2

and b2tubulin in tandem arrays, as occurs in trypanosomes [9].

(However the BtubA and BtubB genes in the known Prosthecobacter

species all have a kinesin light chain gene separating them, which

is not the case for arrays in eukaryotes.) The proteins would

initially retain the ability to assemble microtubules, but since

microtubules were presumably not functional in Prosthecobacter they

would be free to diverge. They apparently retained the

longitudinal interfaces that enable assembly of protofilaments,

but lost the lateral bonding interfaces that assemble protofilaments

into the microtubule wall.

One problem with this scenario is that all known eukaryotic

tubulins require complex chaperones for folding [10]. It is unlikely

that these chaperones would be transferred with the tubulin genes,

so how could the newly acquired tubulins fold in the Prosthecobacter

cytoplasm? One possibility is that bacterial chaperones might have

sufficed for folding. We note, however, that there is no convincing

case of a eukaryotic tubulin being expressed and folded in E. coli,

so E. coli chaperones are not sufficient for folding. Another

possibility is that the tubulin genes came from a host that did not

require chaperones for folding. Again, no such species is known

today. Whatever the beginnings, it is clear that no chaperone is

necessary for folding the present-day BtubA and BtubB. They fold

properly in the foreign host E. coli, and they can be refolded in

vitro after chemical denaturation [4].

The lateral bonding that assembles tubulin protofilaments into

the microtubule wall has been lost in BtubA/B, but the

longitudinal bonding that assembles subunits into protofilaments

has been preserved. In tubulin these longitudinal contacts are of

two types. The bond within the dimer is almost irreversible, with

KD near pM, and an exchange half time of hours [11]. The bond

between dimers is much weaker, with KD near mM (it must be

supported by a lateral bond to produce significant assembly)

[12,13]. An important conclusion from the present work is that

BtubA/B has maintained the ability to form heterodimers. The

within-dimer bond is orders of magnitude weaker than that of

tubulin, but still sufficient to assemble a pool of heterodimers that

then assembles into protofilaments and bundles. The nature or

geometry of lateral bonds holding the protofilaments in bundles is

not yet clear, so the magnitude of between-dimer bonds cannot be

estimated. It is presumably weaker than the within-dimer bond,

which forms first, and relies on some mechanism of cooperativity

to produce assembly. The heterodimer appears to be an essential

intermediate in the assembly of BtubA/B, as it is for tubulin.

Materials and Methods

Growth and induction
N-terminally his-tagged BtubA and BtubB was expressed in E.

coli and purified as described previously [3]. For the present study

we added another purification step, running the proteins over a

Sephacryl HR-100 column equilibrated with HMK buffer

(50 mM Hepes, 5 mM MgAc, 350 mM KAc, and 1 mM EGTA,

pH 7.7). This buffer was used for all experiments. Peak fractions

were stored at 280uC. Protein concentration was determined

from the absorbance at 280 nm; the extinction coefficients were

4.7906104 M21 cm21 for BtubA and 3.9886104 M21 cm21 for

BtubB, based on amino acid composition [14,15]. The extinction

coefficient of GDP is 0.96104 at 280 nm, and we previously found

that BtubA and B bound 0.7 and 0.3 mol GXP [3]. By ignoring

the contribution of GXP we may have underestimated the protein

concentration by 7–13%.

Schlieper et al [4] reported that ‘‘his-tags are not necessary but

interfere with polymerization.’’ We have tested several prepara-

tions with and without his-tags. We did observe that assembly of

rings by BtubB alone was substantially reduced by the removal of

the his-tag. However, we found no difference in the polymeriza-

Figure 5. Between-dimer mutants disassemble wild type
polymers by sequestering subunits into inactive heterodimers.
The equilibrium on the left shows wild type BtubA/B protofilaments
exchanging with dimers. These dimers are also exchanging with a small
pool of monomers, not shown. The bracket on the right shows what
happens when the reaction is flooded with between-dimer BtubB
subunits. These are capable of forming dimers, and because they are in
excess of the monomer/dimer pool they will replace the wild type
BtubB. This sequesters most of the wild type BtubA into inactive dimers.
This depletion of wild type dimers to below the critical concentration
results in depolymerization.
doi:10.1371/journal.pone.0007253.g005
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tion of protofilaments and bundles with and without the his-tags.

All experiments reported here were done with the his-tags in place.

Electron microscopy
Negatively stained samples were prepared by applying ,10 ml

of the assembled BtubA/B to a carbon-coated grid and washing

off with 3–4 drops of 2% aqueous uranyl acetate. Electron

micrographs were taken at 50,000x.

GTPase Assay
To measure GTPase activity we used the continuous,

regenerative coupled GTPase assay of Ingerman and Nunnari

[6]. Our assay mixture included 0.4 mM phosphoenolpyruvate,

0.3 mM NADH, 20 U/ml each pyruvate kinase and lactate

dehydrogenase (Sigma), and 0.5 mM GTP. Each GDP released

from BtubA/B is regenerated to GTP with the loss of one

molecule of NADH. NADH concentration was monitored by its

absorbance at 340 nm (extinction coefficient 6220 M21 cm21)

using a Shimadzu UV-2401PC spectrophotometer. Following

addition of GTP, the absorbance showed a linear decrease over

time. We measured the slope of the straight line at steady state,

typically between 100 and 600 sec after addition of GTP. As in

our previous study [3] the GTPase of wild type BtubA/B was only

significant above a critical concentration of ,0.5 mM. A critical

concentration was less obvious for the lower GTPse of the mutant

proteins. In all cases we measured GTPase over a range of

concentrations, and the slope of the straight line (above the

0.5 mM critical concentration for wild type) gave the overall rate of

GTP hydrolysis in GTP per min per BtubB. In some cases we used

a malachite green assay [7]. Measurements were made in HMK

buffer at room temperature (,23uC) for the malachite green

reaction; the regeneration assays were at ,29uC due to warming

in the chamber of the spectrophotometer.

Assaying polymer by 90 degree light scattering
Varying concentrations of a 1:1 molar ratio of BtubA and

BtubB in HMK buffer (total volume of 100 mL) were loaded in a

quartz cuvette with a 1-cm path length. The cuvette was placed in

a Shimadzu fluorometer that had both the excitation and emission

wavelengths set at 350 nm and at varying slit widths of 3 to 5 nm.

A baseline of scattering for the protein mixture without added

GTP was established for 20 s and then polymerization was

initiated by the addition of 1 mM GTP. The nucleotide was added

with a pipette followed by mixing. The elapsed time between

nucleotide addition and the start of the recording was typically 5 s.

The net change in light scattering after nucleotide addition was

recorded until a plateau representing the polymerized BtubAB

protofilaments was established. Except as noted BtubA and BtubB

were 5 mM in all assembly and disassembly experiments.

Measurements were made in HMK buffer at room temperature

(,23uC).

Sedimentation Equilibrium
Sedimentation equilibrium analysis was performed at 20uC at

10,000, 12,000 and 14,000 rpm using a Beckman Optima XL-A

analytical ultracentrifuge equipped with a 60Ti rotor and six

channel centerpieces. Protein samples were in HMK buffer. We

examined mixtures of wild type and mutant proteins with molar

ratios for BtubA:BtubB ranging from 1:4 to 4:1 (the concentration

of each protein ranged from 8 to 32 mmM, and were 8 mM each at

the 1:1 ratio). Cells were scanned at 6 hour intervals at 280 nm

until consecutive scans (typically three) were unchanged and the

system was judged to be at equilibrium (typically 24 h). The data

from each set of experiments (BtubA WT + BtubB WT, BtubA-

V179K + BtubB-D249K, and BtubA-E258K + BtubB-N100E)

were globally fit with the program HeteroAnalysis v 1.1.0.28 of

James L. Cole (http://www.biotech.uconn.edu/auf/) to obtain the

dissociation constant for dimerization (Table 2). Partial specific

volume values of 0.736, 0.733, and 0.734 corresponding to BtubA,

BtubB, and mixtures of BtubA and BtubB, were all based on

amino acid composition using the program SEDNTERP [16].

The program SEDNTERP was also used to calculate the value of

1.0142 for the density of the solvent. In a separate set of

experiments examining the effect of GMPCPP, the sedimentation

equilibrium data were analyzed using the Ideal-1 program

(Beckman Instruments). This treats the protein as a homogeneous

species and gives a single estimated molecular weight.
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