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Abstract

Background: In humans and mice naturally occurring CD4+CD25+ regulatory T cells (nTregs) are a thymus-derived subset of
T cells, crucial for the maintenance of peripheral tolerance by controlling not only potentially autoreactive T cells but
virtually all cells of the adaptive and innate immune system. Recent work using Dicer-deficient mice irrevocably
demonstrated the importance of miRNAs for nTreg cell-mediated tolerance.

Principal Findings: DNA-Microarray analyses of human as well as murine conventional CD4+ Th cells and nTregs revealed a
strong up-regulation of mature miR-155 (microRNA-155) upon activation in both populations. Studying miR-155 expression
in FoxP3-deficient scurfy mice and performing FoxP3 ChIP-Seq experiments using activated human T lymphocytes, we show
that the expression and maturation of miR-155 seem to be not necessarily regulated by FoxP3. In order to address the
functional relevance of elevated miR-155 levels, we transfected miR-155 inhibitors or mature miR-155 RNAs into freshly-
isolated human and mouse primary CD4+ Th cells and nTregs and investigated the resulting phenotype in nTreg
suppression assays. Whereas miR-155 inhibition in conventional CD4+ Th cells strengthened nTreg cell-mediated
suppression, overexpression of mature miR-155 rendered these cells unresponsive to nTreg cell-mediated suppression.

Conclusion: Investigation of FoxP3 downstream targets, certainly of bound and regulated miRNAs revealed the associated
function between the master regulator FoxP3 and miRNAs as regulators itself. miR-155 is shown to be crucially involved in
nTreg cell mediated tolerance by regulating the susceptibility of conventional human as well as murine CD4+ Th cells to
nTreg cell-mediated suppression.
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Introduction

T cell activation and homeostasis critically rely on the balance

between activating and repressing signals which lead to a

multitude of different signal transduction pathways ensuring the

regulation of gene expression. However, promoter-based regula-

tion of gene expression does not ultimately lead to proper

translation and to the expression of a given protein. In addition to

direct control of gene transcription, post-transcriptional modifica-

tions seem to be very important for T cell development,

homeostasis and activation as well. As recently demonstrated by

the nTreg cell-specific Dicer knock out mouse, microRNAs (miR)

seem to be pivotal not only for the proper development of T cells,

but ultimately for the suppressive function of naturally occurring

CD4+CD25+FoxP3+ regulatory T cells (nTregs) [1–3]. Among

miscellaneous miRNAs the miR-155 is encoded by a small

phylogenetically-conserved region of the proto-oncogene BIC,

which was first described as a common site of viral DNA

integration in virally-induced lymphomas in chicken [4,5]. Upon

activation, miR-155 is expressed in several types of immune cells,

including B- and T-cells [6,7], macrophages and dendritic cells

indicating its important role in the activation of these cells.

In 2007, crucial function of miR-155 in the immune system was

proven by the miR-1552/2 knock out mouse from Rodriguez

et al. [8] respective Thai et al. [9]. These mice show a severe

autoimmune phenotype in the lung which is characterized by

leukocyte invasion in bronchoalveolar lavage fluids (BALF) and

increased airway remodeling, suggesting that miR-155 plays a role

in regulating the response of the immune system to self-antigens.

However, little is known about the target genes that are regulated
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by miR-155. Recently, Lu et al. demonstrated that FoxP3-

dependent regulation of miR-155 maintains the competitive fitness

of murine nTregs cells by targeting SOCS1 [10].

In this context, nTregs are pivotal for preventing excessive or

misguided immune responses especially against self-antigens by

controlling not only potentially autoreactive T cells, but virtually

all cells of the adaptive and innate immune system. Although the

molecular mechanism underlying nTreg-mediated suppression

seems to rely on the cAMP-mediated activation of Protein Kinase

A in the responder cells [11], the activation status of the target cell

is crucial in determining the outcome of this suppression [12].

To gain further insight into nTreg development and function,

several DNA-microarray analyses with murine nTreg were

performed. However, comparative analyses of human CD4+ T

helper cells (Th) and human nTregs are sparse. We addressed this

issue by profiling RNAs of resting and activated Th cells, as well as

of nTregs isolating T cell populations from human leukapheresis

products [13]. The RNAs of ten human healthy donors were

hybridized to Affymetrix Human Exon Arrays. Among others, the

microRNA155 precursor gene BIC was revealed to be strongly up-

regulated upon activation in both human cell types. In addition,

we performed duplicates of FoxP3 ChIP-Seq experiments (FoxP3

antibody-mediated chromatin immunoprecipitation followed by

Illumina sequencing of DNA fragments) of human activated Th

cells and nTregs. The analysis resulted in two dozen of FoxP3

bound/regulated miRNAs, whereas miR-155 is one of these.

To examine the role of miR-155 in nTreg cell-mediated

suppression, we modulated the expression level of this miRNA in

primary mouse and human CD4+ Th cells, as well as nTregs. While

no significant effect in suppressive capacity could be seen in nTregs,

the modulation of the expression level of miR-155 in CD4+ Th cells

clearly demonstrated a crucial role for miR-155 as a ‘sensor’ for

nTreg cell-mediated suppression: Increased miR-155 levels in both

human and mouse, CD4+ Th cells led to a reduced susceptibility to

nTreg cell-mediated suppression, whereas decreased miR-155-

levels resulted in a more pronounced suppression by nTregs.

Results and Discussion

Autoimmune diseases are characterized by hypersensitive

immune responses to self-antigens. One proposed explanation

for autoimmune pathogenesis is that naturally occurring

CD4+CD25+ regulatory T cells (nTregs) lose their suppressive

potential. Another possibility is that CD4+ Th cells have become

insensitive to nTreg cell-mediated suppression. To identify the

molecular mechanisms underlying the activation of T cells

respective Treg cell-mediated suppression, we performed gene

expression profiling of primary human T cells freshly-isolated by

leukapheresis [14]. Using this method, we were able to isolate a

sufficient number of T cells such that in vitro expansion was not

necessary. Per donor, more than 5.06107 pure nTregs and more

than 2.56108 pure CD4+ Th cells were obtained (Figure S1:

FACS analysis of freshly isolated, not expanded, human CD4+ Th

cell and nTreg cell populations). We compared, in a so-called

‘‘paired’’ analysis, resting versus 4 h and 16 h activated nTregs, to

similarly activated CD4+ Th cells from the same healthy volunteer.

We distinguished between early and late activated genes (Fig. 1A).

To gain statistically relevant data, the study was performed with T

cells from 10 different healthy human volunteers (n = 10).

We identified the proto-oncogene BIC that encodes the miRNA-

155, among the genes most significantly up-regulated upon

activation (Fig. 1B). In concordance, Cobb et al. [15] found miR-

155 to be the most up-regulated microRNA of all analyzed miRNAs

expressed in CD4+ Th cells activated for 3 days. These results,

together with data from the miR-155 knockout mice, which exhibit

an enhanced inflammation and onset of autoimmune diseases [8,9],

suggest an important role of miR-155 in T cell function.

BIC is up-regulated in activated CD4+ Th and nTregs and
is processed into mature miR-155

Validation of BIC expression was conducted by real time PCR

(RT-PCR) using miRNA/RNA preparations from donors which

were independent of the original 10 healthy human volunteers

used for the array-based expression profiling. Real-time PCR

analysis revealed a 14-fold up-regulation of human BIC upon

activation compared resting CD4+ Th cells and resting nTregs

(Fig. 2A). This tendency could be validated in mice as well

Figure 1. Human Exon Array Genechip expression profiling
showed BIC as one of the highest up-regulated genes after T
cell activation. (A) Schematic overview of different T cell populations
out of 10 human donors. Expression profiles were analyzed of freshly
isolated resting CD4+ Th cells and of nTregs. In addition, both
populations were profiled upon 4 h and 16 h anti-CD3/anti-CD28
stimulation. (B) The expression profiling revealed the BIC transcript
specifically up-regulated upon activation in both populations: the CD4+

Th cells and nTregs. The median relative expression level of BIC in
logarithmic scale and the standard deviation is shown (n = 10).
doi:10.1371/journal.pone.0007158.g001
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(Fig. 2B). In accordance with results published by Haasch et al

2002 [6], our data show that BIC is hardly detectable in resting

human T cells, but is strongly up-regulated rather early upon

activation. To determine, if BIC is processed into mature

microRNA, murine and human miR-155-specific cDNA was

generated and analyzed by Taqman RT-PCR. As depicted in

Fig. 2C (human) and Fig. 2D (mouse), BIC was processed into

mature miR-155 in both species. Interestingly, resting murine

nTregs showed an elevated basal level of the BIC transcript and of

mature miR-155 when compared to human resting nTregs. This

could be confirmed by the recently published paper of Lu et al.

[10]. They also showed a 6-fold higher expression of miR-155 in

Figure 2. RT-PCR expression analysis of pre-mature BIC transcript and its processed microRNA miR-155 in mice and men. The BIC
transcript is strongly up-regulated upon activation using anti-CD3/anti-CD28 mAb in human donors (A) and in C57/BL6 mice (B). Whereas, in C57/BL6
mice the BIC transcript as well as the matured miR-155 was found to be higher expressed in nTregs than in CD4+ Th cells (B) and (D) (n = 3). In human
cells, BIC and the matured form miR-155 were not present in resting cells, but strongly elevated levels were found in Th cells as well as in nTreg cells
after TCR activation (A) and (C) (n = 4). Analyzing the kinetic of BIC/miR-155 expression RNA was collected using an activation time course experiment.
(E) The activation of human T cell populations showed a temporary activation of the BIC transcription. Whereas, the CD4+ Th cells reached their
maximum after 4 h upon activation, the peak for nTreg cells is shifted to the 16 h time point. (F) The levels of matured miR-155 were found to
permanently increase within time (until 120 h) in activated CD4+ Th cells, whereas in nTregs a plateau was reached after 24 h. All values were
calculated as relative fold changes using the ddCT method. As normalizer RNA Pol II (human & mouse BIC) as well as U18 (human miR-155) and 5S
(mouse miR-155) were used.
doi:10.1371/journal.pone.0007158.g002
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mouse peripheral FoxP3 positive T cells compared to FoxP3

negative T cells. Assuming that miR-155 will be regulated in mice

by the transcription factor FoxP3.

To analyze the kinetics of BIC transcription and subsequent miR-

155 maturation upon activation, a time course experiment was

performed using human T cells. BIC mRNA expression peaked

after 4 h in human CD4+ Th cells, and after 16 h in Tregs (Fig. 2E).

Thereafter, expression of BIC decreased most likely because it is

processed to mature miR-155. In both populations, the expression

of BIC returned to basal levels after 77 h. The same approach was

used to determine the level of the mature miR-155. Whereas no

detectable expression was seen in resting human CD4+ Th or nTreg

cells, both cell types significantly expressed miR-155 upon 16 h of

activation. In nTregs, the maximal expression level was reached

after 24 h of activation and remained at this moderate plateau for

the duration of the experiment. In CD4+ Th cells, the miR-155 level

increased over time without reaching a plateau even after 120 h of

activation (Fig. 2F). Based on this finding, one could argue that

CD4+ Th cells need miR-155 for proper proliferation, whereas it

plays an inferior role in peripheral human nTregs since they are

anergic and do not proliferate in vitro. Our findings support the

results of Lu et al., that miR-155 is involved in T cell proliferation

and promoting the fitness of lymphocytes by targeting the IL2-

signaling regulator protein SOCS1 [10].

miR-155 expression is not necessarily regulated by FoxP3
In 2007, Zheng et al. [16] and Marson et al. [17] published

mouse FoxP3 ChIP-on-CHIP analyses studies. They affirmed

FoxP3 regulates the expression of BIC/miR-155 and that BIC/

miR-155 is a direct target of FoxP3 in mice. To prove this

hypothesis, we performed human FoxP3 ChIP-Seq experiments

using activated (16 h) human CD4+ Th cells and nTregs of two

independent donors (Fig. 3A). A miRNA-focussed bioinformatic

analysis revealed at least 24 different miRNA loci, which are

significantly and reproducibly detected to be bound by the

transcription factor FoxP3. Due to their genomic localization 18

miRNAs were categorized as intergenic (Fig. 3B) und 6 miRNAs as

intrageneic (Fig. 3C). A comprehensive list of FoxP3-bound micro-

RNA-associated genomic loci can be found as a data file (table S1).

The table also contains the miRNAs which are located nearby or

directly within a promoter region of an annotated gene. The

binding of FoxP3 to these regions can’t be differentiated between

specific gene and/or miRNA regulation. The group of intergenic

FoxP3 bound miRNA targets (Fig. 3B) confirms the finding of

Zheng et al. [16] and Marson et al. [17], that FoxP3 binds the

genomic BIC/miR-155 locus in human regulatory T cells.

Surprisingly, no binding of FoxP3 to BIC/miR-155 was detectable

in CD4+ Th cells, which also express FoxP3 after activation.

To further understand the role of FoxP3 in the regulation of

BIC/miR-155 expression, we compared the miR-155 levels of

resting and activated CD4+ Th cells from FoxP3-mutant scurfy

mice (scurfy mice lack the functional FoxP3 protein) to those of wt

C57/Bl6 mice. CD4+ Th cells from Scurfy mice surprisingly

revealed the same level of induction of miR-155 upon activation

(Fig. 3D) as wild type CD4+ Th cells.

Therefore, we postulate that BIC/miR-155 expression and

maturation of miR-155 seem to be not necessarily regulated by

FoxP3 in CD4+ Th cells, even though human and mouse CD4+

Th cells expressed FoxP3 at moderate levels upon activation.

miR-155 in CD4+ Th cells acts as a ‘sensor’ for nTreg cell-
mediated suppression

BIC is known as a proto-oncogene and its over-expression

respective the subsequent up-regulation of miR-155 levels are

associated with the development of B cell lymphoma [4,5,7]. The

up-regulation of miR-155 is also observed in primary human and

murine T cells from healthy donors as well. Therefore we

addressed the functional consequence of miR-155 elevation on the

proliferative capacity of CD4+ Th cells. We transfected human

primary CD4+ Th cells with a human miR-155-specific inhibitor

and analyzed the proliferative capacity of these cells in CFSE-

based proliferation assays. Inhibition of miR-155 had no

measurable effect on the proliferation of CD4+ Th cells upon

polyclonal or allogeneic stimulation. In sharp contrast, miR-155

inhibitor-treated CD4+ Th cells showed a much higher suscepti-

bility to nTreg-mediated suppression than control-transfected

responder CD4+ Th cells (Fig. 4A). Whereas, modulation of miR-

155 in nTregs cells did not alter their suppressive capacity (data

not shown), as reported by Lu et al. [10].

To further corroborate these findings, human CD4+ Th cells

were transfected with human mimic-miR-155 or its respective

human pre-miR-155 (precursor) to analyze whether this evokes the

opposite effect, namely rendering CD4+ Th cells unresponsive to

nTreg cell-mediated suppression. To this end, miR-155, pre miR-

155 as well as control-transfected CD4+ Th cells where co-cultured

with nTregs at different ratios. Interestingly, overexpression of

miR-155 resulted in a strongly decreased susceptibility of the

CD4+ Th cells to nTreg cell-mediated suppression (Fig. 4B).

Equivalent experiments were performed with naı̈ve murine CD4+

Th cells and murine nTregs. Murine CD4+ Th cells transfected

with murine pre-miR-155 showed an up to 40% decreased

susceptibility to nTreg cell-mediated suppression compared to the

control-transfected CD4+ Th cells, underscoring the results

obtained with human T cells (Fig. 5). Again, increasing the levels

of miR-155 in murine or human nTregs did not significantly

influence their ability to suppress CD4+ Th cells (data not shown).

Previous work has shown that a loss of miR-155 in Tregs did not

impair their sensitivity to impair Treg cell suppressor function,

whereas miR-155 is involved during thymic differentiation by

promoting the fitness and the proliferative potential of differen-

tiating nTregs [10].

In silico analysis of putative miR-155 mRNA targets in
CD4+ Th cells revealed 93 genes

For a detailed understanding on how miR-155 acts in CD4+ Th

cells as a ‘sensory molecule’, it is necessary to know its target genes.

Accordingly to their mechanism of action, miRNAs are crucial

posttranscriptional regulators of gene expression by decreasing the

abundance or translational efficiency of RNAs. Assuming that

miR-155 regulates RNA-targets responsible for keeping CD4+ Th

cells in a resting state, the potential candidates have to be

negatively affected upon activation of CD4+ Th cells. RNA targets

that are regulated in siRNA-like manner with final degradation of

target mRNA are therefore detectable using DNA microarrays.

Based on the integration of microRNA databases (miRanda,

PicTar, TargetScanS) for in silico prediction [18] of miR-155

targets together with data obtained from the Affymetrix Exon

Array profiling, we were able to generate a list of 93 putative miR-

155 targets (table S2 & figure S3 for detailed description). For

confirmation of the in silico prediction, we performed a detailed

quantitative Taqman RT-PCR analysis for some genes to monitor

their transcriptional down-regulation upon activation of miR-155

(figure S4). The best predicted miR-155 target with the highest

seed match score is the transcription factor BTB and CNC

homology 1 (Bach1, Figure S4A), which has been published

recently to be regulated by miR-155 [19,20].

Similar investigations addressed the role of miR-155 in

overexpressing transgenic mice, which leads to pre-B cell

FoxP3-ChIPSeq/miR-155 Function
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Figure 3. BIC/miR-155 expression is not necessarily regulated by FoxP3. (A) Schematic overview of the ChIP-Seq analysis workflow. Genomic
loci of all significantly and reproducible FoxP3-bound micro-RNAs are shown: intragenic micro-RNA (B) and intergenic located micro-RNAs (C). Each
genomic capture shows in light red the micro-RNA(s) and in blue the overlapping annotated gene(s) including the intro/exon structure(s). In dark red
(CD25+/nTREG) and in gray (CD4+ Th cell) the FoxP3-bound genomic regions of both donors are symbolized. In addition, every capture contains the
underlying chromosome including the basepair coordinates. The visualisations were generated using the UCSC genome browser (human genome
assembly of March 2006). (D) Using Taqman RT-PCR, the expression analysis of T lymphocytes for mature miR-155 showed no significant difference
between wild type C57/BL6 and FoxP3 mutated Scurfy mice. Post activation (19 h) an increased expression of matured miR-155 was detectable, in both
CD4+ Th cells of wild type and Scurfy mice. All values were calculated as relative fold changes using the ddCT method. As normalizer 5S was used (n = 3).
doi:10.1371/journal.pone.0007158.g003
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proliferation in bone marrow and spleen, followed by high grade B

cell neoplasms [21]. Although the precise role of miR-155 in

promoting B cell lymphomagenesis is unclear, Dorsett et. al [22]

studied the interaction miR-155/AID-RNA (activation-induced

cytidine deaminase) after finding AID expression was 1.6 fold

increased in miR-155-deficient B cells. In addition to its role in B

cell proliferation, it was shown that miR-155 acts also as tumor

suppressor by reducing potentially oncogenic translocations

generated by AID. Vigorito et. al [23] identified the transcription

factor Pu.1 to be regulated by miR-155 after profiling of miR-155-

deficient B cells. Overexpression of Pu.1 impairs the emergence of

IgG1-positive cells in vitro, its expression need to be down-

regulated to permit class-switched B-cells to undergo differentia-

tion to plasma cells [24,25].

In contrast, in vitro analysis of T cell differentiation revealed no

differences between miR-155-deficient T cells compared to wild-

type cells. Nevertheless, it was shown the tendency of miR-155-

deficient T cells to differentiate into Th2 cells [8,9]. According to

that phenotype the miR-155 target SOCS1 was indicated to be a

regulator for balancing the Th1/Th2 cell differentiation [10]

leading to a Th1 cell differentiation blockade by suppression of

IL12 and IFN-c signalling when miR-155 is deleted [26,27]. It was

shown, that miR-155 is required for nTreg cell homeostasis in the

presence of limiting amounts of IL-2 because miR-155 is

regulating the IL2 signalling repressor SOCS1 [10]. Confirming

that phenotype also in CD4+ Th cells, we were able to show a

strong up-regulation of IL-2 expression in murine CD4+ Th cells

(13-fold) upon transfection of mimic-miR-155 (data not shown).

To strengthen the thesis of miR-155 regulated IL2 signalling, we

also affirmed a significant down-regulation of IL2 mRNA

expression in miR-155 inhibitor transfected human CD4+ Th

cells (data not shown).

Conclusion
Foxp3 is essential for the normal development of nTREGs. In

the absence of micro-RNAs, nTregs develop but fail to maintain

immune homeostasis, leading to a scurfy-like disease. Recent work

using Dicer-deficient mice irrevocably demonstrated the impor-

tance of miRNAs for the development of nTreg and for nTreg

cell-mediated tolerance. Further investigation of FoxP3 down-

Figure 4. Modulation of miR-155 levels in CD4+ Th cells influenced the susceptibility to nTreg-mediated suppression. (A) Blocking the
biological available miR-155 by transfection of synthetic anti-miR-155 molecules led to an increased sensibility for nTreg-mediated suppression.
Depending on the ratio of CD4+ Th cells to nTregs (4:1 and 8:1) a nearly 25% increased susceptibility for suppression of proliferation was observed. The
CD4+ Th cell population alone showed no change in proliferation rate in comparison to the pulsed only control population. (B) Increasing the miR-155
levels within CD4+ Th cells by transfection of synthetic miR-155 decrease the susceptibility for nTreg-mediated suppression measured in CFSE
proliferation assays. Parallel assay setup revealed a nearly 25% decreased sensibility for suppression of proliferation. The CD4+ Th cell population alone
showed also an elevated proliferation in comparison to the control-miRNA transfected population. Shown are the MFI (mean fluorescence intensity) of
CFSE labelled CD4+ Th cells after four days of activation (aCD3 and APC). The bar plot diagrams are indicating the grade of suppression levels. The added
numbers are showing the differences (%) for the susceptibility of nTreg-mediated suppression of proliferation of the activated CD4+ Th cells.
doi:10.1371/journal.pone.0007158.g004
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stream targets, certainly of bound and regulated miRNAs will

reveal the associated function between the master regulator FoxP3

and miRNAs as regulators itself. We described in detail the

transcriptional changes of miR-155 in primary human and murine

T lymphocytes and that the expression and maturation of miR-

155 seem to be not necessarily regulated by FoxP3 in CD4+ Th

cells. In combination with miR-155 mediated elevation of IL-2

expression in CD4+ Th cells, we could demonstrate that raised

miR-155 levels in human and murine CD4+ Th cells not only

induces cell proliferation, but moreover renders CD4+ Th cells to

become insensitive to nTreg cell-mediated suppression.

Materials and Methods

Preparation of T cell populations
Buffy coats and leukapheresis products were obtained from

adult healthy volunteers with approval by the ethical committee

(Landesaerztekammer Rheinland-Pfalz und Baden-Wuertemberg).

A written informed consent was obtained from all participants.

Human naturally occurring CD4+CD25+ regulatory T cells

(nTregs) and untouched human CD4+ T helper cells (Th) were

isolated as previously described [13]. As a quality control, purified

nTreg cells were stained with CD4, CD25, CD8, CD19, CD16/

56 and CD14 (BD and analysed by FACS Canto II (BD

Bioscience) (figure S1). Polyclonal T cell activation was performed

using soluble 1 mg/ml anti CD3 (clone OKT3) antibody

(ebioscience) and 2 mg/ml anti CD28 (clone 28.2) antibody

(ebioscience). After 24 h, cultivation in X-Vivo-15 (Lonza), cells

were stained for activation markers (figure S2). Mouse nTregs and

mouse CD4+ Th cells were isolated as described previously by

Bopp et al. [28]. All mice used for this study were bred and housed

in a specifi c pathogen-free colony at the animal facility of

Johannes Gutenberg University using institutionally approved

protocols (permission was obtained from the Landesuntersuchung-

samt Koblenz, Germany).

Transfection of primary T cells
The transfection of primary T cells was performed according to

the instructions of the manufacturer (AMAXA). Naturally

occurring CD4+ Th cells (46106 CD4+ cells/cuvette) were

transfected with 1 mM pre miR-155/BIC (Ambion), 1 mM of the

mature mimic miR-155 (Dharmacon) respective 2 mM miR-155

inhibitor miRNA (Dharmacon). To determine the unspecific effect

of the nucleofection, cells were pulsed without any oligonucleotide

(‘pulse only’ control) or with 1 mM control miRNA (Dharmacon).

To recover, cells were cultured for additional 24 h after

transfection before they were labelled with CFSE [29]. Remaining

dead cells were depleted according to the manufacturer’s

instructions using the Dead Cell Removal kit (Miltenyi Biotec).

Polyclonal proliferation assay
Transfected and CFSE labelled CD4+ Th cells (responder cells)

were cultured in 96 well round bottom plates (Nunc) at 16105

cells/well in the presence or absence of different numbers of

freshly isolated allogenic CD4+CD25+ nTreg cells. To stimulate,

cells were treated with 0,5 mg/ml anti CD3 (clone OKT3) and co-

cultivated with 16105 allogenic, antigen presenting cells (APCs).

The latter ones were depleted of T cells using CD3 DynaBeads

(Invitrogen). After four days of incubation the remaining

fluorescence of the CFSE labelled responder cells was analyzed

by FACS CantoII (BD Bioscience). The 3H thymidine incorpo-

ration assays used for the mouse experiments were performed as

described previously [28].

RNA isolation & quantitative PCR
Total RNA (including miRNAs) was isolated using the mirVana

miRNA Isolation Kit (Ambion) according to the manufacturer’s

instruction and concentration of total RNA was measured by

NanoDrop. After transcription into cDNA using the Taqman

MicroRNA Reverse Transcription Kit (Applied Biosystems), the

expression of miR-155 respective of the normalizer U18 (U5 for

mouse miR-155) was quantified with the hsa-miR-155 assay

(Applied Biosystems). For the detection of BIC and the

corresponding normalizer RNA Pol II, total RNA were converted

into cDNA using the High Capacity cDNA Reverse Transcription

Kit (Applied Biosystem) and quantified with the assay-on-demand

Hs01374569_m1 (Applied Biosystems). Expression levels were

calculated as relative fold changes compared to the normalizer and

Figure 5. Overexpression of mature miR-155 rendered murine CD4+ Th cells unresponsive to nTreg-mediated suppression.
Suppression assay performed with naı̈ve murine CD4+ Th cells and murine nTregs: Th cells transfected with pre miR-155 showed up to 40% decreased
susceptibility for nTreg cell-mediated suppression compared to the control-transfected CD4+ Th cells. Shown is the 3H-thymidine uptake after 18 h.
The bar plot diagrams are indicating the grade of suppression levels. The added numbers are showing the differences (%) for the susceptibility of
nTreg-mediated suppression of proliferation of the activated CD4+ Th cells. One representative experiment out of at least three experiments is shown.
doi:10.1371/journal.pone.0007158.g005
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substracted from the normalizer sample (resting CD4+ Th cells)

based upon the delta-delta CT method.

Affymetrix Exon Array Profiling
Total RNA were extracted by using RNeasy Plus Mini kits

(Qiagen). RNA quality was assessed by using the RNA 6000 Nano

Assay (Agilent Technologies). RNA samples were further purified

and prepared according to the manufacturer’s protocol by using

Affymetrix’s GeneChip Whole Transcript Sense Target Labeling

Assay designed for the Human Exon arrays. Arrays were scanned

using the Affymetrix GCS 3000 7G and Gene-Chip Operating

Software v. 1.3 to produce. CEL intensity files. Probe-signal

intensities were sketch-normalized by using a subset of the

‘extended’ probe sets. Transcript cluster expression was summa-

rized by using a robust multiarray average method (RMA) with a

core set of well annotated exons using the ArrayAssist software

(Agilent). MIAME-compliant annotated raw data (.cel files) could

be found under ArrayExpress entry: E-TABM-779.

FoxP3 Chromatin-immunoprecipitation (ChIP)
Genpathway’s FactorPath method was carried out as described

by Labhart et. al (2005) [30]. In brief, human T cell populations,

activated for 16 h, were fixed with 1% formaldehyde for 15 min

and quenched with 0.125 M glycine. Chromatin was isolated by

adding lysis buffer, followed by disruption with a Dounce

homogenizer (cells). Lysates were sonicated (Misonix) to shear

the DNA to an average length of 300–500 bp. Genomic DNA

(Input) was purified from an aliquot of chromatin and quantified

on a Nanodrop spectrophotometer. Extrapolation to the original

chromatin volume allowed quantitation of the total chromatin

yield.

ChIP assays of actived Th cells and nTregs were carried out in

duplicate. An aliquot of chromatin (50 ug) was precleared with

protein G agarose beads (Invitrogen). FoxP3-bound genomic DNA

regions were isolated using an goat polyclonal antibody against

FoxP3 (Abcam ab2481). After incubation at 4 C overnight, protein

G agarose beads were used to isolate the immune complexes.

Complexes were washed, eluted from the beads with SDS buffer,

and subjected to RNase and proteinase K treatment. Crosslinks

were reversed by incubation overnight at 65 C, and ChIP DNA

was purified by phenol-chloroform extraction and ethanol

precipitation. To assay for the enrichment of positive control

region (PDE3a & IL7R – data not shown) in the ChIP DNA,

quantitative PCR (QPCR) reactions were carried out in triplicate

with primers specific for these regions using SYBR Green

Supermix (Bio-Rad). The resulting signals were normalized for

primer efficiency by carrying out QPCR for each primer pair

using Input DNA (data not shown).

Illumina Sequencing
Remaining ChIP DNA (90% of entire sample) was amplified

using the Illumina ChIP-Seq DNA Sample Prep Kit. In brief,

DNA ends were polished and 59-phosphorylated using T4 DNA

polymerase, Klenow polymerase and T4 polynucleotide kinase.

After addition of 39-A to the ends using Klenow fragment (39-59

exo minus), Illumina genomic adapters were ligated and the

sample was size-fractionated (,175–225 bp) on a 2% agarose gel.

After a final PCR amplification step (18 cycles, Phusion

polymerase), the resulting DNA libraries were quantified and

tested by QPCR at the same specific genomic regions as the

original ChIP DNA to assess quality of the amplification reactions.

DNA libraries were sent to Illumina Sequencing Services for

sequencing on a Genome Analyzer II. Sequences (35 bases; ,14

million quality-filtered sequences/sample) were aligned to the

human genome (NCBI Build 36.3) using Eland software. Aligns

were extended in silico at their 39-ends to a length of 110 bp,

which is the average genomic fragment length in the size selected

library, and assigned to 32-nt bins along the genome. The

resulting histograms were stored in BAR (Binary Analysis Results)

files. Peak locations were determined by applying a threshold of 18

(5 consecutive bins containing .18 aligns) and storing the resulting

intervals in BED files (Affymetrix TAS software). These files were

analyzed using Genpathway proprietary software that provides

comprehensive information on genomic annotation, peak metrics

and sample comparisons for all peaks (intervals). In addition the

BED files were used to upload to the UCSC Genome Browser

and/or Integrated Genome Browser (Affymetrix) to generate the

captures of bound genomics regions surrounding annotated

miRNA loci.

Supporting Information

Figure S1 Purification control of CD4+ Th cells and

CD4+CD25+ nTreg cells by FACS analysis. CD4+ Th cells and

nTregs were isolated from human leukapheresis (up to 1.561010

whole PBMC cells) of healthy volunteers. Populations were stained

with the indicated markers using fluorescence-labeled mAbs and

analyzed by flow cytometry. The figure shows the dot blot analysis

of ungated cell measurement. The cells were stained with CD4

APC (BD Biosciences), CD25 PE-Cy5 (BD Bioscience), CD25 PE-

Cy7 (BD Biosciences), CD8 PerCp-Cy5.5 (BD Biosciences) and

CD19 APC-Cy7 (BD Biosciences), CD3 FITC/CD56/CD16 PE

(BD Bioscience) or CD14 FITC (BD Biosciences) and analysed by

FACS CantoII (BD Bioscience). The purity of the resulted nTregs

was typically .94% and for CD4+ Th cells .98%.

Found at: doi:10.1371/journal.pone.0007158.s001 (0.89 MB TIF)

Figure S2 Isolated human T cell populations conduct normal

for activation markers. The activation control of the nTreg and

CD4+ Th cells was tested by a polyclonal T cell activation using

soluble 1 mg/ml anti CD3 (clone OKT3) antibody (ebioscience)

and 2 mg/ml anti CD28 (clone 28.2) antibody (ebioscience). The

cells were cultured in Xvivo-15 medium (Cambrex) for 24 h, then

the activation level was FACS analysed by detecting specific Treg-

and activation markers like: FoxP3, CD127, CD25, CTLA4,

GITR and the adhesion marker ICAM-1.

Found at: doi:10.1371/journal.pone.0007158.s002 (2.50 MB TIF)

Figure S3 In silico identification of putative miR-155 mRNA

targets in CD4+ Th cells. An in silico predicted miR-155 target

gene list was generated by analysis of available microRNA

databases (miRanda, PicTar, TargetScanS). A comparison of the

complete list of 1774 predicted targets to the expression levels

generated out the Affymetrix Exon Array profiling was performed.

Out of 1774 transcript a list of 867 non-redundant transcripts were

found to be represented on the Affymetrix Exon arrays. 321 genes

were not expressed in human T cells populations, neither in CD4+
Th and nTreg cells, nor under resting or stimulated conditions.

The remaining 546 predicted miR-155 targets expressed in T cells

were divided in regulated genes upon miR-155 expression (300

genes) and genes which showed no regulation upon stimulation

(246 genes). 199 genes out of these 300 regulated miR-155 targets

were excluded showing an up-regulation after T cell activation.

Finally 93 predicted miR-155 target genes were left which

displayed a down-regulation after T cell activation and are listed

as miR-155 targets (supporting table 2).

Found at: doi:10.1371/journal.pone.0007158.s003 (5.67 MB TIF)

Figure S4 Predicted miR-155 target genes display down-

regulated mRNA expression after cell activation. mRNA of an
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time course dependent activation of human CD4+ Th cells were

analysed for human miR-155 target gene expression using

Taqman RT-PCR: The fold changes of the following selected

miR-155 predicted target genes are shown: (A) transcription factor

HIVEP2; (B) transcription factor BTB and CNC homology 1

(Bach1); (C) transcriptional repressors MXI1; (D) small Maf family

protein K (MafK); (E) repressor Transducin-like enhancer protein

4 (TLE4); (F) transcriptional repressor HMG box transcription

factor 1 (HBP1). All putative miR-155 targets illustrate the

strongest down-regulation between 16 h and 24 h after stimula-

tion with anti-CD3 and anti-CD28 antibodies. All values were

calculated and shown as relative fold changes using the ddCT

method. As normalizer human RNA Pol II was used.

Found at: doi:10.1371/journal.pone.0007158.s004 (7.19 MB TIF)

Table S1 FoxP3-bound genomic loci with annotated micro-

RNAs. Listed are the bound micro-RNAs, the underlying

chromosome, the significance of positive binding in the appropri-

ate T cell population (-: no significant binding at all; +: one out of

two donors showed significant FoxP3 binding; ++: both donors

showed FoxP3 binding, the regions were nearby located, but still

not overlapping; +++: both donors revealed significant overlapping

FoxP3-binding), the category of localization of the miRNA (intra-,

intergenic & promotor), associated gene(s) and genomic view

captures indicating the bound region (as a pure box & as

miniaturized bar graphs).

Found at: doi:10.1371/journal.pone.0007158.s005 (0.62 MB

PDF)

Table S2 List of T lymphocyte-specific miR-155 target genes.

Listed are 93 genes with their gene symbol, gene description,

RefSeq identifier, Ensemble transcript number, the relative

expression values of the Affymetrix Exon arrays in log2 values

(average of 10 human donors) of the six profiled population of T

cells (Fig. 1A), the fold changes (as log2 ratios) of 16 h activated vs.

non-activated CD4+ Th cells, the significance of the fold change of

16 h activated vs. non-activated CD4+ Th cells as negative log10

p-values generated using the paired Student T-test, the fold

changes (as log2 ratios) of 16 h activated vs. non-activated nTregs

& the significance of the fold change of 16 h activated vs. non-

activated nTregs as negative log10 p-value generated using the

paired Student T-test. The heat map-like color code shows the

expression level gradient from highly expressed target genes (red)

over moderate expressed (orange) to very low expressed candidates

(green). The arrow in the fold change columns symbolizes the

moderate (yellow) to strong down-regulation (red) upon activation

of the T cell populations. The circle in the significance columns is

categorizing the p values to be significant (p-val ,0.01; green) or

not (red).

Found at: doi:10.1371/journal.pone.0007158.s006 (1.14 MB EPS)
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